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Abstract

In 1956 Ryser gave a necessary and sufficient condition for a par-
tial latin rectangle to be completable to a latin square. In 1990 Hilton
and Johnson showed that Ryser’s condition could be reformulated in
terms of Hall’s Condition for partial latin squares. Thus Ryser’s The-
orem can be interpreted as saying that any partial latin rectangle R
can be completed if and only if R satisfies Hall’'s Condition for partial
latin squares.

We define Hall’s Condition for partial Sudoku squares and show
that Hall’'s Condition for partial Sudoku squares gives a criterion for
the completion of partial Sudoku rectangles that is both necessary
and sufficient. In the particular case where n = pq, pjr, g|s, the result
is especially simple, as we show that any r x s partial (p, g)-Sudoku
rectangle can be completed (no further condition being necessary).
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1 Introduction

A latin square of order n is an n x n array with entries from {1,2,...,n} in
which each symbol occurs exactly once in each row and column. An r x s
latin rectangle of order n is an r X s array in which each cell is filled from
the set {1,2,...,n} of symbols and no symbol occurs more than once in
any row or column. In 1956 Ryser [28] proved the following well-known

theorem.

Theorem 1. Let R; be an r x s latin rectangle on the symbols {1,2,...,n}.
Then R; can be completed to form an n x n latin square on the symbols

{1,2,...,n} if and only if
N@)z2r+s—-n

for all 1 < i < n, where N(i) is the number of times the symbol i occurs in
Ry.

If n = pgq, a (p, q)-Sudoku square is a latin square of order n which is
partitioned into p x g rectangles, each containing a set

{(zp+i,yq+3) : 1<i<p,1Lj<q}

of cells for some z and y, where 0 <2< ¢g-1,0<y <p-—1, and which
have the property that each of these p x g rectangles contains each of the
symbols 1,2,...,n exactly once. (See Figure 1.)

The puzzle game Sudoku was invented by Howard Garns in 1979 [4]. The
puzzle consists of a partial Sudoku square, in which a few of the cells are
preassigned, and the objective is to complete the partial Sudoku square to
a Sudoku square. Usually the puzzles found in newspapers and magazines
use (3,3)-Sudoku squares, although occasionally other types are used, for
example (2, 3)- or (3, 4)-Sudoku squares.

An 7 x s (p,q)-Sudoku rectangle on n = pg symbols is an r x s latin
rectangle which is partitioned into p x g rectangles plus, if p{ 7 and ¢ ¢ s,
along the right hand border, rectangles of size p x (s — s*) and along the
lower border, rectangles of size (r — r*) x ¢, and finally a rectangle of size
(r —7*) x (s — s*), where r* = |r/p]p and s* = [s/q]q, as illustrated in
Figure 2.

Our first analogue for Sudoku squares of Ryser’s Theorem is the follow-
ing simple result.

Theorem 2. Let p|r, g|s and n = pg. Anyr x s (p, q)-Sudoku rectangle
R, can be extended to an n x n (p, q)-Sudoku square.



Figure 1: A (p, g)-Sudoku square.

Thus there is no let or hindrance to the extension; in this respect The-
orem 2 is simpler than Ryser’s Theorem.

The second analogue of Ryser’s Theorem is necessarily a bit more com-
plicated than Ryser’s Theorem itself. In order to describe it we first define
some associated bipartite graphs S, for a =1,2,...,(r*/p) +1 and Bg for
B=1,2,...,(s*/q) + 1. Here S stands for “side” (of the rectangle), and
B stands for “bottom” (of the rectangle). These graphs are only defined if
ptror gt s respectively.

Firstly, if p{ r, graphs S} for o = 1,...,r*/p are defined with vertices

Y(a-1)p+1s-+ -1 Vap

(corresponding to the rows p(a_1)p+1,- - - 1 Pap) and vertices wy, ..., wn (cor-
responding to the symbols 1,...,n). The edge v(q_1)p+iw; is placed in S
if symbol j does not occur in row p(a—1)p+i of Rs. Then, for each o,
1 < a <r*/p, from S}, we construct S, by replicating vertex v; ¢ — (s — s*)
times, the replications being denoted by v;; (1 < j < ¢ — (s — s*)), and by
joining each replicated vertex of v; to each of the vertices wy,...,w, that
was joined to v; in SZ.

For o = (r*/p) + 1, S, is defined similarly. The vertices are
Ya=1)p+1 = Urs+1y..., Ur

(corresponding to the rows py.4,,...,p,) and vertices w;,...,w,. An edge
vr+iW; is placed in S} if symbol j does not occur in row pr. ;. From S3
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Figure 2: An r X s (p,q)-Sudoku rectangle.

we construct S, by replicating vertex v; ¢ — (s — s*) times, the replicated
vertices being denoted by v;; (1 < j < g — (s — s*)), and by joining each
replicated vertex to each of the vertices w;, ..., w, that was joined to v; in
S, |

If g { s, the bipartite graphs Bg (1 < 8 < (s*/q) + 1) are defined in a
similar way, but with columns and rows being interchanged, and with p, r,
7* interchanged with q, s, s*.

We are now able to state the second, more complicated analogue of
Ryser’s Theorem.

Theorem 3. Let n = pg. An r X s (p,q)-Sudoku rectangle R can be
extended to an n x n (p,q)-Sudoku square if and only if, when v { p, for
1< a < [r/q), the graph S has a matching from the replicated row vertices
into the symbol vertices, and, when sfgq, for 1 <8 < [s/q], the graph Bg
has a matching from the replicated column vertices into the symbol vertices.

‘We have not been able to express these two conditions in the very sim-
ple way that Ryser’s Theorem is expressed. Of course the existence of a
matching can be expressed in terms of the satisfaction of a collection of
inequalities—as Hall showed [16] in 1935. (In this paper we reserve the
terms “Hall’s Condition” and “Hall Inequalities” for three more general
analogous situations, one for partially coloured graphs, one for partial latin
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squares, and the third for partial Sudoku squares.)

We now turn to the definitions of Hall’s Condition for graphs, Hall’s
Condition for partial latin squares, and Hall’s Condition for partial Sudoku

squares.

Let G be a finite simple graph. Let C be a set of colours, and let
L : V(G) — 2€, the family of subsets of C, be a list assignment to G,
so that each vertex is assigned a “list” or finite set of colours from C. A
function f : V(G) — C is a verter colouring of G provided that adjacent
vertices have different colours. An L-colouring of V(G) is a vertex colouring
f : V(G) — C such that f(v) € L(v) for each v € V(G). An L-colouring is
often called a list-colouring. An independent set I of vertices of G is a set
of vertices which does not contain any neighbouring pair of vertices. We
let a(L, 0, G) be the maximum number of vertices in an independent set of
vertices of G, each of which contains ¢ in its list. A necessary condition for
there to exist an L-colouring of G is that

Y olL,o,H) 2 |V(H)| (*)

ceC

for each subgraph H of G. For a given subgraph H of G, inequality (%) is
called Hall’s Inequality for H, and the condition that “for each subgraph
H of G, the Hall Inequality for H is satisfied” is called Hall’s Condition for
G.

In the special case where G is a complete graph, Hall’'s Condition is
sufficient to ensure that H has an L-colouring. (This is Hall’s Theorem
{16], and an L-colouring in this case is a system of distinct representatives.)
Hall’s Condition for graphs has been the subject of several recent papers
(see [7, 8, 9, 10, 13, 19, 20, 21, 22, 24, 23)). In general, Hall’s Condition for
graphs is not sufficient to ensure there is a list-colouring.

A latin square can be thought of as a proper vertex colouring of the
cartesian product graph K,OK,, with x(K,OK,) = n colours. This graph
can be visualised as an n X n grid in which the n vertices in each row are
joined to each other, as are the n vertices in each column. However instead
of giving a discussion in terms of graphs (which is easy enough to do) we
shall give a more direct discussion using the more usual terminology for
latin squares.

In a partial n x n latin square P}, some cells are filled from a set C of n
symbols and some are empty. We can define a list L;(v) for each cell v as
follows:
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the symbol in cell v, if cell v is filled;

Li(v) = the set of symbols which are not used in the cells in the
same row as v, nor in the cells in the same column as v, if
cell v is empty.

A set of cells of P, is called independent if no two cells occur in the
same row or column. For a subset @ of cells of P}, we let a(L;,0,Q) be the
maximum number of independent cells of @ all of which contain ¢ in their
lists. Hall’s Inequality for a set Q of cells of P, is that

za(Ll’an) >1Ql,

oeC

where C is the set of n sy;nbols available to be used in P;. Hall’s Condition
is the collection of all 2" inequalities obtained by letting Q range over all
subsets of P,.

Hilton and Johnson in 1990 in [19] showed that Ryser's Theorem could
be restated in the following way.

Theorem 1'. Let R; be an r x s latin rectangle on the symbols {1, 2,...,n}.
Let P, be a partial n x n latin square with R; in the top left-hand corner,
and the remaining cells empty. Then P, can be completed to an n x n latin
square if and only if P, satisfies Hall’s Condition for partial latin squares.

In this case we do not need the whole set of inequalities comprising
Hall’s Condition. In fact if the Hall Inequality for the whole n x n partial
latin square P, is satisfied then the partial latin square can be completed.
Thus the n inequalities of Ryser’s Theorem can be replaced by just one
inequality.

Before turning to Hall’s Condition for Sudoku squares it is convenient to
define Gerechte Designs and Hall’s Condition for them. Let (Py, P, ..., P,)
be a partition of the set of cells of an n x n latin square in which |P;| = = for
each 1 < i < n. An n xn latin square is a (P, Pz, ..., P,)-Gerechte Design
if each P; contains each symbol exactly once. In the case when n = pg and
each P; is a p x q rectangle, then the Gerechte Design is a (p, g)-Sudoku
square.

From a graph theory point of view, a (P, P,..., P,)-Gerechte Design
can be thought of as a proper vertex colouring with n colours of the graph
obtained from the cartesian product graph K,OK, (the vertices here cor-
respond to the cells, and the vertex sets of the first and second Kj,'’s cor-
respond to the rows and columns respectively) by placing an edge between
two vertices if the corresponding cells are in the same part P;.
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We define Hall’s Condition for partial (Py, P, ..., P,)-Gerechte Designs
as follows. If Pp is a partial (P, P, ..., P,)-Gerechte Design, for each cell
7 we define a list in the following way.

the symbol in the cell v of Pp, if cell v is filled;

Lp(v) = the set of symbols which are not used in the cells in the
same row as v, nor in same column as v, nor in the same
part P; of the partition containing v.

A set of cells of Pp is said to be independent if no two cells occur in
the same row, or the same column, or the same part. For a subset Q of the
cells we let a(Lp, 0,Q) be the maximum number of independent cells of Q
all of which contain the symbol ¢ in their lists. Hall’s Inequality for Q is

3 a(lp.0,Q) 214l
c€C

and if Hall’s Inequality is satisfied for each subset Q of Pp, then Pp is said
to satisfy Hall’s Condition for partial (P, Py,. .., P,)-Gerechte Designs, or,
briefly, Hall’s Condition for Gerechte Designs.

Now we turn to discuss Hall’s Condition for 'partial Sudoku squares.
First let us note that we shall describe the p x g subrectangles forming the
(p, g)-Sudoku square as the big (Sudoku) cells, and the 1 x 1 subrectangles
as the small (Sudoku) cells. A (p,q)-Sudoku square on a set C of n = pq
symbols can be thought of as a proper vertex colouring of a graph obtained
from the cartesian product graph K,OK,, in which, visualizing K,OK,,
as a grid, as described earlier, the p x g subrectangles (i.e. the big cells)
correspond to complete bipartite subgraphs K, ;. If the first K, has vertices

| Yly. ooy Up, Uptly-- 3 V2py e oy Uig—1)p+1y- - -y VUgps
and the second K, has vertices
Wiy, - ,wq,wq.l,l,. ..,wgq,. . ’w(p—l)q+17~' 1 Vpgy
then the big Sudoku cells correspond to the K, 4 on the vertices

v(z-l)p+11 ceeyUzp and w(y—-l)q+l! ceey ’Uqu
(r=1,2,...,q;y=1,2,...,p). In this case, for each small cell v, we define

the symbol in the cell v, if cell v is filled;

Ls(v) = the set of symbols which are not used in the small cells in
the same row as v, nor in small cells in the same column as
v, nor in the big p x ¢ Sudoku cell containing v.
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big row

M—— medium cell

small row

Figure 3: Big and medium cells, big and small rows.

A set of cells of Pg is said to be independent if no two cells occur in the
same row, or the same column, or the same big cell. For a subset @ of the
cells we let a(Lg, 0, Q) be the maximum number of independent cells of Q
all of which contain the symbol ¢ in their lists. Hall’s Inequality for Q is

> a(Ls,0,Q) 2 Q)

oeC
and if Hall’s Inequality is satisfied for each subset @ of Pg, then Ps is said
to satisfy Hall’s Condition for partial Sudoku squares.
We shall show that Theorem 3 (together with Theorem 2) can be refor-
mulated as follows.

Theorem 3'. Let n = pg. Let Rs be an 7 x s (p, ¢)-Sudoku rectangle on
the symbol set C = {1,2,...,n}. Let Ps be a partial (p, g)-Sudoku square
with Rg in the top left-hand corner, and the remaining cells empty. Then
Pg can be completed to an n x n (p, g)-Sudoku square if and only if Pg
satisfies Hall’s Condition for partial Sudoku squares.

2 Partial Sudoku Squares: the simple case

In this section we prove Theorem 2. First we need some preliminaries.
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A k-edge-colouring of a finite multigraph G is a map
¢:E(G)—{1,2,...,k},

where E(G) is the edge set of G. For any vertex v € V(G), the vertex set
of G, and any ¢ € {1,...,k}, let E;(v) be the set of edges incident with v
of colour i. A k-edge-colouring is called equitable if

[1E:(v)| — |E;(v)|| < 1for all v € V(G) and i, € {1,2,...,k}.
The following lemma is easy to prove; it is due independently to McDi-
armid [27] and de Werra (32].

Lemma 4. Let k > 1 be an integer, and let G be a bipartite multigraph.
Then G has an equitable k-edge-colouring.

Let L be a latin square of order n, and let S = (p1,...,p5), T =
(q15.-.,g)and U = (r4,...,7,) be three compositions of n. (A composition
of n is an ordered set of positive integers which sum to n.) An (S,T,U)-
amalgamation of L is an s x t array constructed as follows. We place a
symbol k in cell (, 7) every time that a symbol from

{ri+-Fre-1+1l.,m 4 e}
occurs in one of the cells (a, ) where
ace{p+-+pa+l,...,;m+- +p}

and
Be{an+ - +g-1+1,....,q1 4+ +gj}.

Let n > 1 be an integer and let S = (py,...,ps), T = (q1,---,¢) and

U = (r,...,Ts) be three compositions of n. An (S,T,U)-outline latin
square of order n is an s x t array containing n? symbols from {1,...,u}
(each cell may contain more than one symbol), such that the following
conditions hold:

(i) row % contains symbol k p;7x times;

(ii) column j contains symbol k g;ri times;
(iii) cell (¢,7) contains p;q; symbols, counting repetitions.

It is easy to check that the (S,T,U)-amalgamation of a latin square
of order n is an (S,T,U)-outline latin square of order n. The following

55



«—— medium cells to be filled

Figure 4: One of the big cells in the ((s*/q) + 1)-th big column.

theorem, sometimes called the Amalgamated Latin Square Theorem, shows
that the converse is also true. It was proved by the second author in [17] in
1980. See [1] and [2] for earlier work by Andersen and the second author on
somewhat similar lines, and [18] for a clearer account of the Amalgamated
Latin Square Theorem.

Theorem 5. Let O be an (S,T,U)-outline latin square. Then there is a
latin square L such that O is an (S, T, U)-amalgamation of L.

We now turn to the proof of Theorem 2, and show that if n = pgq,
p|r and g|s, and if Rg is an r x s (p, g)-Sudoku rectangle on the symbols
1,2...,n, then the partial n x n Sudoku square containing Rg in its top
left-hand corner, the other cells being empty, can be completed to form an
n x n (p, g)-Sudoku square.

Recall that we call the p x g rectangles (some empty, some filled) of our
partial (p, q)-Sudoku square Pg the big cells, and the 1 x 1 cells of Pg the
small cells. The big cells are arranged in rows which we shall call big rows,
and in columns which we shall call big columns. Each of the r/p big rows
of Ps consists of s/q big cells which are filled, and (n — s)/q big cells which
are empty. Similarly with the first s/g big columns.

We start by placing the symbols 1,2, ..., 7 in each of the big cells which
are empty. Then, for the first r/p big rows, working big row by big row,
one after the other, we divide each of the big cells carefully into p sets of g
small cells, all in the same small row. We shall call these sets medium cells.

(See Figure 3.)
Our first task will be to distribute the n symbols in the previously empty
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big cells in each of the first »/p big rows amongst the medium cells, so that
each medium cell contains g symbols. The only constraint here is that each
small row should contain each symbol exactly once. We do this one big row
at a time. For this we construct a bipartite graph G as follows. One vertex
set contains p vertices, say ry,..., 7y, representing the p small rows of some
big row. The other vertex set contains n vertices wy,...,w, representing
the symbols. The symbol vertex w; is joined to the row vertex v; by an
edge if symbol i is not contained in row j of S. Each symbol vertex w;
has degree p — (s/q) = (n — s)/q and each row vertex v; has degree n — s.
We give G an equitable k-edge-colouring with colours (s/q) +1,...,p. If
symbol vertex w; is joined to row vertex v; by an edge coloured k, then we
place symbol 7 in row j in the k-th big column. Since the edge-colouring is
equitable, g symbols are each placed in the j-th medium cell in big column
k.

The analogous process is performed with the first s/q big columns, and
in this case the medium cells are vertical and contain p symbols.

At this point it is easy to check that we have an (S, T, U)-outline latin

square, where
S=(1,1,..-,1,p,p,-..,p)

T=1,1,...,1,4,q,...,9)
U=(,1,...,1)

where S has r 1’s and (n—s)/q ¢’s. By Theorem 5, there is a latin square L
of order n of which our outline latin square is the (S, T, U)-amalgamation.
Because each big cell was filled with the symbols 1,2, ..., n, this latin square
is in fact a Sudoku square. O

3 Partial Sudoku squares: the general case.

In this section we prove Theorem 3. Recall that, in this case, we shall
assume that p { r or ¢ t s (or both). Suppose g { s. Then graphs S, are
defined for a = 1,2,...,(s*/q) +1 (= [s/q]). The tactic for the proof is
to apply Theorem 5 in much the same way as in the proof of Theorem 2,
except that we have also to consider the first [r/p] partly filled big cells in
the ((s*/g) + 1)-th big column, and, if p { r, the first (s*/q) + 1 partly filled
big cells in the ((r*/p) + 1)-th big row.

Proof of Theorem 8. We need to divide the unfilled part of the partly filled

big cells into horizontally placed medium cells of size 1 x (g — (s — s*)) for
the first 7*/p big cells (see Figure 4), and, if p { r, just the first r — r*
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corner cells

Figure 5: The partition of the corner cell.

horizontal medium cells in big cell ((r*/p) + 1, (s*/q) + 1). (See Figure 5.)
We need to assign the symbols that have not been used in the filled part
of these big cells between the horizontal medium cells in such as way that
no symbol occurs more than once in any small row. Once these medium
cells are filled in the ((s*/q) + 1)-th big column, then we can fill the empty
horizontal medium cells in the first »*/p big rows and the first (r — r*)
rows in the ((r*/p) + 1)-th big row and in big columns (s*/q) + 2,...,p
by applying the argument in the proof of Theorem 2. This argument is
not precisely the same because of the need to fill the horizontal medium
cells in the small rows r* + 1,...,r, but this slight difference presents no

difficulties.

The matchings in the graphs S,, for a = 1,2,...,(r*/p) + 1, are used
to fill the horizontal medium cells in the ((s*/¢) + 1)-th big column.

For 1 < a < r*/p, if S, has a matching M,, and if vertex v(a—1)pt+z,y
is joined to vertex w; by an edge of M,, then the symbol j is placed in the
z-th horizontal medium cell in the a-th big row and the ((s*/q) + 1)-th big
column. Exactly ¢ — (s — s”) symbols are placed in this medium cell, and
the symbols placed do not occur elsewhere in row (a — 1)p + z. Moreover
big cell (o, (s*/q) + 1) contains each symbol exactly once. If p{r then the
same technique is used to fill the z-th horizontal medium cell in row r* 4+ =z
for 1 <z <r—r* and big column (s*/g) +1, using the matching M. )11

58



V(a-1)p+1,1 . oWy
. oW

V(a—1)p+l,q-(s=s*) di I
medium cells
V(a-1)p+2,1 °

Y(a—1)p+2,9—(s—5") @

Y(e=1)p+i, k : :

Vap, 1 o
Vap, g—(s—s*) . ;w“
the graph S, The i-th big cell in

big column (s*/q) + 1.

Figure 6: S, and the cells the matching is used to fill (symbol j goes in the
i-th medium cell).

59



in the graph S(;./5)4+1. Now we apply the argument of Theorem 2 to fill
all the remaining medium horizontal cells in big rows 1,...,7*/p, and the
remaining medium horizontal cells in the first » — »* small rows in big row
(r*/p) + 1.

Next if p { r we apply the same argument using the matchings in the
graphs Bg (1 < 8 < s*/q) to fill in the vertical medium cells in big row
(r*/p) +1 and big columns 1,2,...,s*/q, and then to fill in the first s — s*
vertical medium cells in big cell ((r*/p) + 1,(s*/q) + 1). (See Figure 7.)
Finally, using the argument of Theorem 2 again, we fill all the remaining
vertical cells in big columns 1,...,s*/q and the first s — s* vertical medium
cells in big column (s*/q) + 1.

In the big cell ((v*/p) +1,(s*/q) +1) we have (r —r*) x (s — s*) single
small cells, all filled, s—s* filled vertical medium cells of size (p—(r—r*)) x1,
r —rx filled horizontal medium cells of size 1 x (g — (s — 5*)) and one empty
cell of size (p — (r — r*)) x (g — (s — s*)). We fill all the empty big cells
with the symbols 1,2,...,n, and all the incompletely filled big cells with
the symbols from 1,2,...,n which do not already occur there.

One may easily check that we now have an (S, T, U)-outline latin square,

where
S=(,1,...,1,p—(r—7*),p,p,...,P)

T=(1’1,-”11,‘1-'(3-3'),q’q,~-,¢1)
U=(1,1,...,1)
where S has r 1’s and ¢ — (r* + 1) p'sand T has s I’s and p— (s* + 1) ¢’s.

By Theorem 5, there is a latin square L of order n of which our outline
latin square is the (S, T, U)-amalgamation. Moreover, because the big cells
all contain each of the symbols 1,2, ..., n exactly once, L is a Sudoku square
which extends Rgs. This proves the necessity.

The sufficiency follows as the whole process can be reversed in a trivial
way when Rg is extended to a Sudoku square L. 0

4 Partial Sudoku Squares and Hall’s Condi-
tion

In this section we prove Theorem 3’ in which Theorem 3 is reformulated in

terms of Hall’s Condition for partial Sudoku squares. Let us remark that if

H is a subset of the set of cells of a partial Sudoku square, some of which
are preassigned, then the Hall Inequality for H is satisfied if and only if the
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gize (p— (r—1*)) % (g — (s —5%))

size p X (g — (s — s*)) » - size p X q

size (p—(r—7%)) xgq

Figure 7: Cells of different sizes.

Hall Inequality for the subset of H consisting of its empty cells is satisfied.
This is easy to see, and is proved in slightly different circumstances in, for
example, [5], [24] or [23]. We shall just consider the most complicated case
in Theorem 3’ where p{r and ¢{s. The case when p | r or g | s is similar
but easier; if p | » and g | s there is nothing to prove.

Proof of Theorem 3'. By Theorem 3, Rg can be completed if and only if
Rs can be extended to an (r* + p) x (8* + q) (p, q)-Sudoku rectangle, say
RE. So we need only focus on whether or not we can fill the remaining
small cells in the ((s*/g) + 1)-th big column and ((7*/p) + 1)-th big row
that already contain some preassigned cells. (We shall call the partially
filled big cells the restricted big cells.)

We know from Theorem 3 that these restricted big cells can be divided
into appropriate horizontal and vertical medium cells if and only if the
graphs S, (1 < a < (r*/p)+1) and B (1 £ 8 < (s*/q)+1) have matchings
into the symbol vertices. (Note that the big cell ((v*/p) +1, (s*/q) + 1) has
only 7 — r* horizontal medium cells and s — s* vertical medium cells, and
the corresponding matchings are smaller.)

By Hall’s Theorem, a necessary and sufficient condition for the existence
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1[2] - = 1{2] - [z-1
z+1 T

z+2 ﬂ

Figure 8: Two incomplete partial latin squares with n cells preassigned.

of such a matching M, in S, (1 € a < (r*/p) + 1) is that

U N) 2 14]

vEA

for each subset A of the set of (replicated) row vertices of S, (N(v) is the
set of neighbours of a vertex v). But this is essentially the same as Hall’s
Condition for the a-th restricted big cell in big column (s*/q) + 1, namely

3" a(Lo,H) > |H|

oe{l,...,n}

for each subset H of the restricted big cell. Here the ¢ — (s — s*) replicates
in S, of a row vertex v(q—1)p+; in S correspond to the g — (s — s*) small
cells in the j-th horizontal medium cell in the a-th big cell in big column
(s*/q) +1. A solution of just some of the row-vertex replicates corresponds
to a subset H containing just some of the small cells in the j-th medium
cell. A symbol o is available for inclusion as an end-vertex of an edge of
a matching, or in a cell of H, if and only if in at least one of the rows
of H there is no preassigned occurrence of the symbol. A symbol selected
to be an end vertex of a matching may be selected to be placed in the
corresponding row of H, and vice-versa. Thus in this case the two versions
of Hall’s Condition are essentially the same.

The argument for the matchings in the bottom graphs Bg (1 £ 8 <
(s*/q) + 1) is, of course, the same.

a
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Figure 9: An incompletable partial Sudoku square.

5 Further comments

5.1 Analogues for Sudoku squares of results about par-
tial latin squares

Hall’s Condition for graphs has been the object of a certain amount of study
(see e.g. [7, 8, 9, 10, 13, 20, 22, 24, 23]) and recently Hall’s Condition for
partial latin squares has been studied (see (5, 19, 24, 23]). In every case
that has been looked at so far, whenever there is a theorem saying that a
certain kind of partial latin square can be completed if and only if such and
such a condition is satisfied, then the condition (whatever it might be) can
be replaced by Hall’s Condition. However, there are examples of classes of
partial latin square for which Hall’s Condition is not a sufficient condition
for completion (it is always necessary).

It seems quite likely that there are analogues of these results for partial
Sudoku squares. At present, we just have the example of Ryser’s Theorem,
given in this paper. It would also be interesting to construct classes of par-
tial Sudoku squares for which Hall’s Condition is not a sufficient condition
for there to exist a completion.

It is worth remarking that there are really two natural kinds of partial
Sudoku squeres. In one kind the set of preassigned cells includes either
none or all of the constituent small cells in any big cell (in the terminology
of Section 3), and in the other this restriction is not made. Theorem 2 con-
siders partial Sudoku squares of the former type and Theorem 3 considers
partial Sudoku squares of the latter type. In the next subsection we will
look at two Sudoku variants of the Evans Conjecture.

5.2 Two Sudoku analogues of the Evans Conjecture
In 1960 Trevor Evans [14] posed the now famous conjecture that bears

his name: What is the least number of preassigned elements an n x n
matrix can have and not be completable? The conjecture was n, and n
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would be the best possible because of the configurations in Figure 8. The
Evans Conjecture was eventually proved independently by Smetaniuk [30]
and Andersen and Hilton [3]. We can consider two variants of the Evans
Conjecture for Sudoku squares. In the first, we ask:

Problem 1. What is the least number of small cells that can be preassigned
in a partial p x ¢ Sudoku square, so that it is not completable?

It seems reasonable to suppose that the answer is p + ¢ — 1, and this
bound can be attained (see Figure 9). (This question has also been asked
by Antal Ivényi [26].) Note that this includes the normal Evans Conjecture
as a special case, as any latin square can be regarded as a (1,n)-Sudoku
square.

The second variant of the Evans Conjecture for Sudoku squares, is one
where the big cells are either empty or completely filled.

Problem 2. What is the least number of big cells that can be preassigned
in a partial p x ¢ Sudoku square, so that it is not completable?

We conjecture that the least number is » = pq. This bound can be
attained by the following construction. Let Ry, Ry, ..., Rix be the rows of a
k x k matrix M filled with the symbols 1,2,...,k?, each symbol occurring
once. Let M; = M and, for 2 < i < k, let M; be the matrix

R;
(B

i+1

M;=| R,
Ry

\R:—J

Consider the partial k2 x k2 Sudoku square in Figure 10. Then, looking at
the first row and ik-th column, we see that there is no symbol that can be

placed in cell (1,3k).

5.3 Orthogonal latin squares and Hall’s Condition

Suppose that (A, B) is a pair of n x n orthogonal latin squares on the
symbols 1,2,...,n. For 1 < i < n, let P; be the set of cells of B that
contain the symbol i. Then, obviously, (Py,...,P,) is a partition of the set



M| M, ces M;_,

MT

i
T
Mi+ 1

Figure 10: An incompletable partial Sudoku square.

of cells of an n x n matrix such that |P;| = n. Therefore Aisa (Py,..., P,)-
Gerechte Design. In general, any latin square with an orthogonal mate can
be thought as a kind of Gerechte Design. Given a latin square A with an
associated partition (P;,..., P,) corresponding to an orthogonal mate, we
call A a (Py,...,P,)-orthogonal latin square design.

The partition (P, ..., P,) itself has the properties:

(i) We can form a latin square B by placing symbol i in the cells of P,
(1<i<n).

(ii) There is a way of placing the symbols 1,2,...,n each exactly once in
the cells of P; (1 < i < n) so that we form another latin square A.

Then, of course, (A, B) is a pair of orthogonal latin squares. Any par-
tition (Py,...,P,) with properties (i) and (ii) is an OLS-partition of the
n x n matriz. (OLS stands for “orthogonal latin square”).

A partial (Py,...,P,)-OLS design is a partial latin square which is a
partial (Py,..., Pp)-Gerechte Design. Thus in a partial (P,...,P,)-OLS
design, we are given the partition (P,..., P,), and we have a partial latin
square in which each P; contains each symbol at most once.

The notion of Hall’s Condition for a partial (Py,...,P,)-OLS design is
just a particular special case of Hall’s Condition for partial (Py,...,P,)-
Gerechte Design defined in Section 1. We shall refer to it briefly as Hall’s
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Condition for OLS-designs.

It would be fascinating if there were results analogous to Ryser’s The-
orem for OLS-designs. Our theorem about Sudoku squares suggests the

following possibility:

Problem 3. Let (P,...,P,) be an OLS-partition of an n x n matrix
of cells. Suppose that we have an n x n partial latin square Py in which
Py, ..., P, are filled with each P; (1 < i £ r) containing each symbol exactly
once. Is it true that we can complete the partial latin square in such a way
that each of P.;1,..., P, also contain each symbol exactly once if and only
if Py satisfies Hall’s Condition for partial (P, ..., P,)-OLS designs?

5.4 Complexity

We do not know the complexity of the decision problem: given a partial
latin square, decide if it satisfies Hall’'s Condition for latin squares. This
problem is known to be in co-NP [24], but it is not known to be in NP.
We can ask the same question about the complexity of the corresponding
problem for Sudoku squares: given a partial Sudoku square, decide if it
satisfies Hall’s Condition for Sudoku squares.

Colbourn [6] showed that the following decision problem is NP-complete:
given a partial latin square, decide if it can be completed. Yato and Seta
[33] showed that the corresponding problem for Sudoku squares is also NP-
complete: given a partial Sudoku square, decide if it can be completed. We
do not know if the problem remains NP-complete if the big cells are required
to be either filled or empty, although it seems reasonable to suppose that
this is indeed the case.

In [31] it is shown that deciding if a partial Gerechte Design is com-
pletable is NP-complete, even if the partial Gerechte Design contains no
filled cells at all.

Hilton and Vaughan [24] have looked at the decision problem: given a
partial latin square satisfying Hall’s Condition for latin squares, decide if it
can be completed. They showed that this problem is NP-hard. We do not
know if this is true of the corresponding problem for Sudoku squares: given
a partial Sudoku square satisfying Hall’s Condition for Sudoku squares,
decide if it can be completed.

A maximum matching in a bipartite graph on n vertices can be found in
O(n?) time (see e.g. [29, Chapter 20]), so there is a polynomial algorithm
to decide if a bipartite graph has a perfect matching. To decide if an
r x s partial Sudoku square, as considered in Theorem 3, can be completed,



we need to decide if each of n bipartite graphs has a perfect matching.
Consequently, the problem of deciding if such a partial Sudoku squares can
be completed can be performed in polynomial time.
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