Computation of Ramsey Numbers R(C,,, W,,)
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Abstract. For given finite simple graphs F and G, the Ramsey
number R(F, G) is the minimum positive integer n such that for
every graph H of order n either H contains F or the comple-
ment of H contains G. In this note, with the help of computer,
we get that R(Cs, Wg) = 13, R(Cs,W7) = 15, R(Cs,Ws) =
17, R(Cﬁ, WG) = 11, R(Cﬁ, W7) = 16, R(Csy WB) = 13,
R(C7, We) =13 and R(C7, Ws) =17,

1 Introduction

For a finite simple graph G, the complementary graph of G is denoted by
G. If G contains H, we write G D H. The vertex and edge number of G is
denoted by p(G) and ¢(G) respectively. We denote by C,, a cycle of order
n. A wheel W, is a graph of order n + 1 obtained by adding a vertex v
to C,, with v adjacent to each vertex of C,. For given finite simple graphs
F and G, the Ramsey number R(F,G) is the minimum positive integer n
such that for every graph H of order n either H D For H2 G. H is an
(F,G)-graph if neither H 2 F nor H 2 G; H is an (F,G;n)-graph if H is
an (F, G)-graph of order n. The set of all nonisomorphic (F, G)-graphs and
(F, G; n)-graphs are denoted by R(G1, G2) and R(G,, G2; n) respectively.
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Table 1: Known Ramsey numbers R(Cp,, Wy,)

m|3 4 |5 6 7 8

g 9 10113 16 19 22 3m—~2(m>4)
(5] (3] | 3] 8] [ (3] 8]

1 11 9 [9 11|13 15 2m—1 (m > 5)
)] (7] | [6] (6] | [6] [6] (6]

5 11 10|13 16 | 19 2 3m 2 (m > 5)
2] [7] (6]

6 13 9 | 13* | 11°|18° | 1513 | 2m—1(m > 8)
[2] (7] (13)

7 15 11 [16° [ 16" | 19[12] | 22(12] | 8m—2(m=>7)
2] [7) (12]

) 17 12177 |13 |17 2m—1 (m > 11)
2] [7) [13]
2n+1 2n+1 2n+1 3m—-2(ocddn>3
2 [14] 14 m > n,m # 3)[12]

In this note, with the help of computers, we get that R(Cs, Wg) = 13,
R(Cs,Wy) = 15, R(Cs,Ws) = 17, R(Ce,Ws) = 11, R(Cg,Wy) = 186,
R(Cg, Ws) = 13, R(C7,Wg) =13, R(Cy, Ws) = 17.

2 Some values of R(Cp,, W,)

Many researchers considered the Ramsey numbers R(C,, W,,) for various
positive integers m and n.
In [1], it was proved that

Theorem 1 R(C,,,W,) =2m — 1 for n even and m 2 5n/2.

It was also conjectured that

Conjecture 1 R(C,,,W,,) = 3m — 2 for n odd and m n > 3 and
(m,n) # (3,3); R(Cm,Wp)=2m —1 forevenn >4 and m >n > 3 and

(m,n) # (4,4).

In [4], it was proved that Conjecture 1 is true for odd n > 20. There
are also many other known values of R(Cy,,W,). Table 1 gives known
R(Cp,W,,) for certain m and n. Here we present a table for known
R(Cy,, W,,) for some m and n and corresponding references. These results
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can also be found in [11]. The results marked with * are from Theorem 2
in this note.

In [9], an efficient algorithm called one-vertex extension method with
feasible intervals was introduced to extend (4, 5;n)-graphs to (4,5;n + 1)-
graphs. In order to compute the Ramsey numbers R(C,,, W, ), we applied
this technique with slight modifications. The obtained results are shown in
Table 1, which can be verified by naive one-vertex extension method. In
addition, the powerful tool nauty, shortg[10] are used to reject isomorphic
graphs. The corresponding statistics for nonisomorphic (Cp,, W ; k)-graphs
are listed in Table 2.

Table 2: The number of nonisomorphic (Cp,, W,; k)-graphs

k__[R(Cs,Wei k)| [R(Cs,Wri k)| [R(Cs, Wai k)| [R(Cs, We; k)|
9 101 o17 2907 437

10 155 496 3221 133

11 85 371 1174 0

12 61 342 1080 0

13 0 163 923 0

14 0 92 771 0

15 0 0 305 0

16 0 0 141 0

17_0 0 0 0
k__[R(Ce,Wr; k)| [R(Ce,Wsi k)| [R(Cr,Weik)| [R(Cr,Wa;k)]
9 1989 5400 1624 13015

10 818 5289 1359 20444

11 284 589 1082 10066

12 138 28 252 3445

13 81 0 0 1043

14 22 0 0 785

15 0 5 0 305

16 0 0 0 141

17_0 0 0 0

—

From Table 2, we have

Theorem 2 R(Cs,Wg) = 13, R(Cs,W;) = 15, R(Cs, Ws)
R(Cs,Ws) = 11, R(Ce,W7) = 16, R(Cs,W3) = 13, R(Cr, Ws)

R(Cr, Ws) = 17.
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