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Abstract

A decycling set in a graph G is a set D of vertices such
that G — D is acyclic. The decycling number of G, ¢(G), is
the cardinality of a smallest decycling set in G. We obtain
sharp bounds on the value of the cartesian product ¢(GOK)
and determine its value in the case where G is the grid graph
P,,0P, for all m,n > 2.

1 Introduction

A decycling set in a graph G, also known in the literature as a ver-
tex feedback set, is a set D of vertices such that G — D is acyclic.
The decycling number of G, denoted by ¢(G), is the cardinality of a
smallest decycling set in G. We call a decycling set of minimum size
a ¢-set for G.

It has been shown by Karp [7] that the decision problem of finding
#(@) for an arbitrary graph G is NP-Complete. The problem remains
difficult even when restricted to some well-known families of graphs,
for example, bipartite graphs or planar graphs. Since Karp’s paper
appeared in 1972, the problem of determining the decycling number
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of specific families of graphs has attracted much interest. It has been
shown to be polynomial for several classes of graphs, see for example
3], [5], [8], [9], (10], and [17]. Other results on the decycling number
can be found in [1], [2], [4], [11], [14], [15]) and [16]. Of particular
interest to this study, hypercubes are treated in [5] and [12]; grid
graphs in [5]; the cartesian product of a graph with K, for r > 3
in [6]; the cartesian product of two cycles in [13] and the box-cross
product (also known as the strong product) of two paths in [18].

The study of the decycling number of the cartesian product of
two graphs was initiated by Beineke and Vandell in [5]. The cartesian
product G := G10G5 of two graphs G; and G has V(G) = V(G) x
V(G2) and two vertices (u;,ug) and (v, vq) are adjacent in G if and
only if either (i) u; = v; and ugve € E(Gz) or (ii) up = vp and
wv € E (Gl)

We shall also refer to a vertez cover of G. This is aset Q@ C V(G)
such that every edge of G has at least one endvertex in Q. The
minimum cardinality of a vertex cover is denoted by a(G). A vertex
cover of minimum size is called an a-set.

In [5] (Theorem 1.8), sharp bounds for ¢(GOK?) are obtained for
an arbitrary graph G in terms of ¢(G) and «o(G).

Theorem 1.1 (Beineke, Vandell) For any graph G,
2¢(G) < ¢(GOK2) < ¢(G) + oG).

Although the lower bound is sharp (it is achieved when G is the
complete graph K,, n > 3, for example) it is not useful in the case
of graphs which have relatively few cycles. In Section 2, we show it
can be improved as follows.

Theorem 1.2 For any graph G,
#(GOK>) > max{2¢(G),a(G)}.

The lower bound a(G) for ¢(GOK3) is also sharp. It is achieved
when G is acyclic and indeed by a cactus containing no even cycle.
The upper bound for ¢(GOK?) is achieved, for example, when G is
any even cycle.
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In (6], it is shown that when G is a member of one of several
families of graphs, it is possible to find a general expression for GO K,
when r > 3, in terms of the order of G and its decycling number.

Theorem 1.3 Let G be a connected graph of order n > 2. When G
is a cactus, a bipartite graph or a graph of mazimum verter degree 3
(other than K, ), then

_ [ n+é(G) ifr=3
¢(GDKT)-{n(r—2) if:24

We show in Section 2 that it is not possible to obtain a general
result of this kind for GOK when G is bipartite or even when G is a
cactus. Indeed, it is possible to construct an example of a bipartite
cactus G such that GOKs = a(G) + k, for any non-negative integer
k < $(0).

A further example of a family of bipartite graphs where different
members achieve the upper and the lower bound of Theorem 1.1
is the family of hypercubes @,. We can regard @, as the cartesian
product Q,—10K>, n > 2, or as a graph having the set of 2"-tuples of
0’s and 1’s as vertices, where two vertices are adjacent if they differ
in just one position. This latter definition implies a(Q,) = 271
The values of ¢(Q,) are determined in [5] for 1 < n < 8 and give
this interesting result.

_ | 2¢(Qn) ifn=23567
d’(QnDK?) - { &(Qn) + a(Qn) ifn=1,2,4

Bounds on the value of ¢(Q5) for n > 9 are given in [5] and im-
proved in [12], but it is not clear whether the sequence ¢(Q,0K>) =
2¢(Q,) continues beyond n = 7.

Although, as these comments indicate, we can say nothing in
general about bipartite graphs, in Section 3 we determine ¢(GOK>)
in the case where G is the grid graph P,0PF,, for all m,n > 2.

All graphs considered in this paper are simple. We use the fol-
lowing notation. For X C V(G), (X) denotes the subgraph of G
induced by X. We normally regard the graph GOK> as K5 in which
each vertex is replaced by a copy of G. We label the copies G, G’
and give label 4’ to the vertex of G’ corresponding to the vertex u
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of G. Similarly, for any set S C V(G), S’ C V(G’) denotes the set
of copies of the vertices in S. Since the case when G = K] is trivial,
we shall assume that G has order at least 2.

2 Preliminary results

We can improve the lower bound on ¢(GOK3) given in Theorem 1.1
by noting that corresponding to each edge uv of G, GOK> contains a
4-cycle {u, v, v, u'} and hence any decycling set D for GOK contains
at least one of these four vertices. Thus the set Q := {z : z €
D or 2’ € D} is a vertex cover of G so that ¢(GOK3) > a(G). This
gives the following result.

Theorem 2.1 For any graph G,
max{24(G), o(G)} < ¢(GOK2) < ¢(G) + (G).
Corollary 2.2 For any acyclic graph G, $(GOK3) = o(G).

When a(G) > 2¢(G), it may under some circumstances be pos-
sible to partition an a-set @ in G into two disjoint decycling sets for
G, say @ := D; U Dy, so that D1 U Dj is a ¢-set in GOKj3. In the
case when G is acyclic, D; can be any arbitrarily chosen subset of Q.
The following lemma gives a necessary condition for such a partition
to be possible when G contains cycles.

Lemma 2.3 Let G be a graph containing a cycle C and let Dy, Dy C
V(G) be such that D := Dy U Dj is a ¢-set for GOKy. Then if
DiNDynV(C) = 0, there exzist vertices z € Dy, y € Dy such that
z,y are adjacent on C.

Proof. Suppose Dy N D2 NV(C) = @ but no vertex x € D is
adjacent on C to a vertex y € Dp. Then there is a cycle C* in
GOKs — D such that when the two copies of G are merged, C* gives
C, a contradiction. O

Corollary 2.4 Let G be a graph such that no a-set for G contains a
pair of adjacent vertices of each cycle in G. Then ¢(GBK3) > o(G).
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Lemma 2.5 Let G be a graph such that no a-set for G contains
a pair of adjacent vertices of any cycle in G. Then ¢(GOK,) =
a(G) + ¢(G).

Proof. Let D1,Ds C V(G) be such that D := D, U D) is a ¢-set
for GOK,. Then D; U D, contains an a-set @ for G. If G is acyclic,
the result is true by Corollary 2.2, so suppose otherwise and let C
be a cycle in G. Then by Lemma 2.3, D; U Dy contains a vertex
of C that is not in Q. Thus DjUD; = QU X, where QNX =0
and X contains at least one vertex of each cycle in G. This implies
[D| 2 a(G) + ¢(G) and the result follows from Theorem 2.1. O

Proposition 2.6 Let G be an r-cycle. Then
¢(GOKs) = [r/2] + 1.

Proof. When r is even, the result follows immediately from
Lemma 2.5. When 7 is odd, let @ be an a-set for G. Then @ contains
a pair of adjacent vertices, say «,y. In this case, set D := Q \ {z}
and Dy = {z}. It is easily verified that D; U Dy, is a decycling set
for GOKj,. By Theorem 2.1 no smaller decycling set is possible. O

It follows from Proposition 2.6 that ¢(GOK3) achieves the upper
bound in Theorem 2.1 when G is an even cycle and the lower bound
when G is an odd cycle. We can generalise this result to a certain
extent.

A cactus is a graph in which no two cycles have a common edge.

Proposition 2.7 Let G be a cactus admitting an a-set Q that con-
tains a pair of adjacent vertices of each cycle in G. Then

#(GOK3) = o G)

Proof. Let Cy,...,Cy be the cycles in G and suppose that z;, y;
is the pair of adjacent vertices on C; such that z;,y; € Q,71=1,...k.

Set Dy := Q\{y1,...yx} and Dy := {y1,...yx}. Then D := D;UD)
is a decycling set for GOKjy. The result follows from Theorem 2.1.

O
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In particular, $(GOK?) achieves the lower bound of Theorem 2.1
when G is a cactus in which every cycle is odd. By Lemma 2.5, it
achieves the upper bound when G is a cactus in which each cycle C
in G is even and no pair of adjacent vertices of C is contained in any
minimum vertex cover of G.

Proposition 2.8 Let G be the complete bipartite graph K, r,, where
m < n. Then ¢(GOK3) =2m — 1.

Proof. It is easily seen that ¢(G) = m — 1 and a(G) = m, so
that 2m — 2 < ¢(GOKj3) < 2m — 1, by Theorem 2.1. The result is
true when m = n = 2, from Proposition 2.6. Now consider n > 3.
Let (A, B) be the bipartition of V(G), where |A| = m and let D be
a decycling set for GOK,. Then D contains at least m — 1 vertices
of each of A and A’. Suppose there are vertices a; € A and a;- € A
such that a;,a; ¢ D, where 1 < 4,5 < m. However, if i = j,
then (GOK3) — D contains the 4-cycle a;b1bja} and if ¢ # j, then
(GOK3) — D contains the 6-cycle a;b1bja;b5bs, a contradiction. Thus
|D|=2m—-1. 0O

3 Grid graphs

An m x n grid is a graph P,0P,, where P denotes a path of order
k. We shall assume that m,n > 2. Denote the ith vertex in the jth
copy of P, (that is, the vertex in the ith row and jth column of the
grid) by v; ; and let C; denote the set of vertices in the jth copy of
P, (column of G),i=1,2,...,m,j=1,2,...n

Proposition 3.1 Let G := Py0OP,, wheret > 1,n > 2. Then

_J 3tr if n=2r
¢(COKz) = { b3+ 1) if n=09r+1

Proof. Let Dy, D2 be decycling sets for G such that D := D; U
D; is a ¢-set for GOK,. First note that the vertices of the first
2r columns of G can be partitioned into ¢r mutually disjoint sets,
Xi,..., X¢r, such that X; induces a 4-cycle, i = 1,...,¢r; and when
n = 2r + 1, the vertices of the last column can be partitioned into
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t disjoint pairs, Y1,...,Y:, so that Y; induces an edge of G, j =
1,...,t. Then in GOK>, (X;)0K> contributes at least 3 vertices to
D,i=1,...,tr, by Proposition 2.6; and since (Y;)OKj is a 4-cycle, it
contributes at least one vertex to D, j =1,...,t. Thus ¢(GDK>) >
3tr when n = 2r and ¢(GOK>) > 3tr +t when n = 2r + 1.

It remains to show that we can decycle GOK3 with this number
of vertices in either case. We define sets D;, Dy as follows:

{'v2,-,j:1$'iSt} ifj=1+4Q)OSQS(n_1)/4

DiNCj =1 {vgi—1;:1<i<t} ifj=2¢,1<¢g<n/2
0 ifj=3+4¢,0<¢< (n—3)/4
0 ifj=1+490<g<(n-1)/4
DoNCij=4 {vaij:1<i<t} ifj=2¢,1<g<n/2
{vaicy;:1<i<t} fj=3+4g,1<g<(n-3)/4
D1 D2
! t

oo

snvadiilivesus:

Figure 1

In Figure 1, the first six columns of G are shown, with the vertices
of D; and D in bold type (the remaining vertices of G are shown
only as grid intersections to make the diagram clearer to read). It
is easily seen that D; and Dy are decycling sets for G. Let D :=
Dy U Dj. Then in (GOK3) — D, no edge between G and G’ has an
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end vertex in Cyj, 7 = 1,2,.... Further, the vertices of Cy;41 \ D1
for 0 €< j € (n — 1)/4 are isolates in G — D; and hence they are
leaves in (GOK3) — D. Similarly, the vertices of Cj; 5 \ Dy for
0 < j < (n— 3)/4 are isolates in G’ — Dj and so also are leaves in
(GOK3) — D. It follows that D is a decycling set for GOKj,. The
result follows by noting that Dy U D5 contains in total just 2t vertices
of Cy; and just ¢ vertices of Cpj—; for j=1,2,...,. O

We remark here that if H := P,0F, , where2 <p<m and 2 <
g < n, is a subgraph of G := P,,0P, and D := D;UD) is a decycling
set for GO K, then the vertices of (V(H)ND,)U(V(H)N Dy) form
a decycling set for HOK,. We make repeated use of this observation
in proving the following results.

Lemma 3.2 Let G := Ppp110Po1, wherep > q> 1. Then

(3r+2)(2p+1) ifg=2r+1,7r20
$(GOKs) < { 3r2p+1)+p ifg=2r,r2>1

Proof. Let D := D; U Dj be the decycling set for GOK, defined
in Proposition 3.1 and illustrated in Figure 1, restricted to the first
2p + 1 rows and the first 2¢ + 1 columns of G. There are two cases
to consider.

Case (i) ¢ = 2r + 1, r > 0. In this case, there are exactly 3r + 2
vertices in each row of D; U Do, giving the result.

Case (ii) ¢ = 2r, r > 1. The total number of vertices of Dy U Dy
in row 2i + 1 is 3r and that in row 27 is 3r + 1, 0 < 7 < p. Hence in
this case ¢(GOK3) < p(6r +1)+3r=3r(2p+1)+p. O

Lemma 3.3 Let G := P30P;. Then ¢(GOK3) = 6. Further, if a
decycling set D for GOKy contains two copies of vy or v33, then
|D| > 7 and if D contains two copies of both vy and v33, then
|D| > 8.

Proof. Let D := D, U D)}, be a decycling set for GOK,. Note

G contains four 4-cycles @1, @2, @3, Q4, Where v1; € V(Q1), v1,3 €
V(Q2), v33 € V(Q3) and v3; € V(Q4). Let C denote the 8-cycle

G- v2,2. '
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Now, in GOKj, each prism Q;0K, contains three vertices of D,
1 < ¢ £ 4, by Proposition 2.6. Let Ey := v;3vp3, Ep 1= v3,v3,2.
Then D; U D» contains at least three vertices of Q;0K> and at least
one vertex of E;0Kjy, i = 1,2, giving |D| > 5. However, |[D| = 5 only
if D contains at least one copy of v2 and so at most four vertices of
the prism COK>s. But again by Proposition 2.6, D contains at least
5 vertices of COK3 and hence ¢(GOK3) > 6. It follows from case (i)
of Lemma 3.2 that ¢(GOK3) = 6.

Now suppose D contains two copies of v ; or of v3 3. However, D
contains at least three further vertices of the prism COK5 and hence
D contains at most one copy of v 2. But then it is not possible to
choose the three remaining vertices of D N V(C) so that D contains
three vertices of Q;0K5, 1 < i < 4. This contradiction shows that
|D| > 7.

Lastly, suppose D contains two copies both of v;; and of v33.
However, D also contains three vertices from each of Q2 and Q4 and
this cannot be achieved by adding less than four additional vertices

to D. Hence |D| > 8. O
Lemma 3.4 Let G := Py 30Py, 13, wherer > 0. Then
&(GOK>,) = (3r + 2)(4r + 3).

Further, if D is a decycling set for GOKy containing two copies of
V1,1 OT Of V4r43,4r+3, then |D| > (3r+2)(4r+3)+1 and if D contains
two copies of both vi,1 and v4ry34r+3, then |D| > (3r+2)(4r+3)+2.

Proof. We prove this result by induction. Note that it is true
when » = 0, by Lemma 3.3. Suppose then r > 1. Let D;, D; be
decycling sets for G such that D := D; U D} is a decycling set for
GOK,. Let H; be a 3 x 3 subgrid of G induced by the vertices in the
first three rows and columns of G and Hj be the (4r — 1) x (4r — 1)
subgrid induced by the vertices in the last 40 — 1 rows and columns
of G. Let X1 := {vs3}, X2 := {vs3,v54}, X3 := {v3,4,v44,Va5,v35}
and partition the remaining vertices of V(G) — (V(H;) U V(H>))
into 8r — 2 subsets, Y1,Ys,...,Ysr—2 such that (Y}) is a 4-cycle, j =
1,...,8r — 2 (the case where r = 1 is illustrated in Figure 2). Then
D contains at least the following number of vertices: six of H1OK>
by Lemma 3.3, (3r — 1)(4r — 1) vertices of Hy by assumption, three
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of each of the 8r — 2 prisms (Y;)0Kj, three of the prism (X3)0K,
and one vertex of (X2)0K>, giving |D| > (3r + 2)(4r + 3) — 1.

Suppose if possible |D| = (3r + 2)(4r + 3) — 1. Then v43 ¢
Dy U Dy. Further, (D1 U D3) N X3 := {vs,3} (in order to cover the
edges v43v53 and vs3vs4) so that vs4 € D1 U Dy and D contains
only one copy of vs 3. Now repeating this argument with Z; := {vs5},
Zy := {v34,v35}, Z3 := {v43,v4,4,54,53} in place of X3, X, X3
respectively, implies that the vertices v4 5 and v3 4 are not in D1 UD,
and D contains just one copy of vzs. However D contains three
vertices of each of X30K5 and Z30K, and so we may assume D
contains two copies of vg 4. Further, D contains at least 5 vertices
of the prism COKy, where C := v33v34v35v45V55V54V5,3v4,3, and
hence two copies of vz3 or vss. The first alternative is ruled out
by Lemma 3.3 and the second by hypothesis. Hence ¢(GOK3) >
(3r + 2)(4r + 3) and equality follows from Lemma. 3.2.

i, <1 Y2
o9
L% |w
X1 &

Nl gXag
v |% '
Figure 2

Let D be a ¢-set for GOK5. Then |D| = (3r + 2)(4r + 3) and
as noted above, D contains at least 5 vertices of the prism COK,.
Suppose first this includes no more than one copy of v3 3 or of vss.
If D contains two copies of v;,1 O v4r434r+3, then D restricted to
H;OK, contains at least ¢(H;0K?3) + 1 vertices, ¢ = 1 or i = 2, by
Lemma 3.3 or the induction hypothesis. Hence if D contains just one
of v1,1 and V4r+434r+3, then |D| > (3r+2)(4r+3)+1 and if D contains
two copies of both v1,1 and v4r43 4r+3, then |D| > (3r42)(4r+3) +2.
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Now suppose that D contains two copies of vz 3 or vss, say of
v33. Then again if D contains two copies of just one of v;; and
V4r+3,4r+3, We have |D| > (3r + 2)(4r + 3) + 1 and if two copies of
both, then |[D| > (3r +2)(4r +3)+2. O

Proposition 3.5 Let G := Py, 10Pq41, where p > ¢ > 1. Then

_ [ @r+2)(2p+1) ifgq=2r+1,72>0
$(GOK>) _{ 3r(2p+1)+p ifg=2r,r>1

Proof. Let D be a decycling set for G.

Case (i) ¢ = 2r + 1, » > 0. Let Hy, Hs be the subgraphs of G
induced by the vertices in the first 4r + 3 rows and in the remaining
2(p — 2r — 1) rows of G respectively. Then D contains at least (3r +
2)(4r + 3) vertices of H1OK>, by Lemma 3.4, and at least (p — 2r —
1)(3¢ + 1)) vertices of HoOK>, by Proposition 3.1, giving |D| >
(2p + 1)(3r + 2). Equality follows from Lemma 3.2.

Case (ii) ¢ = 2r, r > 1. Let H be the subgraph of G induced by
the vertices in the first 47 — 1 columns of G. Partition the vertices
in the remaining two columns of G into p sets X; such that (X;) is
a 4-cyclein G, 1 < j < p, and a set Y such that (Y) is an edge of
G. Then D contains at least (3r — 1)(2p + 1) vertices of HOK>, by
case (i), at least three vertices from each of the prisms (X;)0K> and
at least one vertex of (Y)OKj, giving |D| > 3r(2p + 1) + p. Again,
equality follows from Lemma 3.2. O
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