Extending matchings to 2-factors
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Abstract
Let G be a finite 4-regular cyclically 2k-edge-connected simple
graph for some integer k > 1. Let E(k) be a set of k independent

edges in G and (E}1, E2) be a partition of E(k). We consider when
there exists a 2-factor which excludes all edges of E; and includes
all the edges of E3. A complete characterization is provided.

1 Introduction

Matching extension has been widely studied since Plummer [2] first intro-
duced the notion of m-extendability in 1980. For m a non-negative integer,
a graph G with edge set E(G) is said to be n-extendable if G has at least
2m + 2 vertices and for each independent set of edges M C E(G) with
|M| = m we can find a 1-factor F of G with M C F. Porteous and Aldred
[3] generalized this concept by requiring that we can also specify edges for
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our 1-factors to avoid. Specifically, for non-negative integers m, n, a graph
G with at least 2m + 2n + 2 vertices is said to be E(m,n) if for each pair
of disjoint independent sets M, N C E(G) with |[M| =m and |[N| =n we
can find a 1-factor F such that M C F and NN F = (. Many papers have
subsequently investigated this property.

In this paper we consider the analogous problem of finding a 2-factor
including various specified edges while avoiding other specified edges. In
particular we will consider this problem for regular graphs. Of course, if
G is a 2-regular graph, then G certainly admits a 2-factor but exactly one
and there is no room to avoid any edges. If G is 3-regular, then removing a
1-factor from G leaves a 2-regular spanning subgraph of G, i.e. a 2-factor.
Thus if G is 3-regular and E(m,n), then G admits a 2-factor which avoids
any matching M of size m whilst including any matching N disjoint from
M and of size n. So in this sense the problem of selective 2-factors in
3-regular graphs has been widely studied. Here we will focus on 4-regular
graphs. With a 4-regular graph we can always decompose the edge set into
two disjoint 2-factors, F; and F3, say. If we have disjoint matchings M, N
in G and F) avoids all of the edges in M while including all of the edges
in N, then F; includes all of M while avoiding all of N. This represents a
duality of 2-factors in 4-regular graphs analogous to the 1-factor/2-factor
duality in 3-regular graphs.

Consider the following 4-regular graph. Let H be a 4-regular bipartite
graph with bipartition V(H) = (X,Y) and let D = {z1y1,Z2y2, - - . , T2ay24}
be a matching of size 2d in H. Form a new 4-regular graph H* with
V(H*) = V(H) and E(H*) = (E(H)\D) U Dx U Dy, where Dx =
{zir2a+1-i : 1 < i < d} and Dy = {yiy2d+1-i : 1 < i < d}. Then H*
is ‘nearly bipartite’ apart from the edges in Kx and Ky. Clearly, any 2-
factor in H* must use precisely as many edges from Kx as from Ky and
consequently we cannot find a 2-factor of H* that avoids a specified set of
q edges from Dx and includes a specified set of d — ¢ + 1 edges from Dy.
A similar imbalance can be obtained by deleting a vertex from one side
of the bipartition and adding two independent edges joining the resulting
vertices of degree three to form a 4-regular graph. Clearly, any 2-factor
must include precisely one of the new edges, so we cannot include both
or avoid both of these edges. In what follows we show that, for cyclically
2k-edge-connected 4-regular graphs, this ‘near biparticity’ is essentially all
that prevents our desired 2-factors. To facilitate a precise statement of our
result and the subsequent proof, we introduce some definitions, notation
and a well-known result in the next section.



2 Preliminaries

Let G be a finite simple graph with edge and vertex sets E(G) and V(G)
respectively. Suppose that X C V(G). G[X] denotes the induced subgraph
of G with vertex set X. We write E(X) and V(X) rather than E(G[X])
and V(G[X]). Set ¢(X) = |E(X)|. If X,Y C V(G), set E(X,Y) = {zy €
E(G):z € X,y € Y} and g(z,y) = |E(X,Y)|. We use the usual conven-
tion of writing gz (X), and so on, if we wish to emphasize the dependency
on G.

Definition 2.1 G is said to be k-pseudo-bipartite if there exists a partition
(S,T) of V(G) such that ¢(S) + q(T) < 2(k —1).

Definition 2.2 Let E(k) be a subset of k independent edges of G. Let
(Er, E3) be a partition of E(k) with |E1| =i and [Eg| = k—1i. Then we say
that (Ey, E3) is a potential (i, k — i)-factor of G if there exists a 2-factor F
of G such that By N E(F) = and E; C E(F).

Our investigation will rely on the theory of f-factors and we present
some of the pertinent details extracted from the treatment in [1] below.

Let f : V(G) — NUO be a function from the vertex set of a graph G to
the set of non-negative integers. An f-factor of G is a spanning subgraph
F of G in which degp(v) = f(v) for each vertex v € V(G).

A graph triple B = (S,T,U) for G is an ordered triple (S,T,U) such
that {S,T,U} is a partition of V(G). A component C of G[U] is said to
be odd with respect to the function f if f(V(C)) + ¢(V(C),T) is odd.
For a graph triple B = (S,T,U), we denote by h(B) the number of odd
components with respect to f in G[U] and define the deficiency 6(B) of B
with respect to f as follows.

8(B) = h(B) - f(5) + f(T) — deg(T) +¢(S,T).

A graph triple B(S,T,U) is said to be an f-barrier if 6(B) > 0 (by
parity considerations this is equivalent to §(B) > 2).

Tutte’s f-factor Theorem: Let G be a graph and let f : V(G) — NUO
be a function from the vertex set of a graph G to the set of non-negative
integers. Then G has either an f-factor or an f-barrier but not both. 0O

3 The main result

Theorem 3.1 Let G be a 4-regular and cyclically 2k-edge-connected simple
graph for some integer k > 1 and let E(k) be a subset of k independent edges
of G. If (Ey, E3) is a partition of E(k) with |E,| =1 and |Ey| = k—1, then
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(E1, E?) is a potential (i, k — i)-factor of G unless G is k-pseudo-bipartite
and there ezists o partition (S,T) of V(G) such that |[Ey N E(T)| +|E2 N
E(S)| = (a(S) +q(T) + 2)/2.

Proof. Let G, E(k), E; and E; be as in the statement of the theorem and
suppose that (E;, E3) is not a potential (z, k — 7)-factor of G.
Let G’ = G — E(k) and define f : V(G') — {1,2} by

f(v) = 1 if v is incident with an edge of Ej,
“ | 2 otherwise.

Thus (E}, E) is a potential (i, k — ¢)-factor of G if and only if G’ admits
an f-factor.

By Tutte’s f-factor theorem, our assumption that (E;, E») is not a
potential (i,k — ¢)-factor of G is equivalent to saying that G’ has an f-
barrier, that is to say, we can find a graph triple B = (S,T,U) of V(G')
such that:

6(B) = h(B) — f(S) + f(T) — dege:(T) + ¢¢+(5,T) 2 2 (1)
Among all f-barriers fix one B = (§,T,U) such that |U] is as small as
possible. In this f-barrier every component in G'[U] is cyclic. To see this we

use the minimality of |U| and note that for z € U, B = (SU{z}, T, U\{z})
and B" = (S,T U {z},U\{z}) cannot be f-barriers. Hence

8(B') = h(B') - f(8) — f(2) + f(T) — dege(T) +9¢/(5, T) +g¢: (2, T) < 0

(2)
and
6(B") = h(B") — f(8) + f(T) + f(z) — degg(T) — deggr(2) + g6+ (S, T)
+q¢ (.’B, S)
<0. (3)
By (1) and (2) we have
f(z) 2 2+ g6 (2, T) — h(B) + h(B). (4)

By (1) and (3) we have

f(z) < 96/ (2, T) + g¢/(z,U) — h(B") + h(B) — 2. (5)
Since h(B') > h(B) — 1 and h(B") > h(B) — 1, we have

ge'(z,T) +1 < f(z) < ge(2,T) + g6 (2, U) - 1

or
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g6 (2, U) 2 2. (6)

Thus, every vertex = € U has deggy)(z) = 2 and every component of
G'[U] is cyclic.

To facilitate our investigation of the nature of our f-barrier B = (S, T, U),
we introduce the following notation. For a vertex set X C V(G), we set
|X| =z, 6,(X) = |XNV(E1)| and 82(X) = | X NV (Ey)|.

We observe that, with these definitions

(%) 62(S) + 6:(T) + B1(U) = 2i; 63(S) + 05(T) + 85(U) = 2(k — )
(++) |Ec(U, SUT) N E(k)| < 6,(U) + 82(U).

Now degg/(T) = 4t — 61(T) — 02(T) and, since B = (5, T,U) is an
f-barrier,

5§B) = h(B) — f(8) + f(T) — dege(T) + ¢+ (5,T) 2 2.
0

R(B) 2 2+ f(S) - f(T) + 4t — 6T) — 6x(T) — g (S, T)
=2+ (2502(5)) — (2t — 62(T)) + 4t — 61(T) — 62(T) — g (S, T)
= 2(s +1t) = 61(T) — 62(S) — g+ (S, T) + 2
ie.
h(B) > 2(s +t) — 61(T) — 02(S) — g (S, T) + 2. (7N

Since each of component of G'[U] is cyclic and G is cyclically 2k-edge-
connected

gc(U,SUT) > 2kh(B) — 6,(U) — 62(U)
and, by definition
96'(U,SUT) < 4(s +t) — (61(5) + 02(5) + 61(T) + 62(T)) — 295+ (5, T)-(8)
Hence 82(S) + 61(T) + 61(U) + 62(U) < 2(k — 1)h(B) + 4 (9)
By (*) and (9), 2k > 2(k - 1)h(B) + 4, i.e k > (k — 1)h(B) + 2 so
h(B)=0and k > 2.
With A(B) =0, (7) becomes
62(S) + 01(T) + g (S, T) = 2(s + t) + 2.
Combined with (8) this gives
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96/ (U, SUT) < 4(s+¢) +62(S) + 61(T) — 61(S) — 02(T') — 2(62(S) +6:(T)

+ qG"(Ss T))
< 62(S) + 61(T) — 6,(S) — 62(T) — 4. (10)
Now
gc(U,SUT) < g/ (U,SUT) +61(U) + 62(U). (11)

Combining (10) and (11) we get
qc(U, SUT) < 05(S) + 61(T) — 61(S5) — 62(T) + 61(U) + 62(U) — 4
< 62(8) +61(T) +61(S) +62(T) + 61 (U) +62(U) -4 = 2k — 4.

Since G is cyclically 2k-edge-connected, this implies G[U] is acyclic.
But earlier we established that all components of G’[U] are cyclic. From

this we conclude that U = .
Consequently (S, T) is a partition of V(G). Moreover, when we consider

the foregoing analysis in this light we see that
() g¢(S) + 96(T) < 2k — 2 i.e. G is k-pseudo-bipartite
(ii) |Ey N Eg(T)| + |E2 N Ec(S)| 2 (96(S) + 96(T) +2)/2. o
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