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ABSTRACT. Let G be a (p,g)-graph. Suppose an edge labeling of & given by f
: HG) - {1,2, ..., g} is a bijective function. For a vertex ¥ e W G), the induced
vertex labeling of & is a function /*(¥) = X KuY) for all uv € K(G). We say
*(1) the vertex sum of V. If, for all ¥e I G), the vertex sums equal to a constant
(mod K) where k> 2, then we say G admits a Mod(4)-edge-magic labeling, and
G is called a Mod(A)-edge-magic graph. In this paper, we show that (i) all
maximal outerplanar graphs (or MOPs) are mode(2)-EM, and (ii) many Mod(3)-
EM labelings of MOPs can be constructed (a) by adding new vertices to a MOP
of smaller size, or (b) by taking the edge-gluing of two MOPs of smaller size,
with a known Mod(3)-EM labeling. These provide us with infinitely many
Mod(3)-EM MOPs. We conjecture that all MOPs are Mod(3)-EM.
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1. Introduction

All graphs in this paper are simple graphs with no loops or multiple edges.
A (p,g)-graph G in which the edges are labeled 1, 2, 3, ..., § so that the vertex
sums are constant, is called supermagic (see [1]). B. M. Stewart [15, 16]
showed that the complete graphs A3, K4, A5 are not supermagic and for 7> 5,
Kp is supermagic if and only if # # 0 (mod 4). Shiu, Lam and Lee [11]
considered a class of supermagic graphs which are the composition of regular
supermagic graph with a null graph. Lee, Seah and Tan {7] introduced the
following concept of edge-magic graphs which is the generalization of
supermagic graphs.
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Definition 1.1 Let G be a (p,4)-graph. Suppose an edge labeling of G given by
f: KG) - {1, 2, ..., g} is a bijective function. For a vertex Ve U G), the
induced vertex labeling of G is a function f*(¥) =X f(uV) for all uv e £(G). We
say f*(V) the vertex sum of v. If; for all ve W G), the vertex sums are constant,
mod p, then we say G admits an edge-magic labeling, and G is called an edge-
magic (in short EM) graph.

Example 1. Figure 1 shows a graph G with 6 vertices and 8 edges that is EM
with different constant sums.

¢=0(mod 6) ¢=1 (mod 6) ¢=3 (mod 6) ¢= 5 (imod 6)
Figure 1.

Example 2. The following graphs with 6 vertices are EM.

Figure 2.

A necessary condition for a (0,4)-graph to be edge-magic is @ g+1) = 0
(mod p). However, this condition is not sufficient. There are infinitely many
connected graphs, such as trees and cycles, satisfy this condition that are not

edge-magic.
Now we introduce the following concept.
Definition 1.2 Let #>2 and G be a (p,4)-graph. Suppose there exists an edge

labeling /: £(@ — {1, 2, ..., g} which is bijective, and an induced vertex
labeling, f*(V) =X f(u) for all uv e K G) of G. If the vertex sums are constant,
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mod £, then we say G admits a Mod(4)-edge-magic labeling, and G is called a
Mod(K)-edge-magic (in short Mod(4)-EM) graph.

In the case & = p, then a Mod(K)-EM graph is also an edge-magic graph. A
necessary condition for a graph to be Mod(k)-edge-magic is given in the
following theorem.

Theorem 1.1. ([3]) If p= 0 (mod A), then a necessary condition for G to be
Mod(K)-EM is that (¢+1) = 0 (mod K).

Example 3. The graph G in Figure 3 is Mod()-EM for k=2, 3, 4, 6 but not 5.

(0)
3 P 8
©) )
I. 4 3 4 7
3 O3 ), 3

Mod(2)-EM Mod(3)-EM Mod(4)-EM  Mod(6)-EM

Figure 3.

Example 4. The cubic graph 7W{8) in Figure 4 is Mod(2)-EM with vertex label
1.

Figure 4.

Example 5. Figure 5 shows that the following graph is Mod(3)-EM with vertex
label 0.
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Figure 5.

For more general results and unsolved problems on edge-magic graphs, the
reader can refer to [1, 2, 5, 6, 8, 10, 12, 13, 14, 17].

A planar graph is a graph which can be drawn without edge-crossing. A
graph is called outerplanar if it has an embedding in the plane such that the
vertices lie on a fixed circle and the edges lie inside the disk of the circle and do
not intersect. This face outside of the circle is called the outer face. The edges
on the boundary of an outerplanar graph are called outer edges and other edges
are called inner edges or chords. If we consider a planar graph with no loops or
faces bounded by two edges (digons), it may be possible to add a new edge to
the presentation of G such that every vertex lies on the exterior face. When no
such adjunction can be made, the graph is called a maximal outerplanar graph
(or MOP) since additional edge will destroy its outerplanar property. A maximal
outerplanar graph can be viewed as a triangulation of a convex polygon (see
Figure 2).

Lemma 1.1. ([4]) Let G be a maximal outerplanar graphs with n vertices, 72 3.
Then, G has

(i) 23 edges, of which there are n outer-edges and /+-3 are chords;

(i) 72 inner faces, each of which is a triangle;

(iii) at least two vertices with degree 2.

In this paper, we show that (i) all MOPs are mode(2)-EM, (ii) many
Mod(3)-EM labelings of MOPs can be constructed (a) by adding new vertices to
a MOP of smaller size, or (b) by taking the edge-gluing of two MOPs of smaller
size, with a known Mod(3)-EM labeling. These provide us with infinitely many
Mod(3)-EM MOPs. We conjecture that all MOPs are Mod(3)-EM.
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2. Maximal outerplanar graphs which are Mod(2)-EM
In [3], Chopra, Dios and Lee showed that
Theorem 2.1. A necessary condition for a (2,4)-graph G to be Mod(2)-EM is

that g(¢+1) = ps (mod 2), where §is the common vertex sum under a Mod(2)-
EM labeling. Possible values, mod 2, for sare given in the following table:

p=0(mod 2) p=1(mod2)
g=0(mod 2) 0,1 0
g=1(mod 2) 0,1 0

A sufficient condition for G to be Mod(2)-EM is given below without proof.

Theorem 2.2. If a (p,9)-graph G has an eulerian subgraph of size [ ¢/2], then G
is Mod(2)-EM.

We have the following result.
Theorem 2.3. All maximal outerplanar graphs are Mod(2)-EM.

Proof. It suffices to show that every maximal outerplanar graph G has an
eulerian subgraph of size [ ¢/21. From Lemma 1.1, we know that & has two non-
adjacent vertices of degree 2 of which the two neighboring vertices are adjacent
respectively. Since G has odd number of edges, we see that [ g/2]= p-1.

Label the vertices of the outer cycle of G by W, W,..., V. Suppose V(1 < k<
D) is a vertex of degree two, then W 15... Veq Viws... ¥p is a cycle of size p— 1. Now
label the edges of this cycle by 1, 3, 5, ..., 20~ 3 and the remaining edges of G
by 2,4,6, ..., 20— 4. We see that each vertex of G has label 0 (mod2). O

Example 6. Figure 6 shows that the graphs G, and G, are Mod(2)-EM.

Figure 6
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3. Constructing Mod(3)-EM maximal outerplanar graphs

We first give a necessary condition for MOPs to be Mod(3)-EM graphs with
vertex label 0, 1 or 2.

Theorem 3.1. A necessary condition for a maximal outerplanar graph of order p
and size g is Mod(3)-EM with

a) vertex label 0 is that p= 0 or 1 (mod 3);

b) vertex label 1 is that p= 0 or 2 (mod 3);

¢) vertex label 2 is that p= 0 (mod 3).

Proof. a) Suppose G is MOP graph of order p and size § which is Mod(3)-EM
with vertex label 0, then by Theorem 1.1, we have

&g+1) =0 (mod 3)

(2p-3)2p-2)=0

4P -10p+6=0

P -p=0.
So, p=0 or 1 (mod 3). Similarly, we can also prove (b) and (¢). O

Let A; (/= 0, 1, 2) be the family of all MOP graphs that are Mod(3)-EM with
vertex label /. We now present methods on constructing Mod(3)-EM labeling
for MOPs by adding new vertices to known Mod(3)-EM MOPs of smaller order.

We first investigate MOPs that are in A,. A sufficient condition for G to be
in A is given below.

Theorem 3.2. If a (9, §)-graph G has a eulerian subgraph of total size [2¢/3]
with each component has even length, then G is in A,.

Proof. In mod (3), the edges must be labeled with 1, 2, or 0. Label the edges of
the eulerian subgraph by 1 and 2 (mod 3) alternately. Label the remaining edges
by 0 (mod 3). It is readily seen that each vertex of G has label 0 (mod 3). O

For /=0, 1 and p> 4, let G;be a MOP of order p= 3£+ i. Suppose G;is in
A, with a known Mod(3)-edge-magic labeling. We now describe 5 distinct
methods, denoted V1 to A5 as shown in Figure 7 below, of constructing a new
MOP, denoted H), from a given MOP G;by adding vertices t, &, ... Uy, 23,
where the new edges are in mod 3 labeling.
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Figure 7.

In method M, 3 new vertices and 6 new edges are added to G, of order 34
and G, of order 3k+1, respectively. Note that the edges of G, and G, have been
labeled with elements in {1, 2, ..., 64— 3} and {1, 2, ..., 64— 1}, respectively.
Hence, in H, of order 343 and H, of order3 #+4, respectively, we now label the
6 new edges with elements in {6k—-2, 6k— 1, 6k, 6k+1, 6k+2, 64+3} = {1,2, 0,
1,2, 0} (mod 3), and {6k, 64+1, 6k+2, 6k+3, 6k+4, 6k+5} = {0,1,2,0, 1,2}
(mod 3), respectively. Clearly, /) and #, are new MOPs in A,.

In method A2, we also need to add 3 new vertices and 6 new edges to Gy
and G), respectively. By a similar argument as above, we see that 4, and H, are
also new MOPs in A,. Note that if the graphs obtained by using method A2 are
not isomorphic to the graphs obtained by using method A1, then we have new
MOPs of order 3k + 3 and 3 #+4 that admit a Mod(3)-EM labeling.
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In method A3, 6 new vertices and 12 new edges are added to G and G,
respectively. In H, and H,, the new edges need to be labeled with elements in
{6-2,6k—1,..,6/9}={1,2,0,1,2,0,1,2,0,1,2,0} (mod 3), and {64
6k+1,...,6k+11}={0,1,2,0,1,2,0,1,2,0, 1,2} (mod 3), respectively. If the
graphs obtained by using method A3 are not isomorphic to the graphs obtained
by using methods V1 or A2 repeatedly, then we have new MOPs of order 34+ 6
and 34+7 that admit a Mod(3)-EM labeling.

In method /4, 9 new vertices and 18 new edges are added. In H, and A, the
new edges need to be labeled with elements in {6—2, 6K—1, ..., 64+15} = {1,
2,0,1,2,0,1,2,0,1,2,0,1,2,0,1,2,0} and {6£ 6k+1, ..., 6k+17} = {0, 1,2,
0,1,2,0,1,2,0,1,2,0,1,2,0, 1, 2}, respectively. Using this method, new
MOPs of order 34+ 9 and 34+ 10 that admit a Mod(3)-EM labeling can be
obtained.

In method A5, 3p new vertices and 60 new edges are added to all the outer
edges of G, (and Gy). In H, (and H,), the new edges need to be labeled with
elements in {6K—2, 6k—1, ..., 6k+6p—3} (and {64 64+1, ..., 6k+6p—1}).
Using this method, new MOP of order 4p= 12k (and = 12k + 4) that admits a
Mod(3)-EM labeling can be obtained.

It is easy to verify that each MOP of order 4, 6 and 7 admits a mod(3)-EM
labeling with vertex label 0. Using method N1 to A5, we have the following
theorem.

Theorem 3.3. There exist infinitely many MOPs of order p=0 or 1 {mod 3)
that admit a mod(3)-EM labeling with vertex label 0.

We now investigate MOPs in A,. We first note that the MOPs of order 5, 6
and 8 shown in Figure 8 are in A,.
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Figure 8.

For p> 5, let G;be a MOP of order p=3k+2. Suppose G is in A,. By an
argument similar to that in describing the methods N1 to A5 in Figure 7 above,
we also have 5 distinct methods, denoted M1 to M5 as shown in Figure 9 below,
of constructing a new MOP, denoted #, from G by adding 3 vertices u,, i, 4,
where the new edges are in mod 3 labeling. In each method, the 6 new edges
need to be labeled with elements in {64+2, 64+3, 6k+4, 6k+5, 64+6, 6Kk+7}.

Figure 9.

Clearly, the graph H,thus obtained is also in A4,. We have checked that all
12 non-isomorphic MOPs of order 8 can be obtained from the MOP graph of
order 5 by using one of the five methods above. Hence, all the MOPs of order 8
are in A;. Using the method M1 to M5, we have the following theorem.

Theorem 3.4. There exist infinitely many MOPs of order p= 2 (mod 3) that
admit a med(3)-EM labeling with vertex label 1,
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Corollary 3.1. Each MOP of order p= 0 or 2 (mod 3) with vertex set {¥, ¥, ...,
VP} and edge set {(VI’VZ)’ ("2:"3)» sery (Vp-l’vp)) (Vh,/l)} v {(Vlsvk) | /{= 37 4’ crey p_
1} admit a Mod(3)-EM labeling with vertex label 1.

Remark 3.1. Methods A3, M4 and M5 could give us new MOPs of order p=0
(mod 3) that admit a Mod(3)-EM labeling, but cannot be constructed by using
methods Nl to /5 above, repeatedly.

Example 6. The MOP of order 9 in Figure 10 is a MOP that can be constructed
from any MOP of order 6 by using method M3, M4 or M5 but not from any of
methods M1 to N5. The given labeling is based on construction method /4.

Figure 10

We now investigate MOPs in A,. Figure 11 shows that all MOPs of order 6
are in Az.

Figure 11.

For p> 5, let G be a MOP of order p= 3. Suppose G is in A;. By an
argument similar to that in describing the methods A1 to A5 in Figure 7 above,
we also have 4 distinct methods, denoted A1 to A4 as shown in Figure 12 below,
of constructing a new MOP, denoted H, from the given MOP G, by adding
vertices U, th, ..., Uy (1= 3 or 6), where the new edges are in mod 3 labeling, In



each method, the 2/ new edges need to be labeled with elements in {64—2, 64—
1, ..., 6k-3+21}.

Figure 12.
Clearly, the graph H thus obtained is also in A,. Using method Rl to A4, we
have the following theorem.

Theorem 3.5. There exists infinitely many MOPs of order p=0 (mod 3) that
admit a mod(3)-EM labeling with vertex label 3.

Remark 3.2. Note that method A4 could give us new MOPs of order p =0 (mod
3) that admit Mod(3)-EM labeling, but cannot be constructed by using the
methods M to A5, or M1 to M5, repeatedly.

Example 7. The MOP of order 12 in Figure 13 is a MOP with a Mod(3)-edge-
magic labeling that can be constructed from a MOP of order 6 by using method
R4 but not from any of the methods V1 to A5, or M1 to M5, or Al to A3,

repeatedly.
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Figure 13.

Observe that a MOP is an edge-gluing of an outer-edge of two MOPs with
smaller order. Let both G and H be in A,. Denote by G @, A the graph obtained
from G and H by gluing an outer edge of G to an outer edge of A where both
edges has label j/(mod 3). The following theorem gives another way of
constructing infinitely many new Mod(3)-EM maximal outerplanar graphs.

Theorem 3.6. For /= 1,2, let G;be MOP graphs with order p;.
(a) If p;= 0 (mod 3), then G; € A, implies that G, ®y G, € A,.
(b) If p/= 2 (mod 3), then G; € A, implies that G, ®, G; € A,.
(c) If p, = 0 (mod 3) and g, = 2 (mod 3), then G € A, implies that G, ®, G, €

A

Proof. (a) Suppose Gj € A, for /=1, 2. Let p;= 3k, then G;has 64— 3 edges
such that 2k— 1, 24— 1 and 24— 1 edges are labeled with 1, 2, and 0 (mod 3),
respectively. Suppose an edge-gluing of G, and G; has 3(k + &) —2 vertices

and 6(k, + k) — 7 edges such that 2(k + &) —2,2(k + ) -2 and 2(k + &) -3
of the edges need to be labeled with 1, 2, and 0 (mod 3), respectively. Let 6, and
& be an outer edge in &, and G, respectively, both with label 0 (mod 3). Clearly,
the graph G, ®, G, obtained from G, and G; by overlapping on 6, and &, is a
graph in A,.

The proofs for (b) and (c) are similar and are left to the readers. O

Example 9. We give examples for Theorem 2.6(a) and (b) above in Figure 14.
Graphs G, and G, are given under mod(3)-labelings.
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Case (b): G, D, G, is a graph of order 11 having 19 edges in A,.
Figure 14.

An example of Theorem 2.6(c) above can be obtained from graphs of order
6 and 8 in Figure 8.

Remark 3.3. The graph of order 14 in Figure 15 is in A, with a labeling that
cannot be obtained from any of the construction methods M1 — M5 in Figure 9,
or the relevant methods describe in Theorem 3.6 above.
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We end this paper with the following conjecture.

Conjecture. All maximal outerplanar graphs are Mod(3)-EM.
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