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Abstract

We prove that the complete graph K, can be decomposed into
truncated tetrahedra if and only if v = 1 or 28 (mod 36), into trun-
cated octahedra if and only if v = 1 or 64 (mod 72), and into trun-
cated cubes if and only if v = 1 or 64 (mod 72).

1 Introduction

The spectrum of integers v for which the complete graph K, can be decom-
posed into copies of the graph of one of the Platonic solids is determined
for the tetrahedron, octahedron, cube and dodecahedron but only partial
results are available for the icosahedron. The current state of knowledge,

see also [3], appears to be as follows.

1. Tetrahedron designs are equivalent to Steiner systems S(2,4,v). The
necessary and sufficient condition is v = 1 or 4 (mod 12), [15].

2. Octahedron designs are equivalent to Steiner triple systems S(2, 3,v)
which can be decomposed into Pasch configurations. The necessary
and sufficient condition is v =1 or 9 (mod 24), v # 9, [14], [1].

3. Cube designs exist if and only if v = 1 or 16 (mod 24), [17], [16], [6].
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4. Dodecahedron designs exist if and only if v = 1, 16, 25 or 40 (mod
60) and v # 16, [2], [3], [4].

5. Icosahedron designs exist if and only if v = 1, 16, 21 or 36 (mod 60)
with possible exceptions v = 21, 141, 156, 201, 261 and 276, (2], (3],

8].

A natural extension of the above is to consider decompositions into the
Archimedean graphs, of which there are two infinite families (the prisms
and antiprisms) as well as thirteen further examples. Results have appeared
for the cuboctahedron and the rhombicuboctahedron.

1. Cuboctahedron designs exist if and only if v = 1 or 33 (mod 48), [13].

2. Rhombicuboctahedron designs exist if and only if v = 1 or 33 (mod

These seem to be the only classes of Archimedean designs where the spec-
trum has been completely determined. In this paper we add three further
classes. We state these results as Theorem 1, Theorem 2 and Theorem 3.
Further partial results can be found in the dynamic survey [7]. The neces-
sity of the conditions, v = 1 or 28 (mod 36) for the truncated tetrahedron
decomposition and v = 1 or 64 (mod 72) for the truncated octahedron and
truncated cube decompositions, are easy to establish by elementary count-
ing. The sufficiency of Theorem 1 follows from Lemmas 11, 12 and 13 in
the next section, of Theorem 2 from Lemmas 18 and 19 in section 3, and
of Theorem 3 from Lemmas 23 and 31 in section 4.

Theorem 1 Truncated tetrahedron designs ezist if and only if v=1 or 28
(mod 36).

Theorem 2 Truncated octahedron designs exist if and only if v=1 or 64
(mod 72).

Theorem 3 Truncated cube designs ezist if and only if v =1 or 64 (mod
72).

Our method of proof uses a standard technique (Wilson's fundamental
construction). For this we need the concept of a group divisible design
(GDD). Recall that a k-GDD of type u* is an ordered triple (V, G, B) where
V is a base set of cardinality v = tu, G is a partition of V into ¢ subsets
of cardinality u called groups and B is a family of subsets of cardinality &
called blocks which collectively have the property that every pair of elements
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from different groups occurs in precisely one block but no pair of elements
from the same group occurs at all. We will also need k-GDDs of type utw!.
These are defined analogously, with the base set V' being of cardinality
v = tu + w and the partition G being into ¢ subsets of cardinality » and
one set of cardinality w.

2 Truncated tetrahedron constructions

The truncated tetrahedron has 12 vertices, 18 edges and 8 faces, and we
will represent them by ordered 12-tuples (4, B, C, D, E, F, G, H, J, K,
L, M), where the co-ordinates represent vertices as in Figure 1. We first

Figure 1: Truncated tetrahedron graph.

present truncated tetrahedron designs of orders 28, 37, 64, 73 and 100, all
obtained by a computer search assuming appropriate cyclic automorphisms.

Lemma 4 There exists a truncated tetrahedron design of order 28.
Proof. Let the vertex set of the complete graph Kog be Zs. The decom-
position consists of the truncated tetrahedra

(0,1,2,3,4,8,5,13,7, 6,9, 12),
(0,6,7,9,2 14, 3, 19, 10, 22, 24, 13),
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(0, 10, 18, 15, 1, 11, 25, 3, 12, 7, 24, 17)
under the action of the mapping i — i + 4 (mod 28). 0

Lemma 5 There exists a truncated tetrahedron design of order 37.
Proof. Let the vertex set of K37 be Z37. The decomposition consists of
the truncated tetrahedron

(0,1,3,4,9,15,8,29, 17,16, 34, 24)
under the action of the mapping i — ¢+ 1 (mod 37). 0O

Lemma 6 There exists a truncated tetrahedron design of order 64.
Proof. Let the vertex set of Kgq be Zg3U{oc0}. The decomposition consists
of the truncated tetrahedra

(29, 62, 20, 37, 3, 4, 28, 40, 0, 2, 41, 36),
(56, 62, 18, 31, 47, 34, 2, 16, 1, 22, 48, 36),
(0, 10, 52, 19, 62, 58, 17, 5, 21, 27, 41, 14),
(0, 2,3, 6,1, 21, 4, 12, 10, 11, 42, 18),

(0, 7, 26, 13, 4, 35, 47, 12, 57, 43, o0, 32),

(0, 17, 22, 27, 6, 48, 43, 21, 38, 59, 1, 42)

under the action of the mapping 0o — o0, i +— i + 3 (mod 63) for the first
five, and i — ¢ + 9 (mod 63) for the sixth. 0O

Lemma 7 There exists a truncated tetrahedron design of order 73.
Proof. Let the vertex set of K73 be Z73. The decomposition consists of
the truncated tetrahedra

(0, 1, 3, 4, 9, 15, 8, 23, 32, 13, 44, 26),
(0, 14, 30, 21, 41, 67, 53, 31, 3, 63, 38, 9)
under the action of the mapping i — i + 1 (mod 73). O

Lemma 8 There exists a truncated tetrahedron design of order 100.
Proof. Let the vertex set of Kjgo be Z100. The decomposition consists of
the truncated tetrahedra

(36, 13, 90, 41, 11, 26, 77, 4, 96, 69, 25, 62),

98



(93, 56, 74, 8, 61, 75, 11, 39, 6, 28, 10, 22),
(72, 85, 88, 0, 35, 27, 79, 54, 68, 12, 56, 18),
(49, 18, 58, 69, 47, 37, 26, 10, 60, 45, 17, 46),
(97, 1, 8, 42, 23, 72, 85, 50, 87, 49, 46, 11),
(32, 57, 15, 52, 95, 26, 43, 46, 12, 44, 3, 63),
(58, 71, 48, 51, 61, 52, 26, 78, 50, 65, 39, 18),
(46, 7, 4, 21, 69, 29, 28, 80, 49, 36, 83, 99),
(37, 36, 72, 61, 83, 27, 11, 31, 85, 70, 26, 68),
(0, 30, 40, 14, 46, 97, 83, 35, 85, 44, 39, 82),
(0, 33, 39, 7, 20, 65, 66, 77, 95, 63, 86, 81)
under the action of the mapping i — ¢ 4+ 4 (mod 100). O

Some of the main ingredients which we will need in applying Wil-
son’s fundamental construction are given in the above lemmas. We also
require decompositions of certain complete multipartite graphs into trun-
cated tetrahedra. We present these next. Unlike the decompositions of the
complete graphs in Lemmas 4 to 8, these were found by hand.

Lemma 9 There ezists a decomposition of the complete tripartite graph
Ke,6 into 6 truncated tetrahedra.

Proof. Let the three partitions of Kge,6 be {(,0) : 0 < i < 5}, {(4,1) :
0 <i <5} and {(4,2) : 0 < i < 5}. The decomposition consists of the
truncated tetrahedron

((0,0),(0,1),(0,2),(4,1),(2,0),(1,2), (4,2),(2,1),(1,0), (4,0), (2,2), (1, 1))

under the action of the mapping (¢, ) — (i + 1, ) (mod 6). We will refer
to this design as a truncated tetrahedron GDD of type 6°. 0

Lemma 10 There erists a decomposition of the complete 4-partite graph
K333 into 3 truncated tetrahedra.

Proof. Let the four partitions of K3333 be {(3,0) : 0 < i < 2}, {(3,1) :
0<i<2},{(52):0<i <2} and {(3,3) : 0 < i < 2}. The decomposition
consists of the truncated tetrahedron

((0,0),(0,1),(0,2), (1,1),(2,0),(0,3),(1,2),(2,1),(2,3),(1,0), (2,2),(1,3))

under the action of the mapping (3,7) — (i + 1,;) (mod 3). We will refer
to this design as a truncated tetrahedron GDD of type 34. O
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We are now in a position to present the main results.

Lemma 11 There exists a truncated tetrahedron design of order v = 36t +
1,t>21.

Proof. Casest = 1 and 2 are proved by Lemmas 5 and 7 respectively. So
we may assume that ¢ > 3.

There exists a 3-GDD of type 6¢,¢t > 3, [15]; see also [10]. This is called
the master GDD. Replace each element of the base set V' by 6 elements (i.e.
inflate by a factor 6) and adjoin a further element, co. On every inflated
group of the 3-GDD, together with the element oo, place the truncated
tetrahedron design of order 37 from Lemma 5. Further, replace each block
of the master GDD by the truncated tetrahedron GDD of type 6° from
Lemma 9, called the slave GDD. O

Lemma 12 There exists a truncated tetrahedron design of order v = 36t +
28, t>0, t#3.

Proof. Cases t = 0,1 and 2 are dealt with by Lemmas 4, 6 and 8 respec-
tively. So we may assume that t > 4.

There exists a 4-GDD of type 12t9,¢ > 4, [11]; see also [10]. Replace
each element of the base set V by 3 elements and adjoin a further element,
00. On every inflated group of the 4-GDD, together with the element oo,
place the truncated tetrahedron design of order 37 from Lemma 5 or, in
the case of the inflated group of cardinality 27, the truncated tetrahedron
design of order 28 from Lemma 4. Replace each block of the master GDD
by the slave truncated tetrahedron GDD of type 3% from Lemma 10.

a

The above leaves just one outstanding case, v = 136, corresponding to
t = 3 in Lemma 12, which we address in the final lemma of this section.

Lemma 13 There exist a truncated tetrahedron design of order 136.

Proof. There exists a 4-GDD of type 9°, [5); see also [10]. Replace each
element of the base set V by 3 elements and adjoin a further element, co.
On every inflated group of the 4-GDD, together with the element oo, place
the truncated tetrahedron design of order 28 from Lemma 4, and replace
each block of the master GDD by the slave truncated tetrahedron GDD of
type 3% from Lemma 10. O

This completes the proof of Theorem 1.
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3 Truncated octahedron constructions

The truncated octahedron has 24 vertices, 36 edges and 14 faces, and we
will represent them by ordered 24-tuples (4, B, C, D, E, F, G, H, J, K,
L, M,N,P,QR ST, UV, W, X, Y, Z), where the co-ordinates
represent vertices as in Figure 2.

¥ Z

V¥
Figure 2: Truncated octahedron graph.

Lemma 14 There exists a truncated octahedron design of order 64.
Proof. Let the vertex set of Kgq be ZggU{oo}. The decomposition consists
of the truncated octahedra

(0,3,1,2,4,5,6,7,8,9,10,13,
11,12, 14,16, 15,17, 19, 25, 18, 20, 26, 30),

(0,5,2,4,6,3,9,16,10,7,8, 18,
1,11,19,13,12, 20, 14, 21, 22, 15, 23, 28),

(0,8,5,13,9,1, 16,2, 19, 31, 3,12,
4,6,15,25,11,23,7,17, 24,29, 14, 26),

(0,11,7,15,12,6,18,1,13, 22,2, 17,
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8,14,27,3,20,4,21, 32, 36, 49, 5, 46),

(0,14,1,19,15,4,22,3,8,24,2,21,
23, 5,25, 6,40, 26,7, 20, 16, 33, 44, 57),
(0,17,34,1,19, 2, 46, 24, 6, 26, 3, 42,
27,4,18,00,5,30,7,21, 28,52, 22, 43),
(0,20,2,23,21,1, 28,53,41, 0, 4, 26,
14, 54, 35, 55, 45, 17, 47, 18, 25, 50, 11, 52),
(0, 30,51, 21, 33, 62, 23, 55, 58, 24, 60, 20,
32,6,34,52,4, 38, 0, 25, 31, 8, 26, 57)

under the action of the mapping 00 — o0, i — i + 9 (mod 63). O

Lemma 15 There exists a truncated octahedron design of order 73.
Proof. Let the vertex set of K73 be Z73. The decomposition consists of
the truncated octahedron
o,1,3,6,4,9,15,22,12,23,2,31,
25,5, 20, 48,47, 24, 54, 7,10, 43, 16, 55)

under the action of the mapping i — i + 1 (mod 73). O

Lemma 16 There erists a decomposition of the complete bipartite graph
K424 into 16 truncated octahedra.

Proof. Let the vertex set of Ka424 be Z4g partitioned according to residue
classes modulo 2. The decomposition consists of the truncated octahedron

(0,1,2,3,5,8,13,6,12,21,4,17,
7,10, 25, 44, 14, 45, 34, 11, 23, 40, 15, 30)

under the action of the mapping i — 7 + 3 (mod 48). O

Lemma 17 There erists a decomposition of the complete bipartite graph
K> 24 into 14 truncated octahedra.

Proof. Let the vertex set of Kaj 24 be {0,1,...,44} partitioned into {i :
1< 42, i=0 (mod 2)} and {i:i <42, i =1 (mod 2)} U {42,43,44}. The
decomposition consists of the truncated octahedra

0,1,2,3,5,4,7,10,6,9,12,19,
15, 8, 23,26, 16, 11, 18, 13, 27, 32, 41, 22),

(0,13,24,1,15,2,42, 16, 28, 35,10, 31,
17, 38,23, 6, 30,43, 34, 44, 21, 32, 9, 26)
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under the action of the mapping ¢ — i 4+ 6 (mod 42) for i < 42, i — ¢ for
1> 42. 0O

Lemma 18 There exists a truncated octahedron design of order v = 72t+1,
t>1.

Proof. Caset =1 follows from Lemma. 15. So we assume that ¢ > 2. Take
the complete t-partite graph Ks:. Replace each vertex by 24 elements and
adjoin a further element, co. On every inflated partition, together with oo,
place the truncated octahedron design of order 73 from Lemma 15. Replace
each edge of the t-partite graph by the truncated octahedron decomposition

of K24,24 from Lemma 16. O

Lemma 19 There exists a truncated octahedron design of order v = 72t +
64,1t > 0.

Proof. Case t = 0 follows from Lemma 14. So we assume that ¢ > 1.
Take the complete (¢ + 1)-partite graph Kae+1. In one partition replace
each vertex by 21 elements, replace all other vertices by 24 elements, and
adjoin a further element, co. On every inflated partition, together with oo,
place either the truncated octahedron design of order 64 from Lemma 14
or the truncated octahedron design of order 73 from Lemma 15. Replace
each edge of the (¢ + 1)-partite graph by either the truncated octahedron
decomposition of K224 from Lemma 17 or the truncated octahedron de-

composition of K424 from Lemma 16. O

This completes the proof of Theorem 2.

4 'Truncated cube constructions

The truncated cube has 24 vertices, 36 edges and 14 faces, and we will
represent them by ordered 24-tuples (4, B, C, D, E, F, G, H, J, K,
L, M,N,P,QR,S T, UV, W, X,Y, Z), where the co-ordinates
represent vertices as in Figure 3. Although the main parameters and design
existence conditions of the truncated cube are the same as those of the
truncated octahedron, the truncated cube graph has chromatic number 3.
As a consequence, the bipartite graph decompositions that feature in the
proof of Theorem 2 are not available for the truncated cube. Hence the
details of our handling of the truncated cube differ significantly from those
of section 3.
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Figure 3: Truncated cube graph.

Lemma 20 There exists a truncated cube design of order 73.
Proof. Let the vertex set of K73 be Z73. The decomposition consists of
the truncated cube

0,1,3,7,2,13,4,11,19,5, 15, 27,
14, 30, 47, 22,72, 51, 41, 10, 59, 49, 23, 68)

under the action of the mapping i — i+ 1 (mod 73). 0

Lemma 21 There exists a truncated cube design of order 145.
Proof. Let the vertex set of K45 be Z145. The decomposition consists of
the truncated cubes

(26,7, 141, 84,57, 48, 49,119, 111,11, 109, 40,
35,86, 14,77, 17, 83, 24, 105, 34, 143, 41, 0),

(0,4,16,1,6,19,2,25,50,8, 32, 63,
30, 62, 95,41, 3,90, 92, 36, 144, 78, 38, 139)

under the action of the mapping i — 7+ 1 (mod 145). 0O
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Lemma 22 There exists a decomposition of the complete tripartite graph
K12,12,12 into 12 truncated cubes.

Proof. Let the vertex set of K3 1212 be Z3¢ partitioned according to
residue classes modulo 3. The decomposition consists of the truncated

cube
0,1,2,3,7,11,4,6,17,12, 5,19, 15, 25, 35, 30, 10, 26, 34, 9, 32, 13, 18, 8)

under the action of the mapping i — i + 3 (mod 36). We will refer to this
design as a truncated cube GDD of type 123. O

Lemma 28 There ezists a truncated cube design of order v = 72t + 1,

t>1.
Proof. Cases ¢ = 1 and 2 follow from Lemmas 20 and 21 respectively. So

we assume that ¢ > 3.

For the master GDD, take a 3-GDD of type 6¢,¢ > 3, [15]; see also [10].
Inflate each base element by a factor of 12 and adjoin a further element,
00. On every inflated group of the 3-GDD, together with oo, place the
truncated cube design of order 73 from Lemma 20 and replace each block
of the 3-GDD by the truncated cube GDD of type 122 from Lemma 22.

O

Lemma 24 There exists a truncated cube design of order 64.
Proof. Let the vertex set of Kg4 be ZgaU{oo}. The decomposition consists
of the truncated cubes

(00, 54, 55,0, 10, 45, 58, 62, 36,51, 21, 59,
35,18, 12,48, 1,34, 27,15, 6, 26, 30, 8),

(36, 40, 16, 21, 20, 50, 62, 30, 61, 54, 18, 38,
6,17,4,25,31,11,33,47,10,5,52,7),

(43, 6,62, 40, 29, 5, 47, 55, 26, 37,0, 46,
52,44,61,7,32,35,17,11, 2, 56, 50, 59),

(29, 22,10, 58, 7, 55, 38, 35, 4,13, 5, 61,
25, 37,2, 59, 40, 3, 26, 49, 32, 46, 53, 14)

under the action of the mapping oo — 00, i — i + 3 (mod 63) for the first
two, and i+ i + 9 (mod 63) for the last two. O

Lemma 25 There exists a truncated cube design of order 136.
Proof. Let the vertex set of K36 be Z136. The decomposition consists of
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the truncated cubes

(84,120,108, 67, 31,2, 20,107, 126, 122, 65,97,
70,116, 90, 38,125, 76,109,101, 25, 8, 18, 12),

(40,79, 20, 15, 90, 59, 107, 108, 9, 43, 134, 78,
2,60, 16,102, 88, 51,98, 55, 44, 69, 41, 81),

(130, 33, 56, 74, 87,12, 103, 85, 62, 28, 79, 26,
43,107,70, 54,113, 109, 21, 94, 92, 3,9, 53),

(9,72,57,112, 16, 24,113, 10, 124, 5, 66, 55,
63,36,118,46,4, 98,133, 26,99, 8,77,91),

(108, 60,0,52, 71,113,119, 29, 50, 53,133, 115,
110, 126, 109, 41, 32, 78, 120, 86, 77, 114, 66, 123),

(66,67,87,7,31,101, 120, 107,91, 113, 15, 72,
84, 59, 56, 96,122, 30, 11, 25, 9, 8, 109, 24),

(48,81,71,8,123,13, 33, 86, 122, 46, 6, 95,
50, 67,75,2,114,29,41,68,12,11,43,121),

(88,124,112, 71, 35, 6, 24, 111, 130, 126, 69, 101,
74,120, 94, 42,129, 80, 113, 105, 29, 12, 22, 16),

(44, 83,24,19,94, 63,111,112, 13,47, 2, 82,
6, 64, 20, 106, 92, 55, 102, 59, 48, 73, 45, 85),

(134, 37,60,78,91, 16, 107, 89, 66, 32, 83, 30,
47,111, 74, 58,117,113, 25, 98, 96, 7, 13, 57),

(13,76, 61,116,20, 28,117, 14,128, 9, 70, 59,
67,40,122, 50, 8,102, 1, 30,103, 12, 81, 95),

(107,64, 4,56,75,117,123, 33, 54, 57,1, 119,
114,130,113, 45, 36, 82,124, 90, 81, 118, 70, 127),

(70,71,91,11, 35,105,124, 111, 95,117, 19, 76,
88, 63, 60,100, 126, 34, 15,29, 13, 12,113, 28),

(52, 85, 75,12, 127,17, 37, 90, 126, 50, 10, 99,
54,71,79,6,118, 33,45, 72,16, 15,47, 125),

(119, 35, 104, 105,129, 0, 68, 61, 37, 36, 103, 51,
58, 86,17, 63,91, 121, 131, 53, 23, 126, 85, 18)

under the action of the mapping i — ¢ + 8 (mod 136). 0O

Lemma 268 There exists a truncated cube design of order 208.
Proof. Let the vertex set of Kops be Zzo7 U {00}. The decomposition
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consists of the truncated cubes

(00,53,198,171,139, 116,192,103, 32,44, 114, 157,

204, 92, 105, 20, 138, 202, 99, 18, 130, 47, 109, 34),
(191,86, 15,194, 40, 153, 20, 68,13, 118,52, 71,

147,158, 37, 203, 152, 106, 140, 189, 95, 132, 63, 154),
(120, 188, 144, 189, 83, 149, 146, 94, 145, 46, 168, 66,

31,138, 45,100, 184, 129, 79, 122, 40, 115, 8, 9),
(179, 149, 201, 130, 168, 132, 147, 153, 106, 41, 10, 184,

1,197,0, 159, 164, 85, 57, 39, 73, 28, 64, 140),
(105,193, 59,183,172, 26, 141,129, 85, 176, 67, 107,

20, 44,121, 99, 51, 64, 168, 37, 65, 205, 101, 191),
(87,129, 152,193, 34, 46, 105, 48, 191, 66, 181, 61,

206, 110, 77, 106, 28, 82, 76, 180, 2,179, 10, 198),
(49, 59,139,181, 152, 189, 131,137, 146, 38, 206, 24,

79,197,144,13, 16,109, 15, 159, 32, 26, 107, 99),

(99,148, 96,178, 16, 38, 1, 31,171, 80, 64, 134,
142,204, 107, 166, 22, 108, 157, 74,174, 141, 181, 120),

(4,201,185, 57, 83,87,146,167,23,137,117, 155,
66,0,156,41, 15,45, 125, 104, 188, 192, 162, 72),

(152,168,178, 122,102, 140, 26, 105, 30, 89,173,110,
108,118, 92,51,171, 111,180, 24, 114, 80, 42, 62)

under the action of the mapping oo +— 00, i + i + 3 (mod 207) for the first
eight, and ¢ — ¢ + 9 (mod 207) for the last two. O

Lemma 27 There exists a decomposition of the complete 4-partite graph
K12,12,12,12 into 24 truncated cubes.

Proof. Let the vertex set of K2 121212 be Z45 partitioned according to
residue classes modulo 4. The decomposition consists of the truncated

cubes

0,1,2,3,4,9,6,8,11,5,7,10,
12,18, 25,13, 23,16, 19, 30, 36, 14, 27, 32),

(0,15,25,2,11,24,5,12, 34,13, 46, 27,
33,7,22,36,9,26, 30,47, 21, 23,4, 37)

under the action of the mapping  — ¢ 4+ 4 (mod 48). We will refer to this
design as a truncated cube GDD of type 124, O
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Lemma 28 There exists a decomposition of the complete 4-partite graph
Ki2,12,12,15 into 27 truncated cubes.
Proof. Let the vertex set of K1212,12,15 be {0,1,...,50} partitioned into
{i:4<36,i=0(mod3)}, {:i<36 i=1(mod3)}, {i::i<
36, i =2 (mod 3)} and {36,37,...,50}. The decomposition consists of the
truncated cubes
(9,10, 39,31, 45, 8,12, 38,7,29, 42, 4,
27,25,14,15,36,11,1,47,18, 6, 34, 43),
(15, 31, 44, 30, 46, 26, 27, 38, 28, 9, 41, 32,
3,47,5,29,21, 34, 35,45,24,17, 39, 16),

(27,1, 5, 44, 24, 10, 0, 43, 26, 28, 20, 46,
40,14, 21,47, 31, 2,9,45,16, 34, 32,3)

under the action of the mapping i — i + 4 (mod 36) for i < 36, i —
36 + (i — 36 + 5 mod 15) for i > 36. We will refer to this design as a trun-
cated cube GDD of type 12315%, O

Lemma 29 There exists a decomposition of the complete 4-partite graph
K24,24,24,24 into 96 truncated cubes.

Proof. Let the vertex set of Ka4 242424 be Zgg partitioned according to
residue classes modulo 4. The decomposition consists of the truncated cube

0,1,3,8,2,15,4,13,23,5,19, 34,
18, 39, 61, 29, 92, 66, 55, 20, 78, 58, 33, 88)

under the action of the mapping ¢ — i+ 1 (mod 96). We will refer to this
design as a truncated cube GDD of type 24%. 0O

Lemma 30 There erists a decomposition of the complete 4-partite graph
K24,24,24‘21 into 90 truncated cubes.

Proof. Let the vertex set of K2424,2421 be {0,1,...,92} partitioned into
{i:i<72, i=0(mod3)}, {i :i< 72, i=1(mod3)}, {i:i<
72, i = 2 (mod 3)} and {72,73,...,92}. The decomposition consists of the
truncated cubes

(7,45,20,64,12, 26, 82, 1, 54, 55, 59, 42,
58, 80, 66, 87, 4, 30, 9, 14, 81, 89, 8, 49),

(40,26, 79,9, 16, 29, 61, 56, 91, 35, 36, 86,
70, 45, 88, 77, 50, 33, 51, 74, 44, 90, 3, 28),

(32,15, 82, 34, 65, 84, 27, 81, 35, 76, 61, 0,
80, 23, 33, 66, 55, 72, 64, 62, 30, 17, 52, 60),
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(0,1,11,6,2,13,9,7, 23,3, 10,78,
17,19, 63,22, 20, 77, 26, 55, 69, 36, 46, 92),

(0,4, 23,45, 10,76, 5,86, 31, 71,85, 22,
20,1, 75, 83, 19, 66, 69, 35, 87, 9, 32, 78)

under the action of the mapping ¢ — i+ 4 (mod 72) for 1 < 72, i —
72+ (1 — 72+ 7 mod 21) for ¢ > 72. We will refer to this design as a trun-

cated cube GDD of type 243211, O

Lemma 31 There erists a truncated cube design of order v = 72t + 64 for
t>0.

Proof. Cases v = 64,136 and 208 have already been established by Lem-
mas 24, 25 and 26 respectively. For the rest of the proof we require 4-GDDs
of types 34, 3%, [5], and 69" for u > 4, [12]; see also [10].

Take a 4-GDD of type 34, inflate points in one of the groups by a factor
of 21, inflate points in the other groups by a factor of 24, and adjoin an extra
point, co. On every inflated group of the 4-GDD, together with oo, place
the truncated cube design of order 73 from Lemma 20 or the truncated cube
design of order 64 from Lemma 24, as appropriate, and replace each block
of the 4-GDD by the truncated cube GDD of type 24321! from Lemma 30.
This construction yields a truncated cube design of order 280.

Take a 4-GDD of type 3° and proceed as before, except that the trun-
cated cube GDD of type 24 from Lemma 29 replaces any block containing
only points inflated by a factor of 24. This construction yields a truncated
cube design of order 352.

Take a 4-GDD of type 6“9!, u > 4, inflate points in the groups of size 6
by a factor of 12, inflate points in the group of size 9 by a factor of 15, and
adjoin an extra point, co. On every inflated group together with oo, place
the truncated cube design of order 73 from Lemma 20 or the truncated cube
design of order 136 from Lemma 25, as appropriate. Replace each block
of the 4-GDD by the truncated cube GDD of type 12¢ from Lemma 27 or
the truncated cube GDD of type 12315! from Lemma. 28, as appropriate.
Applying this construction yields truncated cube designs of order 72t + 64,
t>35. O

This completes the proof of Theorem 3.
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