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ABSTRACT

Let G be a connected graph of order n > 3 and size m and
let f : E(G) > Z, be an edge labeling of G. Define an
induced vertex labeling f' : V(G) — Z, in terms of f by
f'(v) = X e n(w) f(wv) where the sum is computed in Zy. If f/
is one-to-one, then f is called a modular edge-graceful labeling
and G is a modular edge-graceful graph. It is known that no
connected graph of order n > 3 with n =2 (mod 4) is modular
edge-graceful. A 1991 conjecture states that every tree of order
n where n # 2 (mod 4) is modular edge-graceful. In this work,
we show that this conjecture is true and furthermore that a
nontrivial connected graph of order n is modular edge-graceful
if and only if n # 2 (mod 4). The modular edge-gracefulness
meg(G) of a connected graph G order n > 3 is the smallest inte-
ger k > n for which there exists an edge labeling f : E(G) — Zj
such that the induced vertex labeling f/ : V(G) — Z; is one-
to-one. It is shown that meg(G) = n + 1 for every connected
graph G that is not modular edge-graceful.
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1 Introduction

Over the past few decades the subject of graph labelings has been growing
in popularity. Gallian [4] has compiled a periodically updated survey of
many kinds of labelings and numerous results, obtained from well over a
thousand referenced research articles. The origin of the study of graph
labelings as a major area of graph theory can be traced to a research paper
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by Rosa [12]. Among the labelings he introduced was a vertex labeling he
referred to as a B-valuation. Let G be a graph of order n and size m. A
one-to-one function f: V(G) — {0,1,2,...,m} is called a B-valuation (or
a (-labeling) of G if

{If(w) = f()] : wo € E(G)} = {1,2,...,m}.

In order for a graph to possess a 3-labeling, it is necessary that m > n—1.
In 1972 Golomb [6] referred to a (-labeling as a graceful labeling and a
graph possessing a graceful labeling as a graceful graph. Eventually, it was
this terminology that became standard. While every connected graph G
of order n and size m satisfies m > n — 1, not every connected graph is
graceful. Many graphs have been shown to be graceful, however, including
all cycles C,, where n = 0 (mod 4) or n = 3 (mod 4) and all paths. In
addition, all stars, all doubles stars and all caterpillars (trees the deletion
of whose end-vertices produces a path) have been shown to be graceful. In
fact, one of the best known conjectures in this area is due to Ringel and
Kotzig.

The Graceful Tree Conjecture FEvery tree is graceful.

In 1985 Lo [9] introduced a dual type of labeling — this one an edge
labeling. Let G be a connected graph of order n > 2 and size m. For a
vertex v of G, let N(v) denote the neighborhood of v (the set of vertices
adjacent to v). An edge-graceful labeling of G is a bijective function f :
E(G) — {1,2,...,m} that gives rise to a bijective function f’' : V(G) —
{0,1,2,...,n — 1} given by

Flloy= Y flu),

uwEN(v)

where the sum is computed in Z,,. A graph that admits an edge-graceful
labeling is called an edge-graceful graph. In the definition of an edge-graceful
labeling of a connected graph G of order n > 2 and size m, the edge labeling
f is required to be one-to-one. Since, however, the induced vertex labels
f'(v) are obtained by addition in Z,, the function f is actually a function
from E(G) to Z, and is in general not one-to-one. Dividing m by n, we
obtain

m=ng+r, whereg=|m/njand0<r<n-1.

Hence in an edge-graceful labeling of G, g + 1 edges are labeled i for each
i with 1 < ¢ < r and ¢ edges are labeled ¢ for each i withr+1<i < n (in
Z,). Thus this edge labeling f : E(G) — Z, is an one-to-one function only
whenm=n—-1lorm=n.



In 2008 a vertex coloring of a graph was introduced in [10] in connection
with finding a solution to a coin placement problem on a checkerboard. For
a graph G without isolated vertices, let c: V(G) — Z; (k > 2) be a vertex
coloring of G where adjacent vertices may be colored the same. Then a
vertex coloring ¢’ of G is defined such that ¢/(v) is the sum in Z; of the
colors of the vertices in the neighborhood of v for each v € V(G). The
coloring c is called a modular k-coloring of G if ¢’(u) # ¢/(v) in Zj, for every
pair u, v of adjacent vertices of G. The modular chromatic number of G is
the minimum k for which G has a modular k-coloring. This coloring was
studied further in [11], which led to a complete solution of the checkerboard
problem under investigation.

The modular coloring described above led to an edge version, introduced
in [7]. For a graph G without isolated vertices, let ¢ : E(G) — Zx (k > 2)
be an edge coloring of G where adjacent edges may be colored the same.
Then a vertex coloring ¢’ is defined such that ¢/(v) is the sum in Zy of the
colors of the edges incident with v for each v € V(G). An edge coloring ¢
is a modular k-edge coloring of G if ¢’(u) # ¢/(v) in Z; for all pairs u,v of
adjacent vertices of G. The modular chromatic index of G is the minimum
k for which G has a modular k-edge coloring.

Combining the concepts of graceful labeling and modular edge coloring
gives rise to a modular edge-graceful labeling. Let G be a connected graph
of order n > 3 and size m and let f : E(G) — Z,, where f need not be
one-to-one. Let f/: V(G) — Z, such that

flwy= Y flw), 1)

ueN(v)

where the sum is computed in Z,. If f’ is one-to-one, then f is called a
modular edge-graceful labeling and G is a modular edge-graceful graph. Con-
sequently, every edge-graceful graph is a modular edge-graceful graph. This
concept was introduced independently in the 1991 by Jothi [5] under the
terminology of line-graceful graphs (also see [4]). A necessary condition for
a graph to be modular edge-graceful is known. We provide an independent
proof of this result here for completeness.

Proposition 1.1 [4] Let G be a connected graph of order n > 3. If G s
modular edge-graceful, then n # 2 (mod 4).

Proof. Suppose that there exists a modular edge-graceful graph of or-
der n with n = 2 (mod 4) and let f : E(G) — Z, be a modular edge-
graceful labeling of G. Let f’: V(G) — Z, be the induced vertex labeling.
Hence {f'(v) : v € V(G)} = Zn and 50 }_, ey (g f'(v) = n/2 (mod n),
where n/2 is odd since n = 2 (mod 4). On the other hand, observe that
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zuewc) f'(v) = 2, ,eE(c) f(uv), implying that Evev(c) f'(v) is even,
a contradiction. n

As described in [4], a number of classes of graphs have been determined
to be modular edge-graceful. In order to state these results, we present
additional definitions. A vertex v in a graph is odd if degv is odd while
v is even if degv is even. The corona cor(G) of a graph G is that graph
obtained from G by adding a new vertex v’ to G for each vertex v of G and
joining v’ to v.

Theorem 1.2 [4] The following graphs of order at least 3 are modular
edge-graceful:

(2) all stars Ky n—y for which n # 2 (mod 4),
(b) all paths P, for which n # 2 (mod 4),
(¢) all cycles Cy, for which n # 2 (mod 4),

(d) all trees of order n containing ezactly one even vertex and for which
n# 2 (mod 4),

(e) all k-ary trees for which k is even,

(f) all trees of order n <9 and n # 6,

(g) all coronas cor(P,) of paths P, for which n is even,
(h) all coronas cor(Cy) of cycles Cy, for which n is even.

Modular edge-graceful graphs are studied extensively in [8]. In fact,
each known result stated in Theorem 1.2, except for (d), is a consequence
of the more general results obtained in (8]. In 1991, Jothi made the following

conjecture (see [4]).

The Modular Edge-Graceful Tree Conjecture IfT is a tree of order
n > 3 for which n # 2 (mod 4), then T is modular edge-graceful..

In this work, we show that the Modular Edge-Graceful Tree Conjecture
is true and a nontrivial connected graph of order n is modular edge-graceful
if and only if n # 2 (mod 4). The modular edge-gracefulness meg(G) of
a graph G order n > 3 is the smallest integer ¥ > n for which there
exists a labeling f : E(G) — Zi such that the induced vertex labeling
f': V(G) = Zj defined in (1) is one-to-one. We show that meg(G) =n+1
for every connected graph G that is not modular edge-graceful.

We refer to the books [2, 3] for any graph theory notation and terminol-
ogy not described in this paper. Henceforth, we assume all graphs under
consideration are connected graphs of order at least 3.



2 Modular Edge-Graceful Graphs Theorem

In this section, we show that a nontrivial connected graph of order n is
modular edge-graceful if and only if n # 2 (mod 4). First, we present some
preliminary results. Among the results obtained in [8] are the following
results.

Theorem 2.1 [8] A tree of order n > 3 having diameter at most 5 is
modular edge-graceful if and only if n # 2 (mod 4).

Proposition 2.2 [8] If H is a modular edge-graceful connected graph,
then every graph containing H as a spanning subgraph is also modular edge-

graceful.

We next present a result dealing with modular edge-graceful graphs that
has the same flavor as the Bondy and Chvétal theorem on Hamiltonian
graphs and closures (see [1]). First, we present a lemma.

Lemma 2.3 Let G be a connected graph of order at least 3 containing
two nonadjacent vertices u and v that are connected by a path of odd length.
Then the graph G + uv is modular edge-graceful if and only if G is modular
edge-graceful.

Proof. Since G is a connected spanning subgraph of G+uuv, it then follows
by Proposition 2.2 that if G is modular edge-graceful, then so is G + wv.
For the converse, assume that G + uv is modular edge-graceful and let
f : V(G+uv) = Z, be a modular edge-graceful labeling of G+uv. Suppose
that P is a u — v path of odd length in G, say P = (v = v}, v3,...,Yp = v)
where p > 4 is even. Now define the edge labeling g : V(G) — Z, of G by

f(e) ife ¢ E(P)
gle)=< f(e)+ f(uv) ife=vvip1,1<i<p—1andiisodd
fle) = f(uv) ife=vv;41,2<i<p—2andiiseven.

Since g'(z) = f'(z) in Z, for all z € V(G), it follows that g is a modular
edge-graceful labeling of G. Thus G is modular edge-graceful. ]

Let G be a connected graph of order at least 3 and let P be a partition
of V(G) into two or more independent sets. Define the odd path closure
of G with respect to P, denoted by C,(G,P) (or simply by C,(G) if the
partition P under consideration is clear), to be the graph obtained from G
by recursively joining pairs of nonadjacent vertices that belong to different
independent sets in P and that are connected by a path of odd length in
G. Repeated applications of Lemma 2.3 give us the following result on
modular edge-graceful graphs and odd path closures.
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Proposition 2.4 Let G be a connected graph of order at least 3, let P
be a partition of V(G) into two or more independent sets, and let C,(G)
be the odd path closure of G with respect to P. Then C,(G) is modular
edge-graceful if and only if G is modular edge-graceful.

Of course, every nontrivial tree is a connected bipartite graph. We now
show that the odd path closure of a connected bipartite graph of order at
least 3 with respect to given partite sets is a complete bipartite graph.

Lemma 2.5 Let G be a connected bipartite graph with partite sets U and
W where |U| =r and |[W| = s and r + s > 3. Then the odd path closure
Co(G) of G with respect to the partition {U,W} is K, ,.

Proof. First, observe that C,(G) is a bipartite graph with partite sets U
and W. If C,(G) # K, s, then there are vertices u € U and w € W such
that uw ¢ F(C,(G)). Since C,(G) is bipartite,

U {ve V(C.(@)) : dc,(c)(u,v) is even}

W = {v € V(Co(G)) : dco(c)(u,‘v) is Odd}
Since w € W, it follows that dc,(g)(u,w) is odd. Thus vw € E(Co(G)),
which is a contradiction. ]

For positive integers a and b, let S, » be the double star of order a + b
whose central vertices have degrees a and b, respectively. By Theorem 2.1,
every double star S, j is modular edge-graceful if a+b # 2 (mod 4). We are
now prepared to present the following modular edge-graceful trees theorem.

Theorem 2.6 Let T be a tree of order n > 3. Then T is modular edge-
graceful if and only if n £ 2 (mod 4).

Proof. We have seen that if n = 2 (mod 4), then T is not modular edge-
graceful. For the converse, assume that n # 2 (mod 4). Let U and W be
the partite sets of T with |U| = r and |W| = s. By Lemma 2.5, the odd
path closure C,(G) of G with respect to the partition {U, W} is K, ,. By
Proposition 2.4, it suffices to show that G = K, , is modular edge-graceful.
If r=1or s =1, then K, is a star and so it is modular edge-graceful by
Theorem 2.1. If r > 2 and s > 2, then the double star S, of order 7 + s
is a modular edge-graceful spanning subgraph of K, ,. It then follows by
Proposition 2.2 that K. ; is modular edge-graceful. Therefore, T is modular
edge-graceful by Proposition 2.4. u

The following is a consequence of Proposition 2.2 and Theorem 2.6,

Corollary 2.7 Let G be a connected graph of order n > 3. Then G is a
modular edge-graceful if and only if n # 2 (mod 4).
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3 Modular Edge-Gracefulness of Graphs

In this section we consider connected graphs that are not modular edge-
graceful. For every connected graph G of order n, there is a smallest integer
k > n for which there exists an edge labeling f : E(G) — Z such that the
induced vertex labeling f': V(G) — Z; defined by

floy= Y flw),

u€EN(v)

where the sum is computed in Z,,, is one-to-one. This number & is referred
to as the modular edge-gracefulness meg(G) of G. Thus meg(G) > n and
meg(G) = n if and only if G is a modular edge-graceful graph of order n.
Thus, if G is not modular edge-graceful, then meg(G) > n + 1. As in the
case of the gracefulness of a graph, the modular edge-gracefulness of a graph
G is a measure of how close G is to being modular edge-graceful. In this
section, we show that meg(G) = n+1 for every connected graph G of order
n that is not modular edge-graceful. By Corollary 2.7, if G is a nontrivial
connected graph of order n that is not modular edge-graceful, then n = 2
(mod 4). Thus we show that meg(G) = n + 1 for every connected graph G
of order n with n =2 (mod 4). We begin with two lemmas.

Lemma 3.1 If H is a connected spanning subgraph of a graph G of order
at least 3, then meg(G) < meg(H).

Proof. Suppose that meg(H) = k. Let fyg : E(H) — Zi be an edge
labeling of H such that the induced vertex labeling f}; : V(H) — Zy is
one-to-one. Define an edge labeling f¢ : E(G) — Zi by fe(e) = fru(e) if
e € E(H) and fg(e) = 0 if e € E(G) — E(H). Since the induced vertex
labeling f; : V(G) — Zi has the property that f5(v) = fy(v) for all
v € V(G), it follows that fg is one-to-one. Thus meg(G) < k = meg(H). m

Lemma 3.2 Let G be a connected graph of order at least 3, let P be a
partition of V(G) into two or more independent sets and let C,(G) be the
odd path closure of G with respect to P. Then meg(G) = meg(C,(G)).

Proof. Since G is a connected spanning subgraph of a graph C,(G), then
meg(G) < meg(C,(G)) by Lemma 3.1. On the other hand, an argument
similar to the proof of Lemma 2.3 shows that meg(C,(G)) < meg(G) and
so meg(Co(G)) = meg(G). .

In view of Lemmas 2.5, 3.1 and 3.2, we first determine the modular
edge-gracefulness of a star or a double star.

Theorem 3.3 If G is a star or a double star of order n > 6 withn = 2
(mod 4), then meg(G) =n+ 1.
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Proof. First suppose that G = K ,,— is a star with its central vertex v

that is adjacent to vy, vs,...,Un—1. Define a labeling f : E(G) — Zp4, by
0 ifi=1

ifiisevenand2<i<n-1

ifiisoddand3<i<n-3

"—’2@ ifi=n—1.

|

Wi,

flow) =

...
w}‘-
x

Thus {f(vv;):1<i<n-1}={0,-1,%2, :l:3,...,d:"T‘2, 2423} Since

o) =

03

ifi=1
ifiisevenand 2<i<n-1
ifiisoddand3<i<n-3

]

f(w)

3 F_ '
NM wn—- Mlu.o

fi=n-1,

it follows that f’ : V(G) — Zn41 is one-to-one and so f is a modular
edge-graceful labeling. Therefore, G is modular edge-graceful.

Next, suppose that G is a double star with central vertices v and v
where u is adjacent to uy,us,...,u, and v is adjacent to v;,vs,...,vs.
Thusn=7r+s+2and sor + s =0 (mod 4). We consider two cases.

Case 1. Either r = 0 (mod 4) and s = 0 (mod 4) or r = 2 (mod 4)
and s =2 (mod 4). Define an edge labeling f : E(G) — Zp4+1 by

0 ifi=1
1 ifi=2
fluw)) = Hl jfiisoddand3<i<r—1
-4 ifiisevenand4<i<r
it jfiisoddand 1<i<s-1
flow)) = {_ﬁ,f-‘ ifiisevenand 2<i<s
fn) = T2

Observe that
{Ffluw):1<i<r) {O,l,:l:2,:l:3,...,i§}

{flov;):1<i<s} = {:hr-;z,:!:r;‘l,...,:tr;—s}
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Hence {f'(z) : z € V(G)} = {0,1,42,+£8,...,£542, 42 ] i3 4 2},
Thus the induced vertex labeling f' : V(G) — Z,4) is one-to-one.

Case 2. FEitherr =1 (mod 4) and s = 3 (mod 4) or r = 3 (mod 4)
and s =1 (mod 4), say the former; that is, we assume that r =1 (mod 4)
and s = 3 (mod 4). Then r > 1 and s > 3. We consider two subcases,

according to whether r =1 orr > 5.
Subcase 2.1. r = 1. Define an edge labeling f : E(G) — Zn4+1 by

fla) = 2

. ifiisoddand 1<i<s—2
flov) = -3 ifiisevenand 2<i<s—1

s 11 ifi=gs

N

flw) =

Figure 1 shows the edge labeling f in each case when s = 3 and s = 7.
Observe that {f'(z) : z € V(G)} = {&1,%2,..., x5, 241 =4l 41}
Thus the induced vertex labeling f' : V(G) — Z,+, is one-to-one.

U1
(4] T v2
-1
1 1 /20'03
- 2 .
o—2—0—2 L ow, o—4 o 2o,
uy u v Uy u v
3 5| ) 30y
s=3 vs s=7 J) °
V6
v

Figure 1: The labelings in Subcase 2.1 for s=3and s =7
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Subcase 2.2. 7 > 5. Define an edge labeling f : E(G) — Zp+1 by

( #4l ifijsoddand 1<i<r—2
fuw) = { —i ifiisevenand2<i<r—1
| o ifi=r
(¥ ifiisoddand 1<i<s—2
flow) = ¢ —H=L fiisevenand2<i<s-1
| 2 fi=s
flwv) = 2.
Observe that
fluw):1<i<r} = :i:l,:l:2,...,:l:r—1,r+8
2 2
{flovy) :1<i<s} = {ir-;-l’ir;-S,“.’ir+;—2,r+;+2}

Hence {f'(z) : ¢ € V(G)} = {*1,%2,...,%"4§=2 tde rds 4 1} Thus
the induced vertex labeling f’ : V(G) — Z, 41 is one-to-one.

In each case, f is a modular edge-graceful labeling of G and so G is
modular edge-graceful. [

We are now prepared to show that meg(T") = n+1 for every tree T that
is not modular edge-graceful.

Theorem 3.4 IfT is a tree of order n > 6 with n = 2 (mod 4), then
meg(T) =n+1.

Proof. Suppose that the partite sets of T are U and W with |U| =7 and
[W| =s. Thenn =r+s =2 (mod4). By Lemma 2.5, the odd path
closure C,(G) of G with respect to the partition {U,W}is K, ,. If r =1 or
s =1, then meg(K, ) = n+1 by Theorem 3.3. Thus we may assume that
r > 2 and s > 2. Then the double star S, ; is a spanning subgraph of K. ,.
Since K is not modular edge-graceful, meg(K, ;) > n + 1. On the other
hand, meg(Sy,;) = n + 1 by Theorem 3.3. It then follows by Lemma 3.1
that meg(K, ) < meg(Sr,s) =n + 1 and so meg(K,s) = n + 1. Therefore,
meg(T) =n +1 by Lemma 3.2. ]

As a consequence of Lemma 3.2 and Theorem 3.4, we have the following.

Corollary 3.5 If G is a nontrivial connected graph of order n > 6 with
n =2 (mod 4), then meg(G) =n+1.
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