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Abstract

A dominating set is a vertex subset D of a graph G such that each
vertex of G is either in D or adjacent to a vertex in D. The dom-
ination number, ¥(G), is the minimum cardinality of a dominating
set of a graph G. In this paper, we will investigate the domination
number of Fibonacci cubes. We firstly study the degree sequence of
the Fibonacci cubes. Then, a lower bound for the domination num-
ber of Fibonacci cube of order n is obtained, and the exact value
of the domination number of Fibonacci cubes of order at most 8 is
determined.
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1 Introduction

A vertex subset D is a dominating set of a graph G(V, E) if each vertex in
V is either in D or is adjacent to a vertex in D. A vertex in D is said to
dominate itself and all its neighbours. The domination number v(G) is the
minimum cardinality of a dominating set of G. The idea of domination has
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various applications in design and analysis of communication networks, so-
cial sciences, optimization, bioinformatics, computational complexity, and
algorithm design (6, 7].

Several variations of domination exist. For instance, an independent
dominating set is a dominating set which is also an independent set. A
dominating set D is called a perfect dominating set if every vertex in V—D
is adjacent to exactly one vertex in D. In this paper, we will focus our
discussion on the domination number.

Several papers, e.g. [3, 4, 5], briefly mention the influence of a vertex
subset to define and subsequently study the redundance of a graph, where
the influence of a vertex subset D is I(D) = Y (deg(v) + 1), and the

veD

redundance of a graph G is the minimum, over all dominating sets D, of
I(D). In many cases, the property of redundance is the primary interest.
In [1}, the terminology of excess was introduced to study the domina-
tion number of hypercubes. We now extend the idea of excess to general
graphs, and introduce the over-domination of a graph G with respect to

a dominating set D of G as: ODg(D) = ( Y (degg(v) + 1)) - V(@)
veD

using OD(D) for short if there is no confusion. For example, if a vertex
not in D is dominated by two vertices in D, then it contributes 1 to the
over-domination. We observe that over-domination differs from influence
by a constant, I{D) = OD(D)+|V(G)|. But instead of using min{OD(D)}
over all dominating sets, which corresponds to redundance, we concentrate
our attention on over-domination itself.

In this paper, we will investigate the domination number of Fibonacci
cubes. We firstly study the degree sequence of the Fibonacci cubes. Then,
a lower bound for the domination number of Fibonacci cube of order n is
obtained by applying over-domination. Furthermore, the exact value of the
domination number of Fibonacci cubes of order at most 8 is determined.

For additional graph theory terminology and notational conventions we

follow [11).

2 Degrees

A Fibonacci code of length n is a binary code b,_1 ...b1bo with b;_; - b; =
Oforl1 € i < n-—1. So, a Fibonacci code is a binary code without
consecutive ones. Recall that the Fibonacci numbers form a sequence of
positive integers {fn}2, where f, = fa—1 + fn—2, fo =1, and f; = 2.
By Zeckendorf’s Theorem [13], any non—negative integer i < fn — 1 can

be uniquely represented in the form ¢ = Z b;f; where b; is either 0 or
=0

1, for 0 < j € n — 1 with the condition b,_ bi=0forl<ig<n-1
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Hence, ¢ uniquely determines a Fibonacci code of length n. For example,
i =11 =8+ 3 = f3 + f5 has Fibonacci code 10100.

In [8], Hsu introduced a new interconnection topology — Fibonacci
cubes. The Fibonacci cube I', of order n is the graph (V,,,E,) where
Vo ={0,1,---, fn — 1} and two vertices i and j are adjacent if and only
if their Fibonacci codes differ in exactly one bit. The Fibonacci cubes for
the first few values of n are depicted in Figure 1. We want to point out
that the Fibonacci cube Iy, is an induced subgraph of the n-cube Q,,. More
properties of Fibonacci cubes are described in [2, 8, 9, 10, 12].

10 101 100
0 o 1 jo 81 OL::OL_M 010
Po I‘1 r 2 F3

Figure 1. Fibonacci cubes Iy, forn =0,1,2,3.
To investigate the domination number of Fibonacci cubes, we might

look at the degree sequence. Firstly, we review the result regarding the
degrees in [2].

Lemma 2.1 Forn > 2,

degr,_, (i) +1, 0<i< faa,
degp (i) = { degp, _,(9), a2 €< fao1,
degrn_z(i - fﬂ-l) +1, fac1€i< fn,

where degp, (0) = 0, degp, (0) =1, and degr, (1) = 1. The mazimum degree
A(T,) = n, and vertez 0 is the only vertex of degree n. For n > 4, vertices
1 and f,_, are the only vertices of degree n — 1.

In [10], Munarini and Zagaglia Salvi mentioned the Fibonacci semilat-
tices. Let Cy,, be the set of Fibonacci codes of length n. An order relation
on two codes & = @n_1...a18¢ and 8 =b,_;...b1bp in C, is defined by

agpfes=ah i=n-1,...,1,0

In the Hasse diagram of the poset F;, := (Cy, <), two codes are connected
by an edge if and only if their Hamming distance is one. So the graph
given by the Hasse diagram of F, is isomorphic to I',,. Figure 2 gives the
diagrams for n = 3,4.
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Figure 2. Hasse diagrams of F3 and F4

In the Hasse diagram of F,, vertices with the same number of ones are
placed in the same level. Let L, x be the set of length n codes having k ones.

We can easily find that |L, o] = 1,|Ln,1| =n and |L, 2| = (;) —(n-1)

for n > 3. Since there are no consecutive ones in the Fibonacci codes, & is

at most -g . Furthermore, each vertex in Ly, x has precisely k neighbours
downwards (replacing a one by a zero to get its neighbour in L, x—1).

Now, we investigate the degrees of vertices in L ;.

Lemma 2.2 In L, ;, all vertices except vertices fo and fn_1 have degree
n—2forn22.

Proof. The nverticesin L, ; are fo, f1,..., fn-1. Vertex f;,i=1,...,n—
2, has a one in the 7 + 1th position, counting from right to left, of its
Fibonacci code. The two positions on both sides of that one have to be
zeros. Consequently, there are n — 3 choices to replace a zero by one to
construct the Fibonacci codes of vertex f;’s neighbours in L, . Together
with the neighbour downwards in L, o, vertex f; has n — 2 neighbours and
the degree is n — 2. O

Now, consider the degrees of the vertices in Ly, 2.

Lemma 2.3 In L, 2, vertices £ = fa_1 + fn-3, ¥ = fa—1+ fo and z =
f2 + fo are the only three having degree n — 2 for n 2 4.

Proof. There are (;) —(n—1) vertices in L, 2 and each of them has two

ones in its Fibonacci code. For the vertex z, the two ones locate on the first
and third positions of its Fibonacci code, counting from right to left. The
fourth position has to be a zero. Hence, there are n — 4 possible choices
to replace a zero by a one to construct the Fibonacci codes of vertex 2’s
neighbours in L, 3. Together with the two neighbours downwards, vertices
fo and fo, in L, 1, vertex 2 has n — 2 neighbours and the degree is n — 2.
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A similar argument applies to the vertices = and y. Since the three vertices
z,y and z play important role on studying the domination number of I',,,
we keep using these notations in the rest of this paper.

For any other vertex in Ly, 3, at least one side or both sides of each ones
in its Fibonacci codes have to be zeros, therefore, the degree is at most
n—3. ]

Applying a similar argument, we have the following result.

Lemma 2.4 The mazimum degree in Ly, x is max{k,n—k}, while the min-
imum degree in Ly x is n—2k ifk < E, or k otherwise. Furthermore, there
are k + 1 vertices in Ly, x having degree n — k

Proof. A vertex v in L,k has k ones in its Fibonacci code, and k neigh-
bours downwards. To reach the maximum degree, the vertex v should
have as many as possible neighbours upwards (in Ly, x+1). Since there are
no consecutive ones in Fibonacci codes, the ones should occur tightly, i.e.
10101010... and/or ...01010101 has to occur at the beginning and/or the
end of the Fibonacci code. So there are n — 2k choices to replace a zero
by a one in v's Fibonacci code to get neighbours of v in Ly, 441, and the
maximum degree of v is n — 2k +k = n — k. For the k ones in v’s Fibonacci
code, there are k + 1 ways to partition these k ones into two parts (empty
part is allowed). Hence, there are k+1 vertices in L, » having degree n—k.

For the minimum degree of a vertex in L, x, v should have as few as
possible neighbours upwards. So, there are two zeros on both sides of
each one in v’s Fibonacci code, and the pattern 010 will occur k times if
k< R There are n — 3k possible choices to replace a zero by a one in
v's Fibonacci code to get neighbours of v in Ly x41. Since there are k
neighbours downwards, the minimum degree is n — 3k + k = n — 2k, if
k< g For the case k > 2, the minimum degree is k. O

Corollary 2.5 The minimum degree of 'y, is at least -733

In conclusion, we have the following result:

Theorem 2.6 In 'y, (n > 4), vertez 0 is the only verter having degree
n; vertices fo and fn,_1 are the only vertices having degree n — 1; vertices
fi(i=1,...,n—2), z, y, and z are the only vertices having degree n — 2;
all other vertices in I',, have degree at most n — 3.
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3 Lower Bound

Recalling Lemma 2 in [8], the Fibonacci cube I', can be decomposed into
two vertex disjoint subgraphs, LOW(n) and HIGH(n), isomorphic to I',—;
and I',_,, respectively. Furthermore, LOW(n) and HIGH(n) are connected
exactly by the edge set LINK(n) = {{i,} : |i - j| = fn-1,{i,j} € En}.
Dominating both of the two subgraphs is quite enough to dominate I'y,.
Furthermore, for any given minimum dominating set D,, in I'y,, let D,_; =
(DnNLOW(n)) U {u : u=v— fo_) where v € D,NHIGH(n)}. It is easy
to verify that D,_; is a dominating set of LOW(n). Then, we obtain the
following bounds for the domination number of T',,.

Lemma 3.1 (a) vy(T'n) € ¥(T'n-1) + ¥(Tn-2)-
(b) Y(Tn-1) < ¥(Tn).

Notice that the maximum degree of I',, is n and each vertex could domi-

Jn
n+1|
By applying the concept of over-domination, we obtain the following im-
proved lower bound for the domination number of I',,.

nate at most n+1 vertices, we have a trivial lower bound y(I'y.) >

fn_2

n—2

.‘fornzg

Theorem 3.2 y(T';) 2 H::;-l fora<n<9, and [

Proof. Suppose that D is a minimum dominating set in I'y, and D
contains k (0 < k£ < n — 2) vertices of degree n — 2 from L,; and !
(0 < I < 3) vertices of degree n — 2 from Ln2. Let np = [g] Notice

that the vertex/vertices in Ly, ,, must be dominated. A vertex in Ly,
or L, ., must be included in D, and that vertex has maximum degree at
most n — 4 for n > 9. We consider the following cases:

1) Vertices 0,1 and f,—; are in D. The number of dominated vertices is
at most

(n+1)+2n+(k+)(n—1)+(v(Ta) -3-k—-1)(n—2)—-OD(D) 2 fn.
Simplification gives us
YTn)(n=2) 2 fa—k—1-T+0D(D).

Since vertices fo and f,—; are neighbours of vertex 0; the three ver-
tices of degree n — 2 in L, 5 are vertices z,y and z, and each of them
has two common neighbours with vertex 0 in which either or both are
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2)

vertices fo and f,_1; each vertex in L, ; is a neighbour of vertex 0,
we have

OD(D) > 5+ 31 + 2.

Hence, we have
YTa)(n=2)2 fa+k+20 =22 fo—2.
fa—2

-2

Therefore, v(T'n) > [

Figure 3. Configuration of Ln,0,Ln,1, and La2 in Ty

Vertices 0 and exactly one of the vertices 1 and f,,_; are in D. With-
out lose of generality, suppose that vertices 0 and 1 are in D. The
number of dominated vertices is

n+l+n+k+)n-1)+(Tn)-3-k-(n-2)
-0OD 2 f, fora<n<9,
n+l+n+n—=-3+(k+)(n-1)+((Tn)-3-k—-1)(n-2)
—-OD 2 f, forn>9.

That is

fn—k—-1-5+0D fordag<n<9,
Y(Tn)(n—2) 2 { —k—1—44+0D forn>9

Notice that vertices 0 and 1 are adjacent; vertices from L,, ; are ad-
jacent to vertex 0; vertices from L, 2 have two common neighbours
with vertex 0. Therefore, we have OD > 2 4+ 2k + 2. So

fa+tk+1-3 foragn<9,
‘Y(rn)("_2)/{fn+k+l—2 for n > 9,
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and 7(T») > [fn -l for4 < n <9, and y(Ty) > [{:’:32] for
n29.

3) Vertex 0 is not in D, while both the vertices 1 and f,,—, are in. The
number of dominated vertices is
2n+(k+)(n-1)+(yTn)-2-k—-0)(n—-2)—0OD 2 fa.
That is
YLn)(n-2)2 fn—k—-1-4+0D.

Notice that vertices 1 and f,,_; have two common neighbours (vertices
0 and y); each vertex from Ly, is adjacent to vertex O; vertices z,y
and z from L, are adjacent to vertices 1 and/or f,_;. Therefore,
we have OD 22+ k+ 2. So

¥(Tn)(n—2) 2 fn+1-2,

and v(T'y) > [f" '2 ]

4) Vertex 0 is in D, while none of the vertices 1 and f,_; is in. The
number of dominated vertices is

n+l+(k+Dn-1)+@@Tn)-2-k=)(n-2)-0D > f,.
That is
YTa)n—2) > fa—k—1—-2+0D.

Since vertices from L, ; are adjacent to vertex 0; vertices from L,z
have two common neighbours with vertex 0, we have OD > 2k + 2.

Hence
YTa)(n—2)2 fa+k+1-2,

fn
and v(T'n) > [n_

fn_
7(Fn)>[n_2-l forn>9

23 ] for n > 4. Similar argument in case 2) yields

5) Vertex 0 is not in D, and exactly one of the vertices 1 and fn—; is in.
Suppose that vertex 1 is in D. The number of dominated vertices is

nt(k+Dn—1)+@Ta) -1~-k—(n—-2)-0D > f..

That is
YTn)(n=2) > fa—k—1—-2+0D.



Notice that vertices from L,; dominate vertex 0; vertices z,z are
adjacent vertex 1. We have

k, ifl=0;
0D>{ k+1-1, ifl=1,2, or3.

Hence y(T'n)(n—2) 2 fn+k+1-3,and y(T',) 2 [{::23] forn > 4.
Jn—2
n—2

Similarly, we have (') 2 l— ] forn > 9.

6) None of the vertices 0,1, fo—1 is in D. Therefore D contains at least
one degree n — 2 vertex from L, ;, and k& > 1. The number of domi-
nated vertices is

(k+)(n=1)+(y(Tn) =k =1)(n—-2)— 0D > fa.
That is
Ya)(n-2) 2 fa—k—-1+0D.

Referring to Figure 3, vertex y has a common neighbour with each of
vertices z and z. Vertices from Ly ; dominate vertex 0. Therefore

k-1,  ifl<2
0D>{ E—1+2, ifl=3
So

=23 { 523 §is

fn"3
>
We have v(T') > [n—2

f"—z-l forn > 9.
n—

] for n > 4. Also, by similar argument, we

have 7(I'n) 2 [

In all of above cases, we have y(T'y,) > [‘::':;.I for n > 4 and, y(T',) 2
[—‘t'—‘i-l forn > 9. O
n—2

4 Domination Numbers
Proposition 4.1 v(I'g) = y(I'1) = v(I'2) = 1.

Proof. 1t is obvious after referring to Figure 1. (]
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Figure 4. A minimum dominating set of I's.

Proposition 4.2 4(I'3) =2

Proof. Referring to Figure 4 in which each vertex labeled by “e” is in D,
the result is obvious. O

In T3, there are 4 dominating sets of size 2, namely {0, 1}, {0, 3}, {0,
4} and {2, 4}.

Proposition 4.3 y(I'y) = 3.

Proof. By Theorem 3.2, v(I'y) 2 [%—_——23] = 3. In total we found 12

dominating sets of size 3 in I'y. They are {0, 1, 2}, {0, 1, 5}, {0, 1, 7}, {0,
3,5}, {0, 4, 5}, {1, 3, 7}, {1, 4, 7}, {2, 3, 6}, {2, 4, 5}, {2, 4, 6}, {3, 6, 7}
and {4, 5, 7}. Figure 5 shows a minimum dominating set of size 3 in I'y. O

4 3
——0

1 0 2
o o—

6 5 7

Figure 5. A minimum dominating set of I'4.

Proposition 4.4 y(I's) = 4.

Proof. By Theorem 3.2, y(I's) > [ _1;5__23

nating sets of size 4 in I's, all listed here: {0, 1, 2, 11}, {0, 1, 2, 12}, {0, 2,
5, 12}, {0, 2, 6, 12}, {0, 4, 5, 8}, {0, 5, 8, 12}, {0, 5, 10, 12}, {1, 2, 5, 11},

= 4, and there are 24 domi-
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{1,2,6,11}, {1,2,7, 11}, {1, 4, 7, 8}, {1, 5, 10, 11}, {1, 7, 8, 11}, {1, 7,
10, 11}, {2, 3, 5, 9}, {2, 3, 6, 9}, {2, 4, 5, 8}, {2, 4, 6, 8}, {2, 6, 11, 12},
{3,5,9,10}, {4, 5, 7, 8}, {4, 5, 8, 10}, {4, 5, 10, 12} and {4, 6,7, 8}. O

Proposition 4.5 v(I's) = 5.

Proof. Applying Theorem 3.2, v(I's) > [?__23
computer search, we determined that there are 4 dominating sets of size 5
in T (viz. {1, 2, 11, 16, 18}, {1, 2, 11, 17, 18}, {4, 6, 7, 8, 13}, {4, 7, 8,
13, 19}). O

= 5. By an exhaustive

By applying Theorem 3.2, we have v(I'7) > 7. However, an exhaustive
search revealed that there is no dominating set of size 7 in I'7; therefore
v(T'7) > 8. By computer search, there are 71 dominating sets of size 8 in I'7.
Similarly, an exhaustive search produced 509 minimum dominating sets of
size 12 in I's. The results about the domination number of ', 1 < n < 8,
are summarized in Table 1, where N, (I',,) denotes the number of minimum
dominating sets of the Fibonacci cube of order n.

n 1 2 3 4 5 6 7 8
) 1 1 2 3 4 5 8 12
= 3 4 5 7 9

Table 1. Domination number of I',,.
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