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Moori and Rodrigues [13] found binary codes of small dimension and length
2300 that are invariant under the Conway group Coy and irreducible under
this action. They used the construction from a proposition in [9, 10]. We
use the same construction here to obtain some similar results for the Janko
groups, J1 and Ja, for codes over the prime fields of order p dividing the
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order of the group, i.e. Fp, for p = 2,3,5,7,11,19 for J; (of order 175560),
and p = 2,3,5,7 for Jo (of order 604800). All of the irreducible modules of
J1 over these fields apart, possibly, from p = 19, and most of those of J;,
can be represented in this way as the code, the dual code or the hull of the
code of a design. For p = 19 for J; and for the largest degree (10080) for
J2 we have incomplete results, due to the length of the computations. Our
results are described explicitly in Section 5 in 20 tables, two for each of the
six representations of J; and the four representations of Js.

In summary, we obtained:

Proposition 1 From the construction described in Result 2, with unions of
orbits, the following constructions of the irreducible modules of the Janko
groups J; and Jo as the code, the dual code or the hull of the code of a
design, over Fp where p = 2,3,5,7,11,19 for J, and 2,3,5,7 for Jp, were
found to be possible:

1. Jy: all of the irreducible modules for p = 2,3,5,7,11, and many of
those for p = 19;

2. Jp: all for p=2; all for p = 3 apart from dimensions 26,378; all for
p = 5 apart from dimensions 70,189,300; all for p = 7 apart from
dimensions 140, 378,448. For these exclusions, none exist of degree
strictly less than 10080.

We give a summary of the tables in Section 5 in the Tables 1 and 2
below, showing only dimensions and degrees for each of the groups and
fields Fp. The row labelled “dim” denotes the dimensions of the possible
distinct irreducible modules that can occur (see Section 5), and the row
labelled “deg” denotes the degree of the permutation representation, i.e.
the length of the code. An entry “—” indicates that none were found for
that dimension; this only applies to Fig for J; and, in the case of J,, it
implies that if any do exist they must have degree 10080. These were
generally beyond our computing capabilities.

Note: We do not claim that we have all the constructions of the irreducible
modular representations as codes; we were seeking mainly existence.

We have also obtained computationally a 6-PD-set of size 404 in J;
for the {100, 36, 16], codes, where p = 2,3. Most likely full PD-sets can be
found in J; (or J;) with the same information set but since our method was
computational rather than theoretical, we decided the computation would
take too long. Here J; = Aut(J;) = J; : 2.
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Fa {dim || 20 [ 76 [ 76 | 112 | 112 | 360
deg [} 1045 | 266 | 1463 | 266 | 1463 | 1045

Fs |dim || 76 | 76 | 112 | 133 | 154 | 360
deg || 266 | 1506 | 1045 | 1045 | 4180 | 1045

Fg | dim || 56 76 76 77 | 133 | 360
deg || 266 | 1045 | 4180 | 266 | 1596 | 1045

F7 | dim || 31 45 75 77 89 | 112 ] 120
deg || 4180 | 1596 | 1045 | 1463 | 1045 | 266 | 1045

Fr | dim || 133 | 154 | 266
deg || 1045 | 1045 | 1596

Fqi; | dim || 27 49 56 64 69 77 77 77
deg || 1463 | 1045 | 266 | 4180 | 1596 | 1045 | 1463 | 1045

dim || 106 | 110 | 200 |
deg || 1045 | 1596 | 1045

Fyy

Fro |dim || 22 | 34 | 43]55] 76 |76 ] 77 | 133 | 133
deg || 266 | 1463 | - | - | 1045 | - | - | 1045 | -

Fio | dim || 133 | 209
deg - | 1045

Table 1: Codes of irreducible modules of J; for p=2,3,5,7,11,19

The work is mostly computational, using Magma (3, 4], and the Magma
libraries pergps or simgps, or using references to the modular representa-
tions of these groups as given in [8, 5, 1], and the Magma database. We
expect our results to be reproducible with Magma since we give sufficient
information for the codes to be constructed using the Magma libraries, even
though the labelling of orbits in the libraries does vary for different versions
of Magma.

The paper is arranged as follows: in Section 2 the necessary background
is given. In Section 3 we give some examples using the construction, with

167



Fo[dim|[ 28 | 36 | 84 [ 160
deg || 315 | 100 | 840 | 315

Fs [dim || 26 | 36 | 63 | 90 | 133 | 225 | 378
deg || — [ 100 [ 100 | 280 | 525 | 1608 | -

Fs | dim || 14 | 41 |70 ]| 85 90 | 175 | 189 | 225 | 300
deg || 315|280 - | 1008 | 315|525 | - [840| -

F,|dim ([ 28 | 36 | 63 89 101 | 124 | 126 | 140 | 175
deg | 315 | 100 | 100 | 1008 | 10080 | 840 { 840 | ~ | 525

F7 | dim || 199 | 336 | 378 | 448
deg || 10080 | 1800 | - | -

Table 2: Codes of irreducible modules of J; for p = 2,3,5,7

minimum weight and weight distributions where possible. In Section 4 a
sample Magma run is given to illustrate the construction. In Section §
we give the 20 tables giving the representations of the irreducible modules
that we found for the relevant primes. These tables provide the proof of
Proposition 1. In Section 6 we establish some decompositions of the full
space using some of the codes from irreducible modules constructed by this
method.

2 Background and terminology

Our notation for designs and codes will follow [2]. An incidence structure
D = (P, B,I), with point set P, block set B and incidence Z is a t-(v, k, A)
design, if |P| = v, every block B € B is incident with precisely k points,
and every ¢ distinct points are together incident with precisely A blocks.
The design is symmetric if it has the same number of points and blocks.

The code Cr(D) of the design D over the finite field F is the space
spanned by the incidence vectors of the blocks over F'. Codes here will be
linear codes, i.e. subspaces of the ambient vector space. A code C over a
field of order g, of length n, dimension &, and minimum weight d, is denoted
by [n,k,d],. A generator matrix for the code is a k£ x n matrix made up
of a basis for C. The dual code C* is the orthogonal under the standard
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inner product (,), i.e. Ct = {v € F*|(v,¢) = 0 for all ¢ € C}. The hull
of a code or a design, where C = C(D), is Hull(C) = CNC*. A code C
is self-orthogonal if C C C*. Thus C is self-orthogonal if and only if it
is equal to its hull. A check matrix for C is a generator matrix for Ct.
The all-one vector will be denoted by 7, and is the constant vector with
all coordinate entries equal to 1. T'wo linear codes are isomorphic if they
can be obtained from one another by permuting the coordinate positions.
An automorphism of a code C is an isomorphism from C to C. The
automorphism group will be denoted by Aut(C). Note that here we are
not including multiplication of the coordinate positions by non-zero field
elements as automorphisms: see Huffman [7} for a detailed treatment of the
various types of automorphism groups of codes.

Any code is isomorphic to a code with generator matrix in so-called
standard form, i.e. the form [I;|A]; a check matrix then is given by
[~AT | In—k). The first k coordinates are the information symbols and
the last n — k coordinates are the check symbols. :

Permutation decoding was first developed by MacWilliams [11] and
involves finding a set of automorphisms of a code called a PD-set. The
method is described fully in MacWilliams and Sloane (12, Chapter 15] and
Huffman [7, Section 8]. We extend the definition of PD-sets to s-PD-sets
for s-error-correction:

Definition 1 If C is a t-error-correcting code with information set I and
check set C, then a PD-set for C is a set S of automorphisms of C which
is such that every t-set of coordinate positions is moved by at least one
member of S into the check positions C.

For s <t an s-PD-set is a set S of automorphisms of C which is such
that every s-set of coordinate positions is moved by at least one member of
S into C.

The algorithm for permutation decoding is given in [7] and requires that
the generator matrix is in standard form, so an information set needs to be
known. The property of having a PD-set will not, in general, be invariant
under isomorphism of codes, i.e. it depends on the choice of information
set. Furthermore, there is a bound on the minimum size of S (see [6],(14],

(7)):
Result 1 If S is a PD-set for a t-error-correcting (n,k,d|q code C, and

r=n-—k, then
nin-1 n—t+1
iz 2= - = ]
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This result can be adapted to s-PD-sets for s < ¢ by replacing t by s in the
formula.

If G is a group and M is a G-module, the socle of M, written Soc(M),
is the largest semi-simple G-submodule of M. It is the direct sum of all
the irreducible G-submodules of M. In Section 5 we determine Soc(V) for
each of the relevant full-space G-modules V for G = Jy, J.

The construction from [9, Proposition 1] we will use is the following,
stated here as the correction {10]:

Result 2 Let G be a finite primitive permutation group acting on the set
Q of sizen. Let o € Q, and let A # {a} be an orbit of the stabilizer G,
ofa. If B={A%]| g€ G} and, given§ € A, € = {{a,6}9 | g € G},
then D = (Q, B) forms a symmetric 1-(n,|A|,|A|) design. Further, if A
is a self-paired orbit of Go then T’ = (Q,€) is a regular connected graph of
valency |A|, D is self-dual, and G acts as an automorphism group on each
of these structures, primitive on vertices of the graph, and on points and
blocks of the design.

In fact we can use any union of orbits of a point-stabilizer in this construc-
tion, and this is the approach we will follow here.

The indices (degrees) of the maximal subgroups of J; and J, are given
in Table 3 and 4, respectively, taken from Magma data. Tables 5 and 6
are from [9] and show the orbit lengths for point stabilizers in J; and Js,
respectively, in the relevant primitive representations. In Tables 5 and 6
the first column gives the degree, the second the number of orbits, and the
remaining columns give the length of the orbits of length greater than 1,
with the number of that length in parenthesis behind the length in case
there is more than one of that length.

No. Order Index Structure
Max(1] 660 266 PSL(2,11)
Max[2] 168 1045 23:7:3
Max|3] 120 1463 2 x As
Max|4] 114 1540 19:6
Max|5] 110 1596 11:10
Ma.x[6] 60 29026 Ds X Dm
Max(7] 42 4180 7:6

Table 3: Maximal subgroups of J;
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No. Order Index Structure
Max([1] 6048 100 PSU(3,3)
Max[2) 2160 280 3 PGL(2,9)
Max[3] 1920 315 91+4: 4,
Max[4] 1152 525 22+4:(3 x S3)
Max|[5] 720 840 Ay x As
Ma.x[6] 600 1008 A5 X DlO
Max[7] 336 1800 PSL(2,7):2
Max(8] 300 2016 52:Dyo
Max[9} 60 10080 As
Table 4: Maximal subgroups of J
Degree || # | length
266 5 132 110 12 11
1045 || 11 | 168(5) | 56(3) | 28 8
1463 || 22 | 120(7) | 60(9) | 20(2) | 15(2) | 12
1540 || 21 | 114(9) | 57(6) | 38(4) | 19
1506 || 19 | 110(13) | 55(2) | 22(2) | 11
2936 || 67 | 60(34) | 30(27) | 15(5)
4180 || 107 | 42(%) | 21(6) | 14(4) | 7

Table 5: Orbits of a point-stabilizer of Jy

3 Examples of codes from the construction

In this section we give some examples of the irreducible modules of the
smaller dimensions and smaller primes that can be obtained as the code,
the dual code, or the hull of a 1-design, using the construction. We obtain
the minimum weight and weight distribution of the code, when possible.
We also apply permutation decoding to some of these codes. Most of these
examples are listed in Section 5. Generally here C,, will refer to a code of
dimension m. Note that for any code C, Hull(C) is self-orthogonal, so if
the code is irreducible, then it is self-orthogonal if and only if it is the hull.

Otherwise the hull is

{0}.

3.1 Self-orthogonal binary code from J;

Degree 1045, dimension 20
(1045, 20, 456]5 code; dual code: [1045, 1025, 4],
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Degree # length
100 3 63 36
280 4 135 108 36
315 6 160 80 32(2) 10
525 6 192(2) 96 32 12
840 7 360 240 180 24 20 15
1008 11 300 150(2) | 100(2) | 60(2) 50 25 12
1800 18 336 168(6) | 84(3) | 42(3) 28 21 14(2)
2016 18 | 300(2) | 150(6) | 75(5) | 50(2) 25 15
10080 |{ 191 | 60(153) | 30(24) [ 20(4) 15 12(4) | 10(3) 6

Table 6: Orbits of a point-stabilizer of Jp

The smallest dimension for J; over F; is 20, of degree 1045. The code
c of Table 8 is the hull H of the code C of the 1-(1045,421, 421) design D
from the orbits {1, 3,5,10,11}. dim(C) = 21 and dim(H) = 20. Further,
C = H ®Fa3 and H is self-orthogonal. The automorphism group is J;.

WeightDistribution(H);

[ <0, 1>, <456, 3080>, <488, 29260>, <496, 87780>, <6504, 87780>,
<612, 36575>, <5620, 299706>, <528, 234080>, <536, 175560>,

<544, 58520>, <b52, 14630>, <660, 19019>, <608, 1540>,<624, 1045>]
Those of weight 456, 504, 544, 552, 624, 608 are single orbits;
the others split.

3.2 Self-orthogonal binary codes from J;

For the smallest representations for J, we give below three examples of J
acting on self-orthogonal binary codes of small degree that are irreducible
or indecomposable codes over J;. The full automorphism group of each of
these codes is Ja.

1. Degree 100, dimension 36
(100, 36, 16]2 code; dual code: [100, 64, 8],

The code a of Table 20 is the code C = C3¢ = Hull(C) of the 1-
(100, 36, 36) design from orbit {2}.

> WeightDistribution(C);

[ <0, 1>,<16, 1575>,<24, 105000>,<28, 1213400>,<32, 29115450>,
<36,429677200>,<40, 2994639480>,<44, 10672216200>,

<48, 20240374350>,<62,20217640800>,<56, 10675819800>,

<60, 3004193640>,<64, 422248725>,<68,30819600>,<72, 1398600>,
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<76, 12600>,<80, 315> ]

C = Csg is irreducible and C+ = Cg4 has an invariant subcode Cegs
of dimension 63 that is spanned by the weight-8 vectors and that
contains 7 and Csg. All these codes are indecomposable, by Magma.
From Table 19 we see that, for Jz, Soc(F3%°) = C37 = C3¢®F23 where,
from the weight-distribution for Csg, we see that Csy is a [100, 37, 16]2
code.

We have found 6-PD-sets in J; of size 404 for the code Csg, but note
that the representation of the code given directly from Magma does
not have standard form, so an equivalent code is taken. The code
corrects seven errors. The Gordon bound is 47 for full correction, 30
for correcting six errors. The full automorphism group of this code is

Ja.

. Degree 280, dimension 13
[280,13,128]2 code; dual code: [280,267, 4],

In degree 280, orbit {3} gave a 1-(280,108,108) design with code .
C = Cy4 = Hull(C) of dimension 14 and weight distribution

[ <0, 1>, <108, 280>, <128, 1576>, <136, 2520>, <140, 7632>,
<144, 2520>, <152,1575>, <172, 280>, <280, 1> ]

with dual code [280,266,4];. The code spanned by the weight-128
words has dimension 13 and weight distribution

[ <0, 1>, <128, 1575>, <136, 2520>, <144, 2520>, <162, 1575>,
<280, 1> )

C14 has for its minimum words the incidence vectors of the blocks
of the 1-(280,108,108) design. The code C;3 is the code of a 1-
(280,128,720) design and also has for its minimum words the inci-
dence vectors of the blocks of the design. Both codes are reducible
but indecomposable. The full automorphism group of these codes is
Jo.

. Degree 315, dimension 28

(315,28, 64]; code; dual code: [315,287, 3],

The code b of Table 20 was constructed from a 1-(315,64, 64) design
from orbits {3,4}; it is equal to its hull, has dimension 28 and weight
distribution

[ <0, 1>, <64, 315>, <96, 6300>, <104, 25200>, <112, 53280>,
<120, 242760>,<124, 201600>, <128, 875700>, <132, 1733760>,
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<136, 4168000>,<140, 5973120>,<144, 12626880>, <148, 24232320>,
<152, 35151480>,<166, 44392320>,<160,53040582>,<164, 41731200>,
<168, 28066120>, <172, 13023360>, <176, 2129400>,

<180, €685440>, <184, 75600>, <192, 10710>, <200, 1008> ]

It is self-orthogonal and from the weight distribution we see that the
minimum words of C are the incidence vectors of the blocks of the
1-design. The full automorphism group of this code is J,.

3.3 Ternary code from J,

The code a of Table 10 is the [100,36,16]3 code Csg of a 1-(100, 36, 36)
design from the orbit {3}. It has dual code [100,64,8]3. The hull is the
trivial space. The dual code decomposes into a 63-dimensional subcode Cg3
and the 1-dimensional [F33. Thus

F3% = Cs36 & Co3 ® F3g = Soc(F3;%),

and hence F}% is completely reducible. The code Ces is the code b of
Table 10, and is irreducible, by Magma, or [8]. It is the ternary code of the
1-(100, 36, 36) design obtained from the other non-trivial orbit {2}, and is
a [100, 63, 83 code. A weight-8 vector orbited under J; spans the code Cs.

The 6-PD-sets found for the binary code of these parameters will also
apply to this code, with the same change of information set to get the code
into standard form.

3.4 Self-orthogonal 5-ary code from J,

J; on [315,14,180]s, dual (315,301, 3]s

We obtained a 5-ary code of dimension 14 from Jy of degree 315, not
listed in Section 5 since it is not the code, the dual code or the hull of a
design obtained from the construction of Result 2. In the representation
of degree 315, the orbit {2} gives a 1-(315, 10,10) design with 5-ary code
C = Cygs of dimension 265. H = Hull(C) has dimension 15 and weight
distribution

[ <0, 1>, <156, 1260>, <180, 25200>, <200, 120960>,<205, 40320>,
<210,985500>, <216, 1882944>, <220, 5443200>, <225, 22320480>,
<230, 112150080>,<235, 544079340>, <240, 1804274304>,

<245, 5141181600>, <250, 8341211844>,<255, 8215482240>,

<260, 4489949520>, <265, 1445449824>, <270, 308548800>,

<275, 71318520>, <280, 10376640>, <285, 2180640>,
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<290, 209664>,<295, 302400>, <300, 40320>, <305, 1260>,<315, 1264> ]

So H = Cy5 = [315,14,155]3. The subcode Cy4 of H spanned by the
words of weight 180 has dimension 14, does not contain all-one vector, and
has weight distribution

[ <0, 1>, <180, 25200>, <200, 120960>, <210, 711900>,<220, 3225600>,
<225,4872000>, <230, 39513600>, <235, 112694400>,<240, 3869947205,
<245,909993600>, <250, 1663873984>, <255, 1674086400>,

<260, 1005051600>, <265,266303520>, <270, 414288005,

<275, 4243680>, <280, 172800>, <285, 201600>,<315, 1260> ]

Then C = Cag5 = C14 ®F52® Cas0, where Ci4 is self-orthogonal, by the
above, and irreducible, by [8], or Magma data, and C3so is indecomposable.
The automorphism group of these codes is Jo.

4 Sample Magma run

We give here a sample of the program and the Magma functions used to
establish these codes and the properties. Here we construct the binary code
of dimension 28 from J; of degree 315, having already established that this
choice of orbits is what we are looking for (see [9]).

load simgps;

g:=SimGroup(‘‘J2°’);
re:=SimRecord(‘‘J2’?);

ma:=re‘Max;

Dim:=Dimension;

h:=mal(3];
ai,a2,a3:=CosetAction(g,h);a2;
st:=Stabilizer(a2,1);
orbs:=0rbits(st); #orbs;
v:=Index(a2,st);v;
vs:=VectorSpace(GF(2),v);
lo:=[#orbs[jl: j in [1..#orbsl];lo;
y:={3,4}

py:=&join({z: z in orbs[x]}:x in y];
blox:=Setseq(py~a2);
des:=Design<1,v|blox>;

des;

C:=LinearCode (des,GF(2));
d:=Dim(C);d,’ *=Dim(C) ’’;

dh:=Dim(C meet Dual(C));dh;
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Loading ‘‘MAG/PMBO7/j2.m*’

Loading ¢‘/Users/keyj/Mag2.14/1ibs/simgps/simgps’’
Permutation group a2 acting on a set of cardinality 315
Order = 604800 = 2°7 * 3°3 * 52 * 7

6

315

[ 1, 10, 32, 32, 80, 160 ]

28 =Dim(C)

28

pm:=PermutationModule(a2,GF(2));

cm:=[pm! (Basis(C) [i]):1i in [1 .#Basis(C)1];

mcm: =sub<pm|cm>;

IsIrreducible (mcm) ;

true

5 Irreducible modules

We now examine the lists of irreducible modules of J; over F, for p €
{2,3,5,7,11,19}, and J; over I, for p € {2,3,5,7}, and show how most
of the irreducible modules of J; and J; can be represented as linear codes
over these fields using the described construction, and hence establishing
the proof of Proposition 1. We have summarised the results in Tables 1

and 2 in Section 1.

Firstly we determined which representations were possible by finding
the list of composition factors of the socle in each representation. We used
the following program provided by a reviewer of an earlier version of this

paper, and thank that reviewer for suggesting it.

load simgps;
G:=SimGroup("J1");
M:=MaximalSubgroups(G) ;
CS:=[];88:=[];

for i in [1..#M] do

X:=M[i];

Y:=X‘subgroup;
gp:=CosetImage(G,Y);
v:=GModule(gp,GF(p));
S:=Socle(v) ;SS:=Append(SS,S);
csi:=CompositionFactors(S);
CS:=Append(CS,csi);
i,M[i],CompositionFactors(S);
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end for;

The distinct composition factors showed the irreducible modules that
were possible, allowing us to find the feasible dimensions for a code in
each representation, along with the possibility of non-isomorphic modules
of the same dimension: see, for example, Table 7, dimension 76. From this
information we were able to search for codes for each irreducible module
that occurred. Our results are shown in ten pairs of tables, A and B,
(Tables 7 to 26), below. Note that C always denotes the code of the design
constructed as in Section 4 from the given union of orbits, using the labelling
from the pergps library. The precise labelling of the orbits might differ when
Magma is called up, but generally the codes can easily be constructed from
the information we give.

In each of the ten pairs of tables, the first column of Table A shows the
degrees of the representations, i.e. the indices of the maximal subgroups,
seven for J; and nine for Jy. In Table A, *™ indicates that a non-trivial
irreducible module of the corresponding degree exists in the given represen-
tation and occurs m times in the socle S when m > 2; *z or *™z, where
z € {a,b,c, ...}, indicates that we have constructed the irreducible module
as either the code C, the dual code C* or the hull H of a design described
below in Table B from the orbits given there. They are self-orthogonal when
they are the hull. The last column, headed “S”, gives the dimension of the
socle S, which is the sum of the dimensions in the row, with multiplicities as
given, plus 1 for the irreducible module of dimension 1. An empty column
means that an irreducible module of that dimension cannot occur in the
representation. (We have omitted these dimensions from Tables 1 and 2.)

In Table B, the design is a 1-(v, k, k) design, C is the p-ary code of the
design, H its hull, and C+ the dual code of C. The entries in the column
labelled “orbits” refer to the position in the sequence of orbit lengths as
given by Magma (see the program described in Section 4). The column
labelled “lengths” denotes the lengths of the orbits; “dims” shows the di-
mension of C and H; “code” denotes the irreducible one, and “dim” is the
dimension of the irreducible one.

From the ten tables A below we see that for Ja, Soc(IFi%°) = F% and
Soc(F1%0) = F1% and hence they are the only full spaces that are semi-
simple, i.e. completely reducible Ja-modules.

The twenty tables then establish the proof of Proposition 1.
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5.1 Tables for J;

JiFo||20] 76 | 76 | 112 ] 112 | 360 S
266 *Q *b 189
1045 xc | * * *d 569
1463 «“ | xe | =x xf * 909
1540 *© * * 645
1596 * * * * 625
2926 ¥ | %2 | x| #2 | *2 | 1437 |
4180 * | ] = *° * | 1741

Table 7: A: Degrees of irreducible modules of J; over Fa

J1 Fa v k orbits lengths dims | code | dim
a 266 | 122 34 12,110 76,0 C 76 |
b 266 | 12 3 12 112,0 C 112
c 1045 | 421 | 1,3,5,10,11 | 1,28,56,168,168 | 21,20 H 20
d 1045 | 225 1,4,7 1.56,168 6850 | C+ | 360
e 1463 | 20 5 20 264,76 H 76
f 1463 | 61 1,11 1,60 13510 | C* | 112

Table 8: B: Designs and codes for the irreducible modules of J; over Fy

_Jl_l? 3 || 76 | 76 | 112 | 133 | 154 | 360 S

[ 266 *Q * 189
1045 * *b *C * *d 836
1463 || ** * *° * 801
1540 || *° * *2 * * | 1045
1596 * | *e * * * 758
2026 *° * *4 ** | 1593
4180 || #° | « ** = | #2f | «° | 2449

Table 9: A: Degrees of irreducible modules of J, over F5
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J1 F3 v k | orbits lengths dims [ code [ dim
a 266 | 242 45 110,132 189,76 H 76
b 1045 | 449 | 1,4,5,9,10 | 1,56,56,168,168 | 933,0 ct 112
c 1045 | 168 9 168 493133 | H | 133
d 1045 | 504 | 9,10,11 168,168,168 360,0 C | 360
e 1506 | 110 10 110 1387,76 | H 76 |
7 4180 | 42 30 42 3725,184 | H | 154

Table 10: B: Designs and codes for the irreducible modules of J; over F3

JFs [ 56|76 76| 77 | 133 | 360 S I

266 *a | * |’ *b 210

1045 * | *xc xd | 493

1463 "N *° * 723

1540 * | *° * * 646

1596 * * * | *° | *e * 856

2926 * | *° * * * 1369

4180 [ #° | «7 | «f | #* | ** | »° [ 1917

Table 11: A: Degrees of irreducible modules of J; over Fs
J1 Fs v k orbits lengths dims code | dim |

a 266 | 110 4 110 56,56 H 56
b 266 13 1,3 1,12 189,0 Cc+ 7
c 1045 | 336 9,11 168,168 836,76 H 76
d 1045 | 421 | 1,3,5,9,11 | 1,28,56,168,168 685,0 Cc+ 360
e 1596 | 22 4 22 1387,133 | H | 133
f 4180 | 126 | 24,48,54 42,42,42 4026,76 H 76

Table 12: B: Designs and codes for the irreducible modules of J; over Fg

JiF,|[ 3145 |75 77 | 89 | 112 | 120 | 133 | 154 | 266 S

266 * *a 190
1045 *b *x¢ | * xd | xe | xf 684
1463 *“g | * * * x* 817
1540 * * * * *° * 894
1596 *h * * * * * *i 920
2926 # | | x| | A * | 1710
4180 [} *j ¥ | x| xf ] % | & *7 x> | x° | 2545

Table 13: A: Degrees of irréducible modiiles of J, over F»
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Ji Fr v k| orbits lengths dims | code | dim
a 266 | 111 | 14 1,110 1540 | CT | 112
b 1045 | 225 | 15,7 1,56,168 92475 | H | 75
c 1045 | 232 | 2,6,11 8,56,168 80580 | H | 89
d 1045 | 9 12 18 9250 | CT | 120
e 1045 | 64 2,5 8,56 912,0 | C* [ 133
I3 1045 | 400 | 2,5,9,10 | 8,56,168,168 | 891,0 | CT | 154
g 1463 | 60 10 60 13860 | CT | 77
R 1596 | 55 6 55 144545 | H | 45
i 1596 | 176 | 2,6,19 11,55,110 | 1330,0 | C* | 266
3 4180 | 42 35 12 401431 | H | 31

Table 14: B: Designs and codes for the irreducible modules of J; over Fr

JFn |7 1427|4956 | 64|69 ) 77| 77 | 77 | 106
266 | % | *a *
1045 *b | * *C xd | *e
1463 xg | * | * *x“h *
1540 * | x| x * * * *
1596 * * *7 *° *
2926 * | * * | *k *° *
4180 * * | *° | * * | x| x| x| x°

J1 Fn 119 | 209 S

266 183

1045 xf | 575

1463 ** 811

1540 x4 888

1596 *j *© 972

2926 * x| 1622

4180 *° x| 2434

Table 15: A: Degrees of irreducible modules of J; over Fy,
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[ J1Fn v k | orbits | lengths dims code | dim |
a 266 | 123 | 1,34 | 1,12,110 | 210,0 cI | 56 |
b 1045 | 28 3 28 962,49 H 49
c 1045 | 168 11 168 968,0 c* 77
d 1045 { 56 6 56 868,0 c* 77
e 1045 | 224 4,8 56, 168 898,106 H 106
f 1045 | 232 | 2,4,9 | 8,56,168 836,0 c+ 209
g 1463 | 180 | 7,22 60,120 1281,27 H 27
h 1463 | 120 17 120 1386,0 ct 77
7 1596 | 110 9 110 1455,69 H 69
i 1596 | 111 1,11 1,110 1462,119 H 119
k 2026 | 60 53 60 2737,64 H 64

Table 16: B: Designs and codes for the irreducible modules of J; over [y

JiFig || 22 134 |43 | 55| 76 | 76 I 77| 133 | 133 | 133 | 209 S
266 * * 111
1045 *q *b * *C *d 518
1463 xe | * * * ** | 914
1540 * * * * ** *“ | 1003
1596 * | * * | * * * * =< | 1047
2026 * | *° * * * «* 11983
4180 * * * x |2 | = | %5 ] «* * *4 x| 2722

Table 17: A: Degrees of irreducible modules of J; over Fig

J1 Fie v k | orbits | lengths dims code | dim

1045 | 337 | 1,8,11 | 1,168,168 | 934,22 H 22

1045 [ 225 | 1,59 | 1,56,168 969,0 Cc- 76
1045 | 224 | 4,8 56,168 912,0 Cc- | 133
1045 | 344 | 2,89 | 8,168,168 | 836,0 c- | 209
1463 | 120 17 120 1364,34 | H 34

olaolo|e

Table 18: B: Designs and codes for the irreducible modules of J; over Fiq
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5.2 Tables for J;

JoFo [|12] 28136 | 84| 128160 S
100 *a 37
280 1
315 *b | * *¢ | 225
525 * 197
840 * | *d * 281
1008 * * 189
1800 * * * 281

2016 * 161

10080 * * * ** | 789

.

Table 19: A: Degrees of irreducible modules of Jy over Fa

J2 Fo v k | orbits | lengths | dims | code | dim |
100 | 36 2 36 3636 | C 36
315 | 64 34 3232 | 2828 C 28
315 | 33 14 1,32 | 1550 | C- | 160

840 | 384 | 4,7 24,360 | 8484 | C 84

oo

Table 20: B: Designs and codes for the irreducible modules of J; over Fo

JoFs || 26 | 36 | 42 | 63 | 90 | 114 | 133 | 225 | 378 S
100 *Q xb 100
280 * | xc 154
315 * 127 |
525 * *d 323
840 * * * 512
1008 ® *e 406
1800 * | o« * 386

2016 ** * * 602

10080 [ = [ =« x> x| «° » | 3146

Table 21: A: Degrees of irreducible modules of J; over F3
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Jo [Fa v k | orbits | lengths | dims | code | dim |
a 100 | 63 3 63 36,0 (o] 36
b 100 | 36 2 36 63,0 (o] 63
c 280 | 37 ] 1,2 1,36 91,90 H 90
d 525 | 45| 1,2,3 | 1,12,32 | 286,133 | H 133
e 1008 | 50 4 50 630,225 | H | 225

Table 22: B: Designs and codes for the irreducible modules of J; over F3

| J2Fs || 14 21|41 [ 70 [ 85 | 90 | 175 | 189 | 225 | 300 S
100 1
280 * * 132
315 * *a 105
525 * *b 266
840 *C * * *d 532
1008 || *e *f | ** * 505
1800 * * 392
2016 * *° * 707

10080 || = PO B IO IR *° = | »° | 4374

Table 23: A: Degrees of irreducible modules of J, over Fs

Jo Fs v k orbits lengths dims coﬂe;_ dim
a 315 | 112 3,5 32,80 155,80 H 80
b 525 | 224 3,6 32,192 350,0 | C* 175
c 840 | 265 | 1,4,6 1,24,240 | 691,41 H 41
d 840 | 421 | 1,56 | 1,180,240 | 615,0 | C~ | 225
e 1008 | 160 6,7 60,100 368,14 H 14
f 1008 | 25 3 25 560,85 H 85

Table 24: B: Designs and codes for the irreducible modules of J> over Fs
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{ JoF; || 28 |36 |42 |63 |89 [101 [ 124 | 126 | 140 | 175 | 199
100 *Q xb
280 * *
315 *C | *
525 * * *d
840 * xe | xf *
1008 * *g * *
1800 * #° | x *° *
2016 x | * * ** *
10080 || * | =* # [ a0 | A5 | 4t * x% | x%5
JoF7 | 336 | 378 | 448 S
100 100
280 190
315 65
525 275
840 489
1008 368
1800 {| *“h 1351
2016 *2 1376
10080 || «° *° ** | 6419
Table 25: A: Degrees of irreducible modules of J; over [,
Jz Fy v k | orbits | lengths dims code | dim |
a 100 37 1,2 1,36 64,0 CT T 36
b 100 63 3 63 63,0 C 63
c 315 81 1,5 1,80 287,0 ct | 28
d 525 44 2,3 12,32 350,0 CcLt | 175
e 840 16 1,2 1,15 579,124 H 124
f 840 20 3 20 714,0 C+ | 126
g 1008 | 150 9 150 719,89 H 89
h 1800 | 211} 1,7,12 | 1,42,168 1464,0 C+ | 336
i 10080 | 120 | 59,183 60,60 9628,101 H 101
i 10080 | 120 | 62,102 | 60,60 | 9306,199 | H | 199

Table 26: B: Designs and codes for the irreducible modules of J; over F,
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6 Decompositions

We examine some decompositions of the full space F'*, where n is the degree
of the permutation representation, into G-modules, where G = J;, J, using
codes obtained by our construction, where F' is one of the prime fields F,
for p € {2,3,5,7,11,19} for J1, p € {2,3,5,7} for Jo. Note that if C is the
code of one of the designs, and if Hull(C) = {0}, then F* = C @ C+.

In all cases C,, denotes an indecomposable linear code of dimension
m over the relevant field and group. If the codes are irreducible they have
been obtained according to our method and are either described or listed in
the Section 5. Some of the codes are of codimension 1 in the code obtained
by our method of obtaining the code, the dual, or the hull.

1. Jy of degree 266 over Fa:
F32%¢ = Cr6 ® C112 ® Cis,

where Cvg and C)12 are irreducible and as listed in Section 5, Table 8,
a,b, and C7g has the submodule Fa).

2. J; of degree 1045 over [Fo:
F1045 = Cr6 ® C112 ® C360 ® Cags @ F23,

where all but Cygs are irreducible. C7g is of index 1 in the dual of the
code from a 1-(1045,56,56) design from orbit {6}; C112 is of index
1 in the dual of the code from a 1-(1045,84,84) design from orbits
{3,5}; Csgo is from Table 8, d; Cy9¢ has composition factors:

GModule of dimension 20 over GF(2),
GModule of dimension 112 over GF(2),
GModule of dimension 1 over GF(2),
GModule of dimension 76 over GF(2),
GModule of dimension 20 over GF(2),
GModule of dimension 1 over GF(2),
GModule of dimension 112 over GF(2),
GModule of dimension 20 over GF(2),
GModule of dimension 1 over GF(2),
GModule of dimension 1 over GF(2),
GModule of dimemsion 112 over GF(2),
GModule of dimemsion 20 over GF(2)

3. J; of degree 266 over Fj:
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where Cyj; is of index 1 in the code from a 1-(266,121,121) design
from orbits {2,4}; Ciss is the code of the 1-(266,132,132) design
obtained from the orbit {5}.

. J1 of degree 1045 over Fj:
F3%® = Cr6 ® C112 ® C3g0 ® Ci54 ® Caz © Fay,

where all but C349 are irreducible. Crg is the dual of the code of the 1-
(1045,112,112) design obtained from the orbits {4,5}; C1;2 and Csgp
are b and d of Table 10. Cis4 is a subcode of the ternary code Cyp3
of the 1-(1045, 308, 308) design obtained from the orbits {3, 4, 6,10}.
If E = Cy @ C112 ® Caeo ® F37, then Cis4 = E+ N Cro3. The code
Cj42 is reducible with composition factors:

GModule of dimension 133 over GF(3),
GModule of dimension 76 over GF(3),
GModule of dimension 133 over GF(3)

. Jo of degree 315 over [Fs:
F3'® = C160 ® C154 ® Fa3,

where Cigo is ¢ of Table 20, and Cy54 ®F23 = Ciy is the binary code
of the 1-(315,33,33) design from orbits {1,4}. Note that F3% and
F2 are indecomposable as J, modules.

. Jo of degree 100 over Fj:
F3°° = C36 ® Co3 ® F33 = Soc(F3°°) = C3s ® Css,

where Cs6 and Ce3 are a and b of Table 22. Note that F1% is com-
pletely reducible as a Jy-module.

. Ja of degree 280 over Fj:
F2° = Cg3 ® C216 ® Fa3,

where Ce3 is the dual of the code of the 1-(280, 145, 145) design ob-
tained from the orbits {1, 2, 3}; C216 is the code of the 1-(280, 135, 135)
design obtained from the orbit {4}.

. Js of degree 525 over Fs:
F2? = C175 ® C100 ® Caso,

where Cy75 is b of Table 24, i.e. the dual of the code Czs¢ of a 1-
(525,224,224) design; Cigp is the dual of the code Cyz5 of the 1-
(525, 140, 140) design obtained from the orbits {2, 3,4}; Cago = Cyz5N
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9. Ja of degree 100 over Fy:
F}% = C36 ® Ce3 ® F73 = Soc(Fi%°) = Ca6 & Css,

where C3g and Ceg3 are a and b of Table 26. Note that F}% is com-
pletely reducible as a Jy-module.

7 Conclusion

‘We have constructed many of the irreducible modules as codes invariant
under the group, but we have not located all of them for any particular
degree. For example, for J; of degree 266 over F5, we know there is an
irreducible module of dimension 76. We have Csg and C77 and hence Cy33 =
056@077. Then Soc(ngae) = Cglo = 0133 @Ci’f;s = CSJ‘G However, we know
that Ca19 = C56 D Cr7®F570Crg, but we were not able to explicitly describe
the Jj-invariant code Cyg, even though we have all the others. Note that
C510 contains two invariant subcodes of dimension 77: the irreducible Cyy
and the decomposable F53 & Cyg, where Cyg is irreducible.

There are many cases where non-isomorphic irreducible modules occur -
in the same degree, but we have not concentrated on examining these. We
have also generally not constructed the same irreducible module for different
degrees, since we were concentrating on existence. Some examples are:

e J; over Fs in degree 1463 has both types of irreducible modules of
dimension 76, but only e of the second type is listed in Table 7.
The first type can be obtained from the orbits {1,6}, giving a 1-
(1463,21,21) design with C* the irreducible code of dimension 76,
and Hull(C) = {0}. The listed one (e of the table) is a hull, and thus
self-orthogonal.

e J; over F3 also has two irreducible modules of dimension 76, con-
structed as a (degree 266) and e (degree 1596) of Table 9 giving the
codes. The first type also occurs in degree 1045, taking orbits {4, 5},
giving a 1-(1045,112,112) design with Hull(C) = {0} and C+ = Cy.
Thus this code is not self-orthogonal, whereas the code for degree 266,
from the same irreducible module, is a hull, and thus self-orthogonal.
This module occurs along with the other one (from e in the table)
in degree 1596: take the orbit {15} which gives a 1-(1596,110, 110)
design with code C of dimension 1519, and Hull(C) of dimension 76.
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We have shown that the construction from Result 2 leads to many inter-
esting, and possibly usable, codes acted on by the groups. We have looked
particularly at those from the irreducible modules, and thus of small di-
mension. These are good candidates for permutation decoding, due to the
size of the group and the large size of the check set.
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