On quadrilaterals in a bipartite graph *

Qingsong Zou a, † Guojun Li b Shuo Li c

Abstract

Let $G=(V_1,V_2;E)$ be a bipartite graph with $|V_1|=|V_2|=2k$, where k is a positive integer. It is proved that if $d(x)+d(y)\geq 3k$ for every pair of nonadjacent vertices $x\in V_1$, $y\in V_2$, then G contains k independent quadrilaterals.

Keywords: bipartite graph; quadrilaterals; cycle

MSC(2000): 05C38, 05C70

1 Introduction

In this paper, all graphs are finite, simple, undirected and bipartite. Any undefined notation follows that of Bondy and Murty [1]. Let $G=(V_1,V_2;E)$ be a bipartite graph with $|V_1|=|V_2|$. We use $\delta(G)$ to denote the minimum degree in G and $\sigma_{1,1}(G)=\min\{d(x)+d(y)\mid x\in V_1,\ y\in V_2,\ x\neq y,\ xy\notin E(G)\}$. The order of G is |G| and its size is e(G)=|E|. A set of graphs is said to be independent if no two of them have any common vertices. If H is a subgraph of G, then $N_H(x)=N_G(x)\cap V(H)$, $d(x,H)=|N_H(x)|$. Let X and Y be two independent subgraphs of G or two disjoint subsets of $V_1\cup V_2$. We define G[X] to be the subgraph of G induced by G0, and G1, and G2, and G3, and G4, and G5, and G6, and G6, and G7, and G8, and G8, and G9, and G9,

^a Department of Mathematics, Xidian University, Xi'an, 710071, P.R.China

^b School of Mathematics, Shandong University, Jinan, 250100, P.R.China

^c Department of Mathematics, Changji University, Changji, 831100, P.R.China

^{*}This work was supported by grants 61070095, 11161035 from NSFC and supported by grants XJEDU2009S101 from School research project fund of Xinjiang province, China.

[†]The corresponding author: Qingsong Zou, E-mail: zqswll@gmail.com

and H. Let T be a simple graph and k be a positive integer, then $G \supseteq kT$ means that G contains k independent subgraphs isomorphic to T.

One of the outstanding results on independent cycles comes from Corrádi and Hajanal [2]. It was proved that if G is a graph of order at least 3k with the minimum degree at least 2k, then G contains k independent cycles. Wang [3] considered independent quadrilaterals in a bipartite graph and put forward the following conjecture which is still open.

Conjecture 1 [3] Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = 2k$, where k > 0 is a positive integer. If $\delta(G) \ge k + 1$, then G contains k independent quadrilaterals.

In [3], Wang gave a result close to the Conjecture 1.

Theorem 1.1 [3] Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = 2k$, where k > 0 is a positive integer. If $\delta(G) \ge k + 1$, then G contains k - 1 independent quadrilaterals and a 4-path such that they are independent.

Yan [4] improved Theorem 1.1 and gave the following result.

Theorem 1.2 [4] Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = 2k$, where k > 0 is a positive integer. If $\sigma_{1,1}(G) \ge 2k + 1$, then G contains k - 1 independent quadrilaterals and a 4-path such that they are independent.

In this paper, we consider degree-sum conditions that ensure G contains k independent quadrilaterals. Our main result is as follows.

Theorem 1.3 Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = 2k$, where k is a positive integer. If $\sigma_{1,1}(G) \ge 3k$, then G contains k independent quadrilaterals.

The structure of the paper is as follows. First we will show some useful lemmas in the next section, then prove the Theorem 1.3 in Section 3.

2 Lemmas

In this section, $G = (V_1, V_2; E)$ is a bipartite graph.

Lemma 2.1 Let $C = x_1y_1x_2y_2x_1$ be a quadrilateral and $P = a_1b_1a_2b_2$ be a path of order 4 in G with $x_1, a_1 \in V_1$. If $e(P, C) \geq 6$ and $d(a_1, C) > 0$, $d(b_2, C) > 0$, then $G[P \cup C]$ contains two independent quadrilaterals.

Proof. Suppose on the contrary $G[P \cup C]$ doesn't contain two independent quadrilaterals. Since $e(P,C) \geq 6$, there exists a vertex $x \in V(C)$ such that d(x,P)=2. Assume $d(x_1,P)=2$. This implies $G[P-a_1+x_1]$ contains a quadrilateral. Hence $G[C-x_1+a_1]$ doesn't contain a quadrilateral and therefore $d(a_1,C) \leq 1$. Since $d(a_1,C) > 0$, it follows that $d(a_1,C)=1$. Without loss of generality(denoted by w.l.o.g. for simplicity), let $a_1y_1 \in E$ and $a_1y_2 \notin E$. If $b_2x_2 \in E$, then $a_2y_1 \notin E$ and $a_2y_2 \notin E$ for otherwise $G[P \cup C]$ contains two independent quadrilaterals. Hence $e(P,C) \leq 5$, a contradiction. Now we have $b_2x_2 \notin E$. Since $e(P,C) \geq 6$ and $a_1y_2 \notin E$, it follows that e(P,C)=6. This implies $y_2a_2 \in E$ and $x_2b_1 \in E$. Therefore, $G[P \cup C]$ contains two independent quadrilaterals $x_1y_2a_2b_2x_1$ and $y_1x_2b_1a_1y_1$, a contradiction.

Lemma 2.2 Let $C = x_1y_1x_2y_2x_1$ be a quadrilateral and $P = a_1b_1a_2b_2a_3b_3$ be a path of order 6 with $x_1, a_1 \in V_1$. If $e(P, C) \geq 10$, then either $G[P \cup C - a_1 - b_3]$ contains two independent quadrilaterals, or $G[P \cup C - a_1 - b_1]$ contains two independent quadrilaterals, or $G[P \cup C - a_3 - b_3]$ contains two independent quadrilaterals.

Proof. Since $e(P,C) \ge 10$, $d(a_1,C) \le 2$ and $d(b_3,C) \le 2$, we have $e(P-a_1-b_3,C) \ge 6$. If either $d(b_1,C)=0$ or $d(a_3,C)=0$, w.l.o.g., say $d(b_1,C)=0$, then $d(a_1,C)=d(a_2,C)=d(a_3,C)=d(b_2,C)=d(b_3,C)=2$. Hence $e(P-a_3-b_3,C)=6$. By Lemma 2.1, $G[(P-a_3-b_3) \cup C]$ contains two independent quadrilaterals. Now assume $d(b_1,C)>0$ and $d(a_3,C)>0$. Since $e(P-a_1-b_3,C)\ge 6$, it follows that $G[(P-a_1-b_3) \cup C]$ contains two independent quadrilaterals from Lemma 2.1. This completes the proof.

3 Proof of Theorem 1.3

In this section, we will prove the Theorem 1.3 by contradiction. Let $G=(V_1,V_2;E)$ be a bipartite graph with $|V_1|=|V_2|=2k$ and $\sigma_{1,1}(G)\geq 3k$, where k is a positive integer. Suppose on the contrary that G doesn't contain k independent quadrilaterals. Since $\sigma_{1,1}(G)\geq 3k\geq 2k+1$, G contains k-1 independent quadrilaterals and a path of order 4 such that all of them are independent from Theorem 1.2. Let $C_1, C_2, \ldots, C_{k-1}$ be the k-1 independent quadrilaterals of G and $P=a_1b_1a_2b_2$ with $a_1\in V_1$ be the path of order 4 which is independent with the k-1 quadrilaterals $C_1, C_2, \ldots, C_{k-1}$. Denote $H=\bigcup_{i=1}^{k-1} C_i$.

Since G doesn't contain k independent quadrilaterals, it follows that G[P] doesn't contain a quadrilateral. Thus $a_1b_2 \notin E$ and $d(a_1, P) + d(b_2, P) = 2$. Hence,

$$e(a_1b_2, H) \ge 3k - 2 = 3(k - 1) + 1.$$

And so, there is a quadrilateral in H, say C_1 , such that $e(a_1b_2,C_1)=4$. Denote $C_1=x_1y_1x_2y_2x_1$ with $x_1\in V_1$ and $P'=y_1Px_1$. Then $x_1b_1\not\in E$ for otherwise $G[P\bigcup C_1]$ contains two independent quadrilaterals $y_1x_2y_2a_1y_1$ and $x_1b_2a_2b_1x_1$, a contradiction. With the same proof, $y_1a_2\not\in E$. Hence, the vertices of P' can be divided into three pairs of nonadjacent vertices. Since $d(a_1,C_1)=d(b_2,C_1)=2$ and $G[P\bigcup C_1]$ doesn't contain two independent quadrilaterals, $e(P,C_1)\leq 5$ from Lemma 2.1. Hence

$$\sum_{x \in V(P')} d(x, H - C_1) \ge 9k - e(P, C_1) - 2e(G[P]) - e(x_1y_1, P \bigcup C_1) \ge 9(k-2) + 1.$$

There is a quadrilaterals in $H-C_1$, say C_2 , such that $e(P',C_2) \geq 10$. Since $G[P \cup C_2]$ doesn't contain two independent quadrilaterals, either $G[P' \cup C_2 - x_1 - b_2]$ contains two independent quadrilaterals or $G[P' \cup C_2 - y_1 - a_1]$ contains two independent quadrilaterals from Lemma 2.2. In the former case, $x_1y_2x_2b_2x_1$ is a quadrilateral in G; in the latter case, $y_1x_2y_2a_1y_1$ is a quadrilateral in G. Hence, $G[P \cup C_1 \cup C_2]$ contains three independent quadrilaterals and so G contains K independent quadrilaterals, a contradiction. This completes the whole proof.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [2] K. Corrádi, A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar., 14 (1963), 423-439.
- [3] H. Wang, On the maximum number of independent cycles in a bipartite graph, Journal of Combinatorial Theory, Series B, 67 (1996), 152-164.
- [4] J. Yan, G. Liu, Quadrilaterals and paths of order 4 in graphs, Acta Mathematica Scientia Ser. A, 23(6) (2003), 711-718.