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Abstract

A set S of vertices of a graph G is geodetic if every vertex
in V(G)\S is contained in a shortest path between two vertices
of S. The geodetic number g(G) is the minimum cardinality of
a geodetic set of G. The geodomatic number dy,(G) of a graph
G is the maximum number of elements in a partition of V(G)

into geodetic sets.

In this paper we determine dg(G) for some family of graphs,
and we present different bounds on dy(G). In particular, we
prove the follwing Nordhaus-Gaddum inequality, where G is
the complement of the graph G. If G is a graph of order n > 2,
then dg(G) + dy(G) < n with equality if and only if n = 2.
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1 Terminology

We consider finite graphs without loops and multiple edges. For any
graph G the set of vertices is denoted by V(G) and the edge set by
E(G). We define the order of G by n = n(G) = |V(G)|. For a vertex
v € V(G), the neighborhood N(v) is the set of all vertices adjacent
to v, and the degree d(v) of a vertex v is defined by d(v) = |[N(v)|.
If G is a graph, then G is its complement.

JCMCC 81 (2012), pp. 151-159



Let G and G3 be two disjoint graphs. The union G = G; UG,
has V(G) = V(G1) UV(G2) and E(G) = E(G1) U E(Gs), and the
join H = Gj + Ga has V(H) = V(G;) UV (G2) and

E(H) = E(G1) U E(G2) U {uv|u € V(G) and v € V(G2)}.

A complete graph of order n is denoted by K, and Kp, p,,...p, is &
complete r-partite graph such that the partite sets have cardinality
P1,P2,.--,Pr- We denote by C,, the cycle on n vertices.

If G is a connected graph, then the distance d(z,y) is the length
of a shortest z — y path in G. The eccentricity e(v) of a vertex v
is the distance to a vertex farthest from v. The radius 7(G) is the
minimum eccentricity of the vertices, whereas the diameter d(G) the
maximum eccentricity. Now v is a central vertez if e(v) = r(G). A
graph is self-centered if every vertex is in the center. An z — y path
of length d(z,y) is called an z — y geodesic. A vertex v is said to
lie on an = — y geodesic P if v is a vertex of P. The closed interval
I[z,y] between two vertices z and y in G is the set of vertices of G
which belong to an z — y geodesic of G, while for S C V(G),

1181 = | Iz,y).

z,y€S

If G is a connected graph, then a set S of vertices is a geodetic
set if I[S] = V(G). The minimum cardinality of a geodetic set is the
geodetic number of G, and is denoted by g(G). The geodetic number
of a disconnected graph is the sum of the geodetic numbers of its
components. A geodetic set of cardinality g(G) is called a g(G)-
set. We define the geodomatic number dy(G) of a graph G as the
maximum number of elements in a partition of V(G) into geodetic
sets.

A vertex of G is simplical if the subgraph induced by its neigh-
borhood is complete. It is easy to see that every simplical vertex
belongs to every geodetic set. Geodetic sets and geodetic numbers
have been studied in, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9].
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2 Results

Since g(G) > 2 for each graph G of order n > 2, the following bounds
are immediate.

Proposition 2.1. If G is a graph of order n > 2, then

n n
1<dy(G) L —= < ~.
= “g ( ) g(G) 2
As each simplical vertex belongs to every geodetic set, we obtain
the next result.

Proposition 2.2. If G contains a simplicial vertez, then dy(G) = 1.
Now we note the geodomatic number of each cycle.

Proposition 2.3. If C, is a cycle of length n, then
(a) dg(Crn) = n/2 when n is even,

(b) dg(Cr) = |n/3] when n is odd.

Proposition 2.4. If G is the complete r-partite graph Ky, p,....p. Of
order n > 2, then dy(G) = n/2 if and only if n = 2 or p; = pa =
=P =2,

Proof. Ifn =2 thendy(G)=1=n/2. Nowlet py =po=... =
pr = 2, and let {u,v} be an arbitrary partite set. Then we observe
that I[u,v] = V(G), and therefore we deduce that dg(G) = n/2.
Coversely, assume that dg(G) =n/2,andlet 1 <p; <pa <... <
pr. This implies that n is even. If n = 2, then dy(G) = 1 = n/2, and
we are done. Assume now that n > 4. If »r = 1, then g(G) = n and
so dg(G) = 1 < n/2, a contradiction. Assume next that r > 2. If
p1 = 1, then there exists a partite set of G consisting of exactly one
vertex u. If S is a geodetic set of G containing u, then we observe
that |S| > 3, and we obtain the contradiction dy(G) < n/2. This
shows that p; > 2. If p, > 3, then let v be a vertex of a partite set of
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cardinality p,. If S is a geodetic set of G containing v, then we note
that |S| > 3 and so dy(G) < n/2. Consequently, p, > 3 is impossible,

and altogether we have shown that p; =po=... =p, = 2. O

Propositions 2.3 and 2.4 show that dy(G) = n/2 is possible, and
therefore the upper bound dy(G) < n/2 in Proposition 2.1 is sharp.

In the following theorem let Hy = Kp, p,,..p. With p; = py =
co.=pr-1 =2, 7 2 2 and p, = 3. If {u,v,w} is the partite set of
H; of cardinality 3, then let Hs be the graph H; with the additional
edge uv, and let H3 be the graph H; with the additional edge uw.

Theorem 2.5. Let G be a graph of order n > 3 and diameter d(G) =
2. Then dg(G) = (n—1)/2 if and only if G = K12 orn > 5 is odd
and G is isomorphic to Hy, Hy or Hs.

Proof. If G=Kjoorn>5isodd and G is isomorphic to Hy, Hy
or Hs, then it is a simple matter to obtain dg(G) = (n —1)/2.

Conversely, assume that dy(G) = (n — 1)/2. Then n is odd and
G =K, whenn=3. Nowlet n=2r 4+ 12> 5, and let

{xla yl}) {332, y2}a ey {zr—la yr—l}: {ua v, 'lU}

be a partition of V(G) into r = (n — 1)/2 geodetic sets. The hy-
pothesis d(G) = 2 implies that d(z;,y;) = 2 and V(G) = I[z;, y] for
each 1 < ¢ < r—1. It follows that d(z;) = d(y;) = n — 2 for each
1<i<r-1and d(u),d(v),d(w) > n—3. If {,v,w} is an indepen-
dent set, then G = H;. If, without loss of generality, u is adjacent
to v and d(w) = n — 3, then G = Hy, and if v and v as well as u
and w are adjacent and d(v) = d(w) = n — 2, then G = H3. Since
d(u) = d(v) = d(w) = n — 1 is forbidden, the proof is complete. O

Theorem 2.6. Let G be a graph of order n > 2 such that dy(G) =
n/2. Then

(a) n is even, and G = Ky or G = K1 U K when n =2.
(b) If n > 4, then G is connected and self-centered.

(c) If n > 4 and d(G) = 2, then G = K, p,,...p, With p; = pa =
e =pp=2.
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Proof. (a) The hypothesis dy(G) = n/2 implies that n is even, and
if n =2, then G = K5 or G = K; U K is immediate.

(b) If G is not connected, then the condition n > 4 shows that
9(G) > 3. Thus Propostion 2.1 leads to the contradiction dy(G) <
n/3 < n/2, and hence G is connected.

Let u be a vertex of G such that e(u) = r(G). Since dy(G) = n/2,
there exists a vertex v € V(G) such that V(G) = I[u,v]. Now let
z and y be two arbitrary vertices of G. Since V(G) = I[u,v], the
vertices z and y are contained in a u — v geodesic. If there exists
a u — v geodesic P such that z,y € V(P), then d(z,y) < d(u,v).
Otherwise, we deduce that

dz,y) < min{d(,z)+ dy,u), d(v,7) + d(y, )}
d(u, z) + d(y, v) + d(v, z) + d(y, v)
2

= d(u,v).

<

2. d(u,v)
2

In both cases we obtain d(z,y) < d(u,v) < e(u) = 7(G), and hence
d(G) < 7(G). Consequently, d(G) = r(G) and thus G is self-centered.

(c) Let n = 2r > 4, and let {z1,11}, {z2,¥2},...,{zr,ur} be a
partition of V(G) into r = n/2 geodetic sets. Then d(z;,y;) = 2 and
V(G) = I[z;,y;) for each 1 <7 < r. It follows that d(z;) = d(y;) =
n — 2 for each 1 < 7 < 7 and so we see that G = Kp, p,....p, With -
p1=p2=...=pr=2. O

As an application of Theorem 2.6, we prove the following Nord-
haus-Gaddum type results.

Theorem 2.7. If G is a graph of order n > 2, then
dg(G) +dg(G) < m €)
with equality if and only if n = 2.

Proof. In view of Propsition 2.1, the Nordhaus-Gaddum inequality
(1) is immediate. If n = 2, then dg(G) = 1 and dy(G) = 1 and thus
dg(G) + d4(G) =2 = n. _
Conversely, suppose to the contrary that dy(G) + dg(G) = n for
n > 3. Because of Proposition 2.1, it follows that d,(G) = n/2
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and dy(G) = n/2. Using Theorem 2.6, we deduce that n > 4 is
even and G and G are both connected and self-centered. If d(G) =
1, then G is the complete graph, and we obtain the contradiction
dg(G) + d4(G) = 2 < 4 < n. If d(G) = 2, then we deduce from
Theorem 2.6 (c) that G = K, p,,..p, With p1 = po = ... = p, = 2,
and this leads to the contradiction dg(G) + do(G) = n/2+1 < n.
However, if d(G) = r(G) > 3, then it is straightforward to verify that
d(G) = r(G) < 2 (cf. also Exercise 2.2.9 in [3] on page 42). Using
for G the same arguments as above, we arrive at a contradiction too,
and the proof is complete. a

Theorem 2.8. If G is a graph of even order n > 4, then
45(C) +dy(C) < m—1 @)
with equality if and only if G € {Cy4,Cs} or G € {C4,Cs}.

Proof. Theorem 2.7 implies the Nordhaus-Gaddum inequality (2).
If G € {C4,Cg} or G € {C4, Cs}, then it is a simple matter to verify
that dg(G) + dg(G) =n —1.

Conversely, assume that dg(G) + do(G) = n — 1. Because of
Proposition 2.1, it follows that dg(G) = n/2 or dg(G) = n/2. We as-
sume, without loss of generality, that dy(G) = n/2 and thus dy(G) =
(n—2)/2. In view of Theorem 2.6, the graph G is connected and self-
centered. If d(G) = 1, then G is the complete graph, and we obtain
the contradiction dg(G) =1 < 2 < n/2. If d(G) = 2, then Theorem
2.6 (c) shows that G = K, py,..p, Withpy =p2 = ... =p, = 2. If
n = 4, then G = Cy, and if n > 6, then we obtain the contradiction
dg(G) + d4(G) =n/2+1<n—1.

If d(G) = r(G) > 3, then d(G) = r(G) < 2. If d(G) = 1, then
G is complete and so dg(G) = 1, a contradiction. So assume that
d(G) = 2. If n. = 2r > 4, then the fact that dg(G) = (n—2)/2=r-1
shows that the partition of V(G) into » — 1 geodetic sets consists of
one set of cardinality four and r — 2 sets of cardinality two or two sets
of cardinality three and r — 3 sets of cardinality two. If {z,y} is a
geodetic set of cardinality two in G, then G contains a component H
such that V(H) = {z,y}, and we obtain the contradiction d¢(G) =
1 < n/2. In the case that n > 8, we conclude that there exists a
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geodetic set of cardinality two in G, and thus this is impossible. In
the remaining cases that n = 4 or n = 6 it is straighforward to verify
that G = Cg is the only possibility. O

Buckley, Harary and Quintas [4] characterized those connected
graphs G of order n for which g(G) = n or g(G) = n—1. As an easy
consequence, we obtain the following result.

Theorem 2.9. (a) If G is a graph of order n, then g(G) = n if
and only if the components of G are complete graphs.

(b) If G is a graph of order n > 3, then g(G) = n — 1 if and
only if there is exactly one component H of G such that H =
K1+(KnyUKp,U. . UKy, ) withp > 2 and the other components
(if any) are complete graphs.

Theorem 2.10. For any graph G of order n,
dg(G)+9(G) <n+1 (3)

with equality if and only if all components of G are complete graphs.

Proof. According to Proposition 2.1, we obtain
dg(G) + 9(G) £ ——= + 9(G). 4

Using the fact that f(z) = z+n/z is decreasing for 1 < z < /n and
increasing for v/n < z < n, this inequality leads to (3) immediately.

If the components of G are complete graphs, then g(G) = n and
dg(G) = 1 and therefore dy(G) + g(G) =n + 1.

Conversely, assume that G contains at least one non-complete
component. Then Theorem 2.9 (a) implies that ¢(G) < n - 1. If
dg(G) = 1, then we deduce that do(G) +g(G) < 1+n—-1=n. If
dg(G) 2 2, then n > 4 and Proposition 2.1 leads to 2 < g(G) < n/2.
Combining this with (4), we conclude that ‘

de(G) + g(G) < = +2 < n.
Hence the equality dg¢(G) + g(G) = n + 1 is impossible in this case,

and the proof of Theorem 2.10 is complete. O
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Theorem 2.11. Let G be graph of order n with at least one non-
complete component. Then

4(G) +9(C) < n (5)

with equality if and only if G = Cy or G contains exactly one com-
ponent H such that H = Ky + (Kp, UKy, U... UK, ) withp > 2
and the other components (if any) are complete graphs.

Proof. Theorem 2.10 shows dy(G) + g(G) < n immediately. If
G = Cy, then g(G) = 2 and dy(G) = 2, and thus dy(G) + ¢g(G) =
4 = n. If G contains exactly one component H such that H =
K+ (Kpy UKy, U...UK,,) with p > 2 and the other components
(if any) are complete graphs, then it follows from Theorem 2.9 (b)
that g(G) = n — 1. As for such graphs d,(G) = 1, we see that
dy(G)+9(G)=1+n—-1=n.

Conversely, assume that G has not the structure described above.
Then Theorem 2.9 implies that g(G) < n — 2. If dg(G) = 1, then we
deduce that dg(G) + 9(G) < 1+n-2=n-1. If dg(G) > 2, then
n > 4 and Proposition 2.1 leads to 2 < g(G) < n/2. It follows that

dg(G) +9(G) < —=+9(G) < = + 2. (6)

(G)
If n > 5, then (6) leads to dg(G) + g(G) < n —1, and if n = 4, then
dg(G) + g9(G) £3=n—1or G is of the form described in Theorem
2.11. Hence the equality dy(G) + g(G) = n is impossible in this case,
and the proof is complete. O
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