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Abstract. A family G of connected graphs is a family with con-
stant metric dimension if dim(G) is finite and does not depend
upon the choice of G in G. The metric dimension of some classes of
plane graphs has been determined in (3], [4], 5], [12], [14] and [18]
while metric dimension of some families of convex polytopes has
been studied in [8], [9], [10] and [11]and the following open prob-
lem was raised in [11].

Open Problem [11]: Let G be the graph of a convex polytope
which is obtained by joining the graph of two different convex poly-
topes G1 and G2 (such that the outer cycle of G, is the inner cycle
of G3) both having constant metric dimension. Is it the case that
G will always have the constant metric dimension?

In this paper, we extend this study to an infinite class of convex
polytopes which is obtained as a combination of graph of an an-
tiprism A, (1] and graph of convex polytope @, [2] such that the
outer cycle of A, is the inner cycle of Q.. It is natural to ask for
the characterization of classes of convex polytopes with constant
metric dimension. Note that the problem of determining whether
dim(G) < k is an N P-complete problem (7).

Keywords: Metric dimension, basis, resolving set, plane graph, convex
polytope
1 Notation and preliminary results

Let G be a connected graph, the distance d(u,v) between two ver-
tices u,v € V(G) is the length of a shortest path between them. Let
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W = {w;,wa,....,wk} be an ordered set of vertices of G and let v be a
vertex of G. The representation r(v|W) of v with respect to W is the k-
tuple (d(v, w1), d(v, wp), ....., d(v, wx)). If distinet vertices of G have distinct
representations with respect to W, then W is called a resolving set or locat-
ing set for G [3]. A resolving set of minimum cardinality is called a metric
basis for G and this cardinality is the metric dimension of G, denoted by
dim(G). The concepts of resolving set and metric basis have previously
appeared in the literature (see [3-6, 8-12, 14-18]).

For a given ordered set of vertices W = {w,, ws, ....,wi} of a graph G, the
ith component of r(v|W) is 0 if and only if v = w;. Thus, to show that W
is a resolving set it suffices to verify that r(z|W) # r(y|W) for each pair of
distinct vertices z,y € V(G)\W.

A useful property in finding dim(G) is the following lemma [17):

Lemma 1. Let W be a resolving set for a connected graph G and u,v €
V(G). If d(u,w) = d(v,w) for all vertices w € V(G)\ {u,v}, then {u,v}N
W #0.

By denoting G 4+ H the join of G and H a wheel W, is defined as W, =
Ky +Cy,forn >3, a fanis f, = Ky + P, for n > 1 and Jahangir graph
Jon,(n = 2) (also known as gear graph) is obtained from the wheel W, by
alternately deleting n spokes. Buczkowski et al. [3] determined the metric
dimension of wheel Wy, Caceres et al. [5] the metric dimension of fan f,
and Tomescu and Javaid [18] the metric dimension of Jahangir graph Jan.

Theorem 1. (/3], [5], [18]) Let W, be a wheel of order n > 3, f, be fan
of order n > 1 and Ja, be a Jahangir graph. Then

(i) Forn > 7, dim(W,,) = | 2842 );

(ii) Forn > 7, dim(f,) = | 2232];

(i) For n > 4, dim(J3n) = | F].

The metric dimension of all these plane graphs depends upon the number
of vertices in the graph.

On the other hand, we say that a family G of connected graphs is a family
with constant metric dimension if dim(G) is finite and does not depend
upon the choice of G in G. In [6] Chartrand et al. proved that a graph has
metric dimension 1 if and only if it is a path, hence paths on n vertices
constitute a family of graphs with constant metric dimension. They did
not characterize all graphs with metric dimension 2 but they investigated
few properties of graphs with metric dimension 2.

Theorem 2. [6] A graph G with metric dimension 2 can have neither Kg
nor Ka g as a subgraph.

Similarly, cycles with n(> 3) vertices also constitute such a family of graphs
as their metric dimension is 2 and does not depend upon on the number



of vertices n. A nice property of graphs with metric dimension 2 is the
following result of Khuller et al. [14].

Theorem 3. [14] Let G be a graph with metric dimension 2 and let {u,v} C
V(G) be a metric basis in G. Then the following are true:

(a) There is a unique shortest path between v and v.

(b) The degree of each u and v is at most 3.

Caceres et al. [4] proved that

2, if n is odd;
3, if n is even.

dim(Py, x c,,)={

Since prisms D, are the trivalent plane graphs obtained by the cross
product of path P, with a cycle Cy, hence they constitute a family of 3-
regular graphs with constant metric dimension. Also Javaid et al. proved
in [12] that the plane graph antiprism A, constitutes a family of regular
graphs with constant metric dimension as dim(A4,) = 3 for every n > 5.
The prism and the antiprism are Archimedean convex polytopes defined
e.g. in [13].

The metric dimension of some classes of convez polytopes has been studied
in in [8], [9], [10] and [11]and the following open problem was raised in [11].
Open Problem [11]: Let G be the graph of a convex polytope which is
obtained by joining the graph of two different convex polytopes G; and G,
(such that the outer cycle of G| is the inner cycle of G3) both having con-
stant metric dimension. Is it the case that G will always have the constant
metric dimension?

In this paper, we study the metric dimension of an infinite class of convex
polytopes which is obtained as a combination of graph of an antiprism A,
(1] and graph of convex polytope @ [2] such that the outer cycle of A4, is
the inner cycle of Q.. It is shown that this class of convex polytoes has con-
stant metric dimension and only three vertices chosen appropriately suffice
to resolve all the vertices of this class of convex polytopes.

It is natural to ask for the characterization of classes of convex polytopes
with constant metric dimension.

2 The graph of convex polytope T,

The graph of convex polytope T, (Fig. 1) can be obtained as a combination
of graph of an antiprism A, [1] and graph of convex polytope @, [2] such
that the outer cycle of A,, is the inner cycle of Q,,.

For our purpose, we call the cycle induced by {a; : 1 < i < n}, the inner
cycle, the cycle induced by {b; : 1 < ¢ < n}, the interior cycle, the cycle



Fig. 1. The graph of convex polytope Ty

induced by {c; : 1 <4 < n}, the exterior cycle, the set of vertices {d; : 1 <
i < n}, the interior vertices and the cycle induced by {e; : 1 <i < n}, the
outer cycle.

The metric dimension of graph of an antiprism A, and graph of convex
polytope @, has been determined in [12] and [8]where it was proved that
both these graphs have constant metric dimension. In the next theorem,
we prove that the metric dimension of the graph of convex polytope T}, is
3. Note that the choice of an appropriate basis of vertices (also referred to
as landmarks in [14]) is the core of the problem.

Theorem 4. Let the graph of convex polytopes be Ty; then dim(T,) =3
forn > 6.

Proof. We will prove the above equality by double inequalities. We consider
the two cases.

Case(i) When = is even.

In this case, we can write n =2k, k > 3, k € Z+. Let W = {a1,a3,ak41} C
V(T,), we show that W is a resolving set for T, in this case. For this we
give representations for any vertex of V(T,)\W with respect to W.
Representations for the vertices on inner cycle are

raglwy = { (- Li=2k—i+1D), 3<i<k
W)=V 2k —i+1,2k—i+2,i—k—1), k+2<i< 2.

Representations for the vertices on interior cycle are

(1,1, k), i=1;
) (i—1k—i+1), 25i<k;
r(bz|W) = (k, k, 1), i=k+1;

(2%k—i+1,2k—i+2,i—k), k+2<i< 2k



Representations for the vertices on exterior cycle are

r(e|W) = (1,1,1) + r(b:|W)

Representations for the interior vertices are

3,3,k + 1), i=1;
(E+2,i+1,k—i+4+2), 2<i<k—-1;
) _ ) (k+2,k+1,3), i=k;
r(di|W) = (k+1,k+2,3), i=k+1;

(2k—i+2,2k-i+3,i-k+2), k+2<i<2k-1;
3,3,k +2), i=2k.

Representations for the vertices of outer cycle are r(e;|W) = (1,1,1) +

r(di[W).

We note that there are no two vertices having the same representations
implying that dim(T,) < 3.

On the other hand, we show that dim(T,) > 3. Suppose on contrary that
dim(T,) = 2, then by Theorem 2, the degree of basis vertices can be at
most 3. But the graph of convex polytopes T, has only vertices d; and e;
of degree 3 and all other vertices of graph of convex polytopes T, have
degree 4 or 5. So we have the following possibilities to be discussed.

(1) Both vertices are in the set of interior vertices. Without loss of gen-
erality we suppose that one resolving vertex is d;. Suppose that the sec-
ond resolving vertex is d; (2 <t < k+1). Then for 2 < t < k, we have
r(b1){d1,d:}) = r(en|{d1,d:}) = (2,t+1) and for t = k+1, r(ez|{d1,dk+1}) =
r(en|{d1,dk+1}) = (2, k), a contradiction.

(2) Both vertices are in the outer cycle. Without loss of generality we
suppose that one resolving vertex is e;. Suppose that the second resolving
vertex is e; (2 <t < k+1). Then for 2 <t < k, we have r(d;|{ey, e:}) =
7(enl{e1,e:}) = (1,¢) and for t = k+1, r(ez|{e1, ex+1}) = 7(enl{e1, €x41}) =
(1,k - 1), a contradiction.

(8) One vertex is in the set of interior vertices and other one is in the outer
cycle. Without loss of generality we suppose that one resolving vertex is
d;. Suppose that the second resolving vertex is e; (1 <t < k+1). Then
for 1 <t < k, we have r(c1|{d1,e:}) = r(dn|{d1,e:}) = (1,t + 1) and for
t = k + 1, we have r(da|{d1, ex+1}) = r(e1]{d1,ex+1}) = (1, %), a contra-
diction.

Hence, from above it follows that there is no resolving set with two vertices
for V(T,) implying that dim(T,) = 3 in this case.

Case(ii) When 7 is odd.

In this case, we can write n = 2k+1,k > 3,k € Z*.Let W = {a1,a2,ak4+1} C
V(Ty), we show that W is a resolving set for T, in this case. For this we
give representations for any vertex of V(T,)\W with respect to W.



Representations for the vertices on inner cycle are

(i—1,i—2,k—i+1), 3<i<k;
r(a;|W) = < (k,k, 1), i=k+2;
(2k —i+2,2k—i+3,i—k—1), k+3<i<2k+1.

Representations for the vertices on interior cycle are

T(b,lW) = (1: la 1) + T(b,IW)

Representations for the vertices on exterior cycle are

2,2,k +1), i=1;
r@W) =1 (k+2,k+1,2), i=k+1;

(%k—i+3,2k—i+4,i—k+1), k+2<i<2+1.

Representations for the interior vertices are

3,3,k +1), i=1;
G+2,i+1,k—i+2), 2<i<k—1;
) (k+2,k+1,3), i=k;
rdW) = (k+2.k +2,3), i=k+1;
(%k—i+3,2%—i+4,i—k+2), k+2<i< 2k
(3,3,k+2), i=2k+ 1.

Representations for the vertices of the outer cycle are r(e;|W) = (1,1,1) +

r(d;|W).

Again we see that there are no two vertices having the same representations

which implies that dim(T,,) < 3 in this case.

On the other hand, suppose that dim(T,) = 2, then there are the same
subcases as in case (i) and contradiction can be obtained analogously. This

implies that dim(T,) = 3 in this case, which completes the proof.
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