Computation of Ramsey Numbers $R(C_m, W_n)$

Liang Luo*

School of Transportation, Wuhan University of Technology. Wuhan, 430063, China

Meilian Liang

School of Mathematics and Information Science, Guangxi University, Nanning, 530004, China

Zhenchong Li

Guangxi Academy of Sciences Nanning, 530007, China

Abstract. For given finite simple graphs F and G, the Ramsey number R(F,G) is the minimum positive integer n such that for every graph H of order n either H contains F or the complement of H contains G. In this note, with the help of computer, we get that $R(C_5, W_6) = 13$, $R(C_5, W_7) = 15$, $R(C_5, W_8) = 17$, $R(C_6, W_6) = 11$, $R(C_6, W_7) = 16$, $R(C_6, W_8) = 13$, $R(C_7, W_6) = 13$ and $R(C_7, W_8) = 17$.

1 Introduction

For a finite simple graph G, the complementary graph of G is denoted by \overline{G} . If G contains H, we write $G \supseteq H$. The vertex and edge number of G is denoted by p(G) and q(G) respectively. We denote by C_n a cycle of order n. A wheel W_n is a graph of order n+1 obtained by adding a vertex v to C_n with v adjacent to each vertex of C_n . For given finite simple graphs F and G, the Ramsey number R(F,G) is the minimum positive integer n such that for every graph H of order n either $H \supseteq F$ or $\overline{H} \supseteq G$. H is an (F,G)-graph if neither $H \supseteq F$ nor $\overline{H} \supseteq G$; H is an (F,G)-graph of order n. The set of all nonisomorphic (F,G)-graphs and (F,G;n)-graphs are denoted by $\mathcal{R}(G_1,G_2)$ and $\mathcal{R}(G_1,G_2;n)$ respectively.

^{*}Corresponding author

Table 1: Known Ramsey numbers $R(C_m, W_n)$

	m	3	4	5	6	7	8	
n								
3		9	10	13	16	19	22	$3m-2\ (m\geq 4)$
		[5]	[3]	[3]	[3]	[3]	[3]	[3]
4		11	9	9	11	13	15	$2m-1\ (m\geq 5)$
		[8]	[7]	[6]	[6]	[6]	[6]	[6]
5		11	10	13	16	19	22	$3m-2\ (m\geq 5)$
		[2]	[7]		[[6]
6		13	9	13*	11*	13*	15 [13]	$2m-1\ (m\geq 8)$
1		[2]	[7]					[13]
7		15	11	15*	16*	19[12]	22[12]	$3m-2\ (m\geq7)$
ĺ		[2]	[7]			, ,	- •	[12]
8		17	12	17*	13*	17*		$2m-1\ (m\geq 11)$
		[2]	[7]					[13]
		2n + 1		2n+1		2n + 1		$3m-2 \; (\mathrm{odd} \; n \geq 3)$
		[2]		[14]		[14]		$m \geq n, m \neq 3)[12]$

In this note, with the help of computers, we get that $R(C_5, W_6) = 13$, $R(C_5, W_7) = 15$, $R(C_5, W_8) = 17$, $R(C_6, W_6) = 11$, $R(C_6, W_7) = 16$, $R(C_6, W_8) = 13$, $R(C_7, W_6) = 13$, $R(C_7, W_8) = 17$.

2 Some values of $R(C_m, W_n)$

Many researchers considered the Ramsey numbers $R(C_m, W_n)$ for various positive integers m and n.

In [1], it was proved that

Theorem 1 $R(C_m, W_n) = 2m - 1$ for n even and $m \ge 5n/2$.

It was also conjectured that

Conjecture 1 $R(C_m, W_n) = 3m - 2$ for n odd and $m \ge n \ge 3$ and $(m,n) \ne (3,3)$; $R(C_m, W_n) = 2m - 1$ for even $n \ge 4$ and $m \ge n \ge 3$ and $(m,n) \ne (4,4)$.

In [4], it was proved that Conjecture 1 is true for odd $n \geq 20$. There are also many other known values of $R(C_m, W_n)$. Table 1 gives known $R(C_m, W_n)$ for certain m and n. Here we present a table for known $R(C_m, W_n)$ for some m and n and corresponding references. These results

can also be found in [11]. The results marked with * are from Theorem 2 in this note.

In [9], an efficient algorithm called one-vertex extension method with feasible intervals was introduced to extend (4,5;n)-graphs to (4,5;n+1)-graphs. In order to compute the Ramsey numbers $R(C_m,W_n)$, we applied this technique with slight modifications. The obtained results are shown in Table 1, which can be verified by naive one-vertex extension method. In addition, the powerful tool nauty, shortg[10] are used to reject isomorphic graphs. The corresponding statistics for nonisomorphic $(C_m,W_n;k)$ -graphs are listed in Table 2.

Table 2: The number of nonisomorphic $(C_m, W_n; k)$ -graphs

k	$ \mathcal{R}(C_5,W_6;k) $	$ \mathcal{R}(C_5,W_7;k) $	$ \mathcal{R}(C_5,W_8;k) $	$ \mathcal{R}(C_6,W_6;k) $
9	191	917	2907	437
10	155	496	3221	133
11	85	371	1174	0
12	61	342	1080	0
13	0	163	923	0
14	0	92	771	0
15	0	0	305	0
16	0	0	141	0
17	0	0	0	0
\overline{k}	$ \mathcal{R}(C_6,W_7;k) $	$ \mathcal{R}(C_6,W_8;k) $	$ \mathcal{R}(C_7,W_6;k) $	$ \mathcal{R}(C_7,W_8;k) $
9	1989	5409	1624	13015
9 10	1989 818	5409 5289	1624 1359	13015 20444
10	818	5289	1359	20444
10 11	818 284	5289 589	1359 1082	20444 10066
10 11 12	818 284 138	5289 589 28	1359 1082 252	20444 10066 3445
10 11 12 13	818 284 138 81	5289 589 28 0	1359 1082 252 0	20444 10066 3445 1043
10 11 12 13 14	818 284 138 81 22	5289 589 28 0	1359 1082 252 0	20444 10066 3445 1043 785

From Table 2, we have

Theorem 2 $R(C_5, W_6) = 13$, $R(C_5, W_7) = 15$, $R(C_5, W_8) = 17$, $R(C_6, W_6) = 11$, $R(C_6, W_7) = 16$, $R(C_6, W_8) = 13$, $R(C_7, W_6) = 13$, $R(C_7, W_8) = 17$.

References

- [1] Surahmat, E.T. Baskoro and I. Tomescu, The Ramsey numbers of large cycles versus wheels, Discrete Mathematics 306 (2006) 3334-3337.
- [2] S. A. Burr and P. Erdös, Generalization of a Ramsey-theoretic result of Chvátal, Journal of Graph Theory 7 (1983) 39-51.
- [3] J. S. Yang, Y. R. Huang, K. M. Zhang, The value of the Ramsey number $R(C_n, K_4)$ is 3(n-1)+1, $n \geq 4$, Australasian Journal of Combinatorics 20 (1999) 205-206.
- [4] L. Zhang, Y. Chen and T.C. Edwin Cheng, The Ramsey numbers for cycles versus wheels of even order, European Journal of Combinatorics (2009), doi:10.1016/j.ejc.2008.12.022.
- [5] R. E. Greenwood, A. M. Gleason, Combinatorial relations and chromatic graphs. Canadian Journal of Mathematics, 7 (1955), 1-7.
- [6] Surahmat, E.T. Baskoro and H. J. Broersma, The Ramsey numbers of large cycles versus small wheels, Electronic Journal of Combinatorial Number Theory 4 (2004), #A10
- [7] Kung-Kuen Tse, On the Ramsey number of the quadrilateral versus the book and the wheel, Australasian Journal of Combinatorics, 27 (2003) 163-167.
- [8] S. P. Radziszowski and J. Xia, Paths, cycles and wheels without antitriangles, Australasian Journal of Combinatorics 9 (1994) 221-232.
- [9] B. D. McKay and S. P. Radziszowski, R(4,5)=25, J. Graph Theory, 19 (1995) 309-322.
- [10] B. D. McKay, nauty user's guide, Technique report TR-CS-90-02, Computer Science Department, Australian National University, 2006, http://cs.anu.edu.au/people/bdm/.
- [11] S. P. Radziszowski, Small Ramsey numbers. Elect. J. Combin., Dynamic Survey 1, revision #12, August, 2009, http://www.combinatorics.org.
- [12] Y. Chen, T.C. Edwin Cheng and C.T. Ng, A Theorem on Cycle-Wheel Ramsey Number, manuscript, (2009).
- [13] Y. Chen, T.C. Edwin Cheng, Z. Miao and C.T. Ng, The Ramsey Numbers for Cycles versus Wheels of Odd Order, Applied Mathematics Letters, 22(12) 2009 1875-1876.

[14] H. Zhou, The Ramsey Number of an Odd Cycle with Respect to a Wheel (in Chinese), Journal of Mathematics, Shuxue Zazhi (Wuhan), 15 (1995) 119-120.