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Abstract

In this paper, we characterize the graphs G and H for which the Carte-
sian product GOH is a divisor graph. We show that divisor graphs form
a proper subclass of perfect graphs. Also we prove that cycle permutation
graphs of order at least 8 are divisor graphs if and only if they are per-
fect. Some results concerning amalgamation operations about obtaining
new divisor graphs from old ones are given. Viewing block graphs as vertex
amalgamations of complete graphs, we characterize those block graphs that
are divisor graphs.

1 Introduction

Let S be a finite nonempty set of positive integers. The divisor graph G(S)
of S has § as its vertex set and two distinct vertices ¢ and j are adjacent
if either 7 | j or j | %, that is if ged(?, j) = min{3, j}. A graph G is a divisor
graph if G = G(S) for some finite nonempty set S of positive integers. For
Gn = G(S) where S = {1,2,--- ,n}, the length f(n) of a longest path in G,
was studied in (8], [13], and [14]. It was shown in [5] that complete graphs,
bipartite graphs, complete multipartite graphs and joins of divisor graphs
are divisor graphs. Powers of paths and powers of cycles which are divisor
graphs were characterized in [1] and [2], respectively. A characterization
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of nontrivial connected divisor graphs in terms of the upper orientable hull
number was obtained in [4].

Divisor graphs do not contain induced odd cycles of length greater than
3, but they may contain triangles, for example complete graphs are divisor
graphs, see [5]. Divisor graphs with triangles were studied in [9], where
a forbidden subgraph characterization for all divisor graphs containing at
most three triangles was obtained.

The following two results were proved in [5], the later one also appears
in [15] with a different proof.

Lemma 1. Every induced subgreph of a divisor graph is a divisor graph.

Lemma 2. No divisor graph contains an induced odd cycle of length greater
than 3.

In a digraph D, a transmitter is a vertex having indegree 0, a receiver
is a vertex having outdegree 0, while a vertex v is a transitive vertez if it
has both positive outdegree and positive indegree such that (u,w) € E(D)
whenever (u,v) and (v, w) belong to E(D). An orientation D of a graph G
in which every vertex is a transmitter, a receiver, or a transitive vertex is
called a divisor orientation of G, see [1).

A different point of view to introduce divisor graphs can be achieved by
the following characterization given in [5], which will be frequently used in
this paper.

Lemma 3. A graph G is a divisor graph if and only if G has a divisor
orientation.

In (5], the graphs H for which the Cartesian product HOK> is a di-
visor graph were characterized. We will determine in section 2 when the
Cartesian product of two graphs is a divisor graph. In section 3, we prove
that divisor graphs form a proper subclass of perfect graphs. In section 4,
we determine which cycle permutation graphs are perfect, and which are
divisor graphs.

In the last section, we consider amalgamations of divisor graphs that
produce divisor graphs. Block graphs need not be divisor graphs, see the
graph in Figure 1. This graph was given as an example of a nondivisor
graph in [5). But viewing block graphs as vertex amalgamations of complete
graphs, we characterize those block graphs that are divisor graphs.

For undefined notions, the reader is referred to (3].
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Figure 1: A block graph which is not a divisor graph.

2 Cartesian products which are divisor graphs

The Cartesian product G100G2 of two bipartite graphs G; and G, with .
partite sets Uy, W) and Us, Ws, respectively, is also bipartite with partite
sets (U x Uz) U(Wq x Wa) and (W7 x Uz)U(U; x W2). Therefore, since every
bipartite graph is a divisor graph, see [5], we have the following result.

Lemma 4. Let G and H be two bipartite graphs. Then GUH is a divisor
graph.

The following two results were shown in [5] and (1], respectively.
Lemma 5. The graph Ko[K3 is not a divisor graph.

Lemma 6. A graph G is a divisor graph if and only if each component of
G is a divisor graph.

Now we are in a position to characterize when the Cartesian product of
two graphs is a divisor graph.

Theorem 7. Let G and H be two graphs. Then GUH is a divisor graph
if and only if either both G and H are bipartite or at least one of them has
size zero and the other is a divisor graph.

Proof. Suppose the graph GOH is a divisor graph and at least one of the
two graphs G and H, say G, is not bipartite. Then G has an odd cycle. But
G has no induced odd cycle of length greater than 3, for otherwise GOH
would not be a divisor graph according to Lemma 2. Thus G must have a
triangle . Then H must be an edgeless graph, for if it has an edge, then the
graph K>OK3 (which is, by Lemma 5, not a divisor graph) would be an
induced subgraph of GOH, which contradicts Lemma 1. Now since H is an
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edgeless graph, the graph GOH consists of |V(H)| copies of G. Therefore,
by Lemma 6, G must be a divisor graph.

The converse follows by Lemma 4 and Lemma 6. a

By Theorem 7 and Lemma 2, we have the following corollary.

Corollary 7.1. Let G and H be two divisor graphs. Then GOH is a divisor
graph if and only if either both G and H have no iriangles or at least one
of them has size zero.

In [5], it was shown that the Cartesian product GOKj is a divisor graph
if and only if G is bipartite. This result follows from Theorem 7.

3 Divisor graphs are perfect

A graph G is perfect if every induced subgraph of G has chromatic number
equal to the size of a largest clique contained in the subgraph. An induced
cycle of length at least 4 is called a hole, an induced subgraph that is the
complement of a hole is called an antihole. Holes and antiholes are odd
or even according to the parity of their number of vertices. A graph that
does not contain any odd holes or odd antiholes is called a Berge graph,
see [7]. Perfect graphs are Berge graphs, the converse was announced by
Claude Berge in 1960 as a conjecture which is known as the strong perfect
graph congjecture. In 2002, after more than four decades, this conjecture was
proved by Maria Chudnovsky, Paul Robertson, Neil Seymour, and Robin
Thomas. They published this result in 2006. Next, we state the strong
perfect graph Theorem.

Theorem 8 (Chudnovsky, Robertson, Seymour, and Thomas [6]). A graph
is perfect if and only if it is a Berge graph.

By Lemma 2, divisor graphs have no odd holes. Thus to show that
divisor graphs are perfect, it would be enough to prove that divisor graphs
also have no odd antiholes. Indeed, we will see in this section that they
have neither odd nor even antiholes of order greater than 4. To this end we
need the following three lemmas, the first one was shown in [1].

Lemma 9. If D is a divisor orientation of a graph G, then the converse
of D is also a divisor orientation of G.

Lemma 10. If D is a divisor orientation of the antihole C,,, where m > 5,
then every vertex of D is either a transmitter or a receiver.
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Proof. Let C), be the cycle 12-.-m1l, where m > 5. Assume that D is a
divisor orientation of the antihole Cy,. In view of Lemma 9, it would be
enough to show that a vertex with positive outdegree must be a transmitter.
So, without loss of generality, suppose that the vertex 1 has a positive out-
degree and let (1, k) € E(D) for some k € {3,4,--- ,m — 1} = N(1). Then
for every 4, € {3,4,--- ,m—1} satisfying |i; — k| = 1 we have i1k ¢ E(C,).
This implies that (1,%;) € E(D), for otherwise we would have (41, 1), (1,k) €
E(D) while (¢1,k) ¢ E(D). Similarly, for each i € {3,4,---,m — 1}
with [iz — k| = 2, we get (1,42) € E(D) because (1,%;) € E(D) for each
i1 € {3,4, - ,m—1} with |¢; — k| = 1. Then, applying a similar argument
repeatedly we conclude that for ¢t € {2,3,- - ,max{m —1— k,k — 3}}, we
have (1,i;) € E(D) for each i; € {3,4,--- ,m — 1} satisfying |i; — k| = t.
Therefore (1,%) € E(D) for each i € {3,4,--- ,m — 1} = N(1) and hence 1
is a transmitter. (]

Lemma 11. Every antihole of order greater than 4 is not a divisor graph.

Proof. If m = 5, then the antihole Cs = C5 is, by Lemma 2, not a divisor
graph. So, let Cp, be the cycle 12...ml, where m > 5, and assume to
the contrary that the antihole Cp, is a divisor graph. Then, by Lemma 3,
C has a divisor orientation D. According to Lemma 9, we can assume
that (1,3) € E(D). Then, by Lemma 10, the vertex 1 is a transmitter
in D. Therefore, again by Lemma 10, the vertices 3,4,--- ,m — 1 are
receivers in D. Since m > 5, we get (3)(m — 1) € E(C,,) and hence either
(3,m — 1) € E(D) or (m —1,3) € E(D). This is a contradiction because
both 3 and m — 1 are receivers. O

The following result is a direct consequence of Lemma 11 and Lemma
1.

Theorem 12. Let G be a divisor graph. Then G has no antihole of order
greater than 4.

Now we conclude that divisor graphs are perfect.

Theorem 13. FEvery divisor graph is perfect.
Proof. The result follows by Lemma 2, Theorem 12, and Theorem 8. O

Note that a perfect graph need not be a divisor graph, for example the
perfect graph K,[Kj3 is, by Lemma 5, not a divisor graph.

The complement of a perfect graph is perfect, but the complement of a
divisor graph is not necessarily a divisor graph. The path P; is a divisor
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graph whose complement is also a divisor graph, while any even cycle of
length at least 6 is a divisor graph whose complement is, by Theorem 12,
not a divisor graph. In fact if G is a divisor graph which has an even hole
of order at least 6, then its complement has an antihole of the same order,
which implies according to Theorem 12 that G is not a divisor graph. Thus
we have the following result.

Theorem 14. If G is o divisor graph which has an antihole of order at
least 6, then G is not a divisor graph.

It would be interesting to characterize those divisor graphs whose com-
plements are also divisor graphs.

4 Which cycle permutation graphs are divi-
sor graphs?

For n > 3, let V(C,) = {1,2,--- ,n}, where 12---nl is the n-cycle. A
cycle permutation graph P,(C,) consists of two copies of the n-cycle C,
such that every vertex ¢ of one copy is adjacent to the vertex a(:) in the
other copy, where « is a permutation on V(C,), see [12]. The Petersen
graph is the cycle permutation graph P,(Cs) where « is the permutation

1 2 3 45
2 413 5 )
Obviously, the cycle permutation graph P,(Cy) is not a perfect graph

whenever n is odd and n # 3. Even when n is even, P,(Ch) is not necessar-

ily a perfect graph. For example, P,(C},), where o = ( i g g : , is

not a divisor graph, for it has the induced 5-cycle (1)(a(1))(a(3))((2))(2)(1).
The aim of this section is to determine precisely which cycle permutation
graphs are perfect, and which are divisor graphs.

The graph P,(C3) is just KoOKj for any «, thus, by Lemma 5, we have
the following result.

Proposition 1. The cycle permutation graph P,(C3) is perfect but not a
divisor graph.
Now we consider the case when n > 4.

Theorem 15. For the cycle permutation graph P,(Cp), where n > 4, the
followring are equivalent:

n (1) n is even, and a(2k+1) have the same parity for allk € {0,1,--- , 3~
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(2) P,(C,) is a divisor graph.
(8) Pa(Ch) is perfect.

Proof. (1)=-(2): Suppose that n is even and a(2k+ 1) have the same parity
forallk € {0,1,---, % —1}. To show that P,(C,) is a divisor graph, we will
give a divisor orientation of P,(Cy). Define the orientation D of P,(Ch)
as follows, where C (= C,,) and C’ are the two copies of Cy, in P,(Cy):

(i) For every vertex i of C, let ¢ be a transmitter in D if ¢ is odd, and
let 7 be a receiver in D if ¢ is even.

(ii) Let the vertices of C' whose parity is similar to that of a(1) be
receivers in the induced orientation D¢ of D, and let those whose parity
is different from that of (1) be transmitters in D¢r.

Then every vertex in D is either a transmitter or a receiver and hence
D is a divisor orientation of P,(Cr). Therefore P,(C,) is a divisor graph.

(2)=>(3): The result follows by Theorem 13.

(3)=(1): Suppose that P,(C,) is perfect. Since a perfect graph has
no odd holes, n must be even. Assume to the contrary that there exist
ki and kp in {0,1,---,% — 1} such that o(2k; + 1) and (2k; + 1) have
different parities. Then we must have two successive odd integers ¢ and j in
{2k +1:k€{0,1, -, % — 1}} such that a(i) and a(j) have different par-
ities. Without loss of generality, suppose that a(1) and a(3) have different
parities. Then we have exactly two paths P’ and P” in C’ with endvertices
(1) and a(3). Clearly, each of P’ and P” has odd length. Then the path
(@(1))(1)(2)(3)(a(3)) forms two odd cycles in P, (C,) together with P’ and
with P”. Now since «(2) is an interior vertex of exactly one of the two
paths P’ and P”, one of these two cycles is induced in P,(C,), producing
an odd hole in P,(C,), a contradiction. O

5 Which block graphs are divisor graphs?

The block graph of a graph G is the intersection graph whose vertex set is
the family of blocks of G. A graph H is a block graph (of some graph) if
and only if every block of H is complete, thus the blocks of a block graph
are its cliques. Block graphs were introduced in [11]. Block graphs have
neither odd holes nor odd antiholes, thus they are perfect. However, a block
graph is not necessarily a divisor graph, see the graph in Figure 1. At the
end of this section, we determine which block graphs are divisor graphs,
but first we need to consider amalgamation operations. '
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A bar amalgamation of two disjoint graphs G and H along a vertex u
of G and a vertex v of H is obtained by running a new edge e between the
two vertices u and v, the resulting graph is denoted by G,, *, H,, see [10].
For example, K3 = G, *¢ H, where each of G and H is the trivial graph.

Theorem 16. Let G and H be two disjoint divisor graphs with divisor
orientations Dg and Dy, respectively. If g and h are nontransitive vertices
in Dg and Dy, respectively, then the bar amalgamation Gy Hy, s a divisor
graph.

Proof. If one of the two vertices g and h is a transmitter while the other is
a receiver, say g is a transmitter in Dg and h is a receiver in Dy, then the
orientation D of G, *. Hy defined by E(D) = E(Dg)U E(Dg) U {(g,h)}
is obviously a divisor orientation in which g is a transmitter and h is a
receiver. So suppose that g is a transmitter in Dg and h is a transmitter
in Dy (the case that both g and h are receivers is similar). Then the
orientation D of G, *. H defined by E(D) = E(Dg) U E(Dy) U {(g,h)},
where DY, is the converse of Dy, is obviously a divisor orientation in which
g is a transmitter and A is a receiver. Therefore, by Lemma 3, G4 *. Hy, is
a divisor graph. O

Obviously, every vertex of a tree T is a nontransitive vertex in any
divisor orientation of T. Thus, since the trivial tree K is a divisor graph,
and any tree of order n > 1 is a bar amalgamation of a tree of order n — 1
and the trivial tree K, the following result follows from Theorem 16. This
result was previously shown in [5).

Corollary 16.1. Every tree is a divisor graph.

A vertez amalgamation of two disjoint graphs G and H along a vertex
u of G and a vertex v of H is obtained by identifying the two vertices u
and v, the resulting graph is denoted by G, * H,, see [10]. For example,
P3 =Gy x H, where G = H=> K,.

Theorem 17. Let G and H be two disjoint divisor graphs with divisor
orientations Dg and Dy, respectively. If g and h are nontransitive vertices
in Dg and Dy, respectively, then the vertex amalgamation Gy * Hy is a
divisor graph.

Proof. Let w = g = h be the vertex of G4 * Hy obtained by identifying
the two vertices g and h. If both g and h are transmitters (receivers) in
D¢ and Dy, respectively, then the orientation D of G4 * Hy, defined by
E(D) = E(Dg) U E(Dy) is clearly a divisor orientation in which w is
a transmitter (receiver). So suppose that g is a transmitter in Dg and
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h is a receiver in Dy (the case that g is a receiver in Dg and h is a
transmitter in Dy is similar). Since, by Lemma 9, the converse D} of
Dy is also a divisor orientation, the orientation D of G, * Hj defined by
E(D) = E(Dg)UE(DY,) is a divisor orientation in which w is a transmitter.
Therefore, by Lemma 3, G, * H}, is a divisor graph. O

Let G and H be two disjoint divisor graphs with divisor orientations
Dg and Dy, respectively. Note that if g € V(G) and h € V(H) where at
least one of g or A is a transitive vertex in Dg or Dy, respectively, then
the vertex amalgamation G, * Hy, and the bar amalgamation Gy *. Hy, are
not necessarily divisor graphs. Take for example the graphs G and H in
Figure 2, note that h is a transitive vertex in any divisor orientation of the

graph H.

Figure 2: Two divisor graphs G and H whose amalgamations G4 * H; and
G, * Hy, are not divisor graphs.

From the proof of Theorem 17 we have a divisor orientation of Gy * Hy,
in which the new vertex obtained by identifying the two vertices g and h
is a nontransitive vertex. Therefore the following corollary follows from
Theorem 17 by induction.

Corollary 17.1. Let G1,Ge,- - , Gk be disjoint divisor graphs with divisor
orientations Dg,, Dg,,- -+ , Dg,, respectively, such that fori=1,2,--- ,k,
the set B; of nontransitive vertices in Dg, is nonempty. Then any graph ob-
tained from Gi,Ga,- -+ , Gk by iterated verter amalgamations along vertices
inU{B;:t=1,2,--- ,k} is a divisor graph.

It is known that complete graphs are divisor graphs, see [5]. Let D
be a divisor orientation of the nontrivial complete graph K,. If D has
a transmitter (receiver) x, then every vertex in V(D) — {z} has positive
indegree (outdegree) and hence cannot be a transmitter (receiver) in D.
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Moreover, if we label the vertices of K, by 2,22,...,2", then the corre-
sponding orientation Dy, of K, with E(Dk,) = {(z,y) : z divides y}
is a divisor orientation which has exactly one transmitter and exactly one
receiver, namely 2 and 2", respectively. Therefore we have the following
result.

Lemma 18. If D is a divisor orientation of the nontrivial complete graph
Ky, then D has at most one transmitter (receiver). Moreover K, has a
divisor orientation with exactly one transmitter and exactly one receiver.

In particular, in the statement of Corollary 17.1, if we take the graphs
G1,Ga, - - - , G to be nontrivial complete graphs, then we have the following
result.

Corollary 18.1. Let G1,Gs, -+ ,Gy be nontrivial complete graphs such

that for i = 1,2,--- ,k, the set B; of nontransitive vertices in the divi-
sor orientation Dg, of G; has ezactly two elements. Then any graph ob-
tained from G1,Ga,- - , Gy by iterated verter amalgamatzons along vertices

inU{B;:i=1,2,-- k} is a divisor graph.

Note that a graph obtained as described in Corollary 18.1 can be ob-
tained from a tree by a way which is explained in the following definition.

Definition 1. Let T be a nontrivial tree. A swollen of T is a graph G
obtained from T by replacing each cligue ({u,v}) of T induced by two
adjacent vertices u and v by a complete graph K (u,v) of order n(u,v) > 2
such that {u,v} C V(K (u,v)) end every vertez z € V(K (u,v)) — {u,v} has
degree n(u,v) — 1 in G.

Note that each vertex of T that is not an endvertex of T is a cutvertex
of G, and that the subgraph of G induced by V(T') is T itself. Now we can
rewrite Corollary 18.1 using the concept of swollen of a nontrivial tree as
follows.

Theorem 19. Let T be a nontrivial tree. Then any swollen of T is a
divisor graph.

Now we can characterize the block graphs that are divisor graphs. By
an endclique of a block graph G we mean a clique of G which contains
exactly one cutvertex of G.

Theorem 20. Let G be a nontrivial block graph. Then the following are
equivalent:

(1) G is a swollen of some nontrivial tree.

270



(2) G is a divisor graph.
(3) G has no induced subgraph isomorphic to the graph in Figure 1.

Proof. (1) = (2): By Theorem 19.
(2) = (3): Since the graph in Figure 1 is not a divisor graph, the result
follows by Lemma 1. :

(3) = (1): If G is complete, then G is a swollen of the tree K,. So,
suppose that G is not complete, and let A be the set of all cutvertices of G.
Let B be a set of vertices of G which consists of exactly one vertex (which
is not a cutvertex of G) from each endclique of G. Clearly the sets A and
B are disjoint. Let T be the induced subgraph (A U B) of G. Then every
vertex v € B is an endvertex of T. Now, to show that T is a tree, assume
not. Then T has a cycle C. Since a cycle contains neither an endvertex
nor a cutvertex, all vertices of C must be from A and must belong to the
same clique of G. Thus C is a 3-cycle c¢icacsey for some ¢, c2,c3 € A. But
each ¢; (¢ =1,2,3) is a cutvertex of G, which implies that there exist three
vertices z; (¢ = 1,2,3) in G such that for each { = 1,2, 3, the vertex z; is
adjacent to ¢; and the unique path joining z; with ¢; (j € {1,2,3} — {i})
contains the vertex ¢;. Then the set {z;,x2,z3,¢1,¢2,¢3} induces in G a
subgraph isomorphic to that in Figure 1, which contradicts the assumption.
Therefore, T is a tree. Obviously, G is a swollen of T'. a

Note that the graph in Figure 1 is not induced in a block graph G if
and only if every clique of G contains at most two cutvertices of G.
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