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Abstract
Let g(n, k) be the maximum number of colors for the vertices of
the cube graph @, such that each subcube Q. contains all colors.
Some exact values of g(n, k) are determined.

1 Introduction

A cube graph @, has 2™ vertices which are represented by all n-digit binary
numbers. Two vertices are joined by an edge if the corresponding binary
numbers differ in exactly one digit.

A vertex coloring of @, is called k-polychromatic, 1 < k < n, if each
subgraph Q. has at least one vertex of each color [1]. Let g(n,k) denote
the maximum number of colors in a k-polychromatic coloring of Q. In [1]

it is proved that
lim g(n,k)=k+1.
n—oo

Here some first exact values of g(n, k) are determined (see Table 1).

2 Results

The existence of g(n, k) is guaranteed by the following general lower bound.
Lemma 1. g(n,k) > k+1.

Proof. Consider the coloring of @, with colori =1, ..., k+1 for all vertices
having j digits 1 in their binary representation with j = ¢ (mod k+1). Since
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n\k |1 2 3 4 5 6 7 8 9
1 |2

2 |12 4

3 (|2 4 8

4 |2 3 8 16

5 |2 3 5 16 32

6 |2 3 5 10 32 64

7 12 3 5 64 128

8 [2 3 4 128 256

Table 1: g(n, k).

in each Qj there occur k+1 consecutive numbers j of digits 1 this coloring
is as desired. O

For fixed k the numbers g(n, k) are monotonically decreasing.
Lemma 2. g(n + 1,k) < g(n, k).

Proof. Consider a coloring of Qn+1 with g(n + 1, k) colors such that each
Qx has at least one vertex of each color. Then any subcube @, of this
Qn+1 has the same property proving a lower bound for g(n, k). )

For k =1, n — 1, and n the exact values of g(n, k) are as follows.
Theorem 1. g(n,n) = 2", g(n,n—1) = 2"}, and g(n,1) = 2.

Proof. For k = n all 2™ vertices of @, can be colored pairwise differently.

By Lemma 2 it follows g(n,n—1) < g(n—1,n—1) = 2"~1. The coloring
of Q,, with 2"~ colors and equally colored opposite vertices, that is, vertices
with complementary binary representations, proves g(n,n—1) > 2"~1, since
each Q,_; contains exactly one of two opposite vertices of Q.

By Lemma 1, Lemma 2, and g(n,n) = 2™ from Theorem 1 it follows
2=¢(1,1)2g(n,1) 21 +1. O

A general upper bound for g(n, k) uses the vertex Turdn numbers h(n, k)
for cube graphs considered in [2] where h(n, k) is the minimum number of
vertices to be chosen from Q. such that each subcube Qj contains at least
one of the chosen vertices.

Lemma 3. g(n,k) < \ﬁ(—fz',lT)J
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Proof. In each of the g(n, k) colors there have to occur at least h(n, k) of
the 2" vertices so that g(n, k)h(n, k) < 2™. o

For k = 2 and 3 the values of g(n, k) are determined completely.

Theorem 2. g(n,2) = { ; igi Z:Z, >

Proof. For n = 2,3 Theorem 1 can be used. With h(4,2) = 5 from [2] and
with Lemma 3 it follows g(4,2) < 3. Then Lemmas 1 and 2 complete the

proof of g(n,2) =3 for n > 4. o
8 for n=3,4,

Theorem 3. g(n,3)={ 5 for n=5,6,7,
4 for n>8.

Proof. For n = 3,4 Theorem 1 can be used. With h(5,3) = 6 and with
h(8,3) = 52 from [2] it follows g(5,3) < 5 and ¢(8,3) < 4, respectively,
using Lemma 3. The values g(n,3) for n > 5 follow by Lemmas 1 and 2
if g(7,3) > 5 which remains to be proved. This proof is given by the
following partition of all 27 vertices of Q7 into 5 color classes. The color
class 1 consists of the 24 vertices given by the 12 rows of the matrix in
Figure 1 together with their complements. Then every Q3 in Q7 contains
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Figure 1: Vertices of color 1. Figure 2: Vertices of color 5.

one vertex of color 1 if in every quadruple of coordinates each of all 24
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binary quadruples occurs once in a vertex. This is the case since in every
quadruple of columns of the matrix in Figure 1 there occur 8 rows being
pairwise different and non-complementary.

The vertices of color class 2 can be obtained by the application of the
mapping (a,b,¢,d,e, f,g) — (a,b,1 —¢,1 —d,1 —e,g, f) to the vertices of
color class 1. Since the mapping permutes the coordinates and takes the
complements of some coordinates only, the desired properties concerning
the quadruples is preserved for color class 2 so that every Q3 in Q7 contains
one vertex of color 2. Correspondingly, the application of the mapping
(a,b,c,d,e, f,9) = (a,1 —¢,1 —b,1-4d,1 - f,1—e,g) to color classes 1
and 2 yields the vertices of color classes 3 and 4, respectively. It has to be
checked only that the color classes 1 to 4 are pairwise disjoint.

In color class 5 there are the remaining 32 vertices being represented
by the 16 rows of the matrix in Figure 2 together with their complements.
Then every Q3 contains a vertex of color 5 which can be checked in the
same way as for color 1. o

Theorem 4. g(6,4) = 10.

Proof. By Lemma 3 and h(6,4) = 6 from [2] it follows g(6,4) < 10.

The proof of g(6,4) > 10 is given by the following partition of all 26
vertices of Qg into 10 color classes. The vertices of color classes 1 and 2 are
given by the 8 and 6 rows of the matrices in Figures 3 and 4, respectively.
Iterated application of the mapping (a,b,¢,d, e, f) — (a,b,e, f,1 —c,1—d)

0 0 0 010

001 101

01 01 00 0 06 00 0 O
011 011 0 0 01 11
10 0 1 11 01 1.0 01
1 01 0 0O 101 01 0
11 0 0 01 11 01 00
11 1 110 1 1 11 11

Figure 3: Color class 1. Figure 4: Color class 2.

to the vertices of color class 2 successively produces the vertices of color
classes 3, 4, and 5. Then the application of the mapping (a,b,c,d,e, f) —
(a,1 —b,c,d, e, f) to the vertices of color classes 1 to 5 yields the vertices
of color classes 6 to 10.

It can be checked that no vertex of Q¢ occurs twice. To see that every
Q4 in Qg contains one vertex of every color, due to the mappings, it is



sufficient to check that in both matrices of Figures 3 and 4 every pair of
columns contains each of the 4 binary pairs once. o

Finally, it may be mentioned that the following question remains totally
open: What are reasonable bounds of the smallest n for fixed k£ such that

gn, k) =k+17
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