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Abstract
The Laplacian eigenvalues of linear phenylenes PH,, are partially
determined, and a simple closed-form formula for the Kirchhoff index
of PH,, is derived in terms of the index n.
Key words: resistance distance; Kirchhoff index; Laplacian ma-
trix; Linear phenylenes

1 Introduction

Let G be a connected graph with vertex-set V(G) = {1,2,:-- ,n}. On the
basis of electrical network theory, Klein and Randié [7) proposed the novel
concept of the resistance distance. They view G as an electrical network
by viewing each edge of G as a unit resistor. Then the resistance distance
between vertices ¢ and j, denoted by 7;i;, is defined to be the net effective
resistance between them. The Kirchhoff index of G, denoted by K f(G) [7],
is defined as the sum of resistance distances between all pairs of vertices in

G, i.e.,
Kf(G) =) ry.
i<j

As an analogy to the famous Wiener index [10], the Kirchhoff index is an
important molecular structure-descriptor [11], and thus it is well studied in
both mathematical and chemical literatures [2, 3, 5, 8]. So far, the Kirchhoff
index have been computed for some classes of graphs with symmetries, see
for instance [6, 9, 13-16] and the references therein.
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The Laplacian matrix of G is L(G) = D(G) — A(G), where A(G) is the
adjacency matrix and D(G) is the digonal matrix of vertex degrees. The
Laplacian polynomial of G is defined as

Pp(g)(z) = det(zl, — L(@)),

where I, denote the identity matrix of order n. Let 0 = Mg < X £ -+ <
An—1 be the eigenvalues of L(G), called the Laplacian eigenvalues of G.
Gutman and Mohar [4], and Zhu, Klein and Lukovits [17] obtained the
following amazing formula.

Theorem 1.1. [4, 17] For any connected n-vertex graph G, n > 2,
n—-1 1
Kf(G) = n,; v (1)

Consider the linear phenylenes PH,, consisting of n — 1 four-membered
(cyclobutadiene) and n six-membered (benzene) rings, in which each cy-
clobutadiene unit is adjacent to two benzene rings, whereas benzene rings
are not adjacent to each other, see Fig. 1. In this paper, firstly the decom-
position theorem of the Laplacian polynomial is stated. Then according
to this theorem, we decompose the Laplacian polynomial of PH,, into the
product of two polynomials: the Laplacian polynomial of the path Ps,
with 3n vertices and the characteristic polynomial of a symmetric tridi-
agonal matrix Lg of order 3n. Hence the Laplacian eigenvalues of PH,,
contains the Laplacian eigenvalues of Ps,. Though there are still 3n Lapla-
cian eigenvalues of PH,, left to be unknown, the sum of their reciprocals
can be determined according to the relationship between roots and coef-
ficients of the characteristic polynomial of Lg. Hence simple closed-form
formula for the Kirchhoff index of PH,, is derived by Theorem 1.1.

Fig. 1. The linear phenylenes PH,,.
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2 Laplacian spectrum of PH,

An automorphism of G is a permutation 7 of V(G) which has the property
that uv is an edge of G if and only if 7(u)r(v) is an edge of G.
Suppose that G has an automorphism 7 which can be written as the

product of disjoint 1-cycles and transpositions, that is
= (19)(2%) - (m°)(1,1)(2,2) - (k,K).

Let Vp = {1°9,20,... ,m%}, V; = {1,2,--- ,k}, Vo = {1,2,-+- ,k'}. Then
by a suitable arrangement of vertices in G, L(G) can be written as the
following block matrix

Lvive Lvovi Lwyw,
LG)=| Lvive Lvivv Lwnv, |,
LV; Vo va Vl LV3 V2

where Ly,v; is the sub-matrix formed by rows corresponding to vertices in
V; and columns corresponding to vertices in V; for 4,5 =0,1,2.
Let

Lvyve V2Ly,v, ]
= 0 , Ls(G)=1L - L
LA(G) [ \/§LV1V0 LV1V1 +LV1V2 S( ) VaVa wnwve

Yang and Yu [12] obtained the following decomposition theorem of the
Laplacian polynomial, which is restated in [14] in a somewhat different

way as follows:

Theorem 2.1. Let L(G), Lao(G) and Ls(G) be defined as above. Then

Pric)(z) = Pp 4 (6)(Z)PLg(c)(x)- (2)

In particular, if 7 can be written only as the product of disjoint trans-
positions (i.e. V5 =), then L4 = Lv,v; + Lw,v;, Ls = Lv,v, — Ly, v, and

Lvivy = Lnyvs.
Now we compute the Laplacian spectrum of PH,, according to Theorem
2.1. For convenience, we abbreviate L4(PH,) and Lg(PH,) to L4 and

Ls.

s We lal')el the vertices of F:H,, as in Fig. 1. Obviously,
7 = (1,1')(2,2')...(3n,(3n)) is an automorphism of PH,. Thus V; =
{1,2,...,3n} and Vo = {1',2',...,(3n)'}. Accordingly, Lv,v, (Lv,v,) and
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Ly, v, are given as follows:

T2 -1 0 0 0o 0 0 0 O
-1 2 -1 0 0 0 0 0 0
0 -1 3 -1 0 0 0 0 0
0 0 -1 3 0 0 0 0 0
0 0 0 0 2 -1 0 0 0
0 0 0 0 -1 3 -1 0 0
0 0 0 0 0O -1 3 -1 0
0 0 0 0 0 o -1 2 -1
| O 0 0 0 0 0 0 -1 2
[ -1 0 O 0 0 O 0 0 0 ]
0 0 O 0 0o O 0o 0 O
0 0 -1 0 0 0 0 0 O
0o 0 0 -1 0 0 0 0 O
0 0 O 0 0 O 0o 0 O
0 0 O 0 o -1 0 0 O
0 0 O 0 0 0 -1 0 O
0 0o O 0 0 o0 0 0 O
L 0 0 O 0 .- 0 0 o 0 -1 ]
Hence we can obtain L4 and Lg as given in the blow
1 -1 O 0 0 0 0 0 0
-1 2 -1 0 0o 0 0 0 0
0 -1 2 -1 o 0 0 o0 O
0o 0 -1 2 0o 0 0 o0 0
0 0 0 0 2 -1 0 0 0
0 0 0 0 -1 2 -1 0 0
0 0 0 0 o -1 2 -1 O
0 0 0 0 0 0 -1 2 -1
Y 0 0 0 0 0 0 -1 1
-3 -1 O0 0 0 0 0 0 0
-1 2 -1 0 0 0 0 0 0
0 -1 4 -1 0 0 0 0 0
0 0 -1 4 0 0 0 0 0
0 0 0 0 2 -1 0 0 0
0 0 0 0 -1 4 -1 0 0
0 0 0 0 0 -1 4 -1 O
0 0 0 0 0 0 -1 2 -1
0 0 0 0 0 0 0o -1 3

By Theorem 2.1,

Pr(ph,)(z) = Pr,(z)PLs().
Observe that L, is the Laplacian matrix of the path Ps,,. Hence the Lapla-
cian polynomial of PH,, is the product of the Laplacian polynomial of Ps,
and the characteristic polynomial of Lg.
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It is well known that the eigenvalues of L are [1] \; = 4sin®(58), k=
0,1,2,.--,3n—1. Suppose that the eigenvalues of Lg are p5, 5 = 1,2,--- ,2n
Then the Laplacian eigenvalues of PH, are Ag, A1, + , Azn—1, K41, 12, * » 43n-

3 The Kirchhoff index of PH,

Suppose that det(zf3;, — Ls) = %" + 123"~ 4.+ + a3p—_17 + 03,. Then
Theorem 3.1.

(_1)3n—1a3n_1

Kf(PH,)=9n% —n+6n doiLs (3)
Proof. Since Ao = 0, by Theorem 1.1,
3n-1 1
Kf(PH,) = 6n(z - +Z—)
=1 J“l
On the one hand,
3n—-1 3n—1

6n( Z —) =2x3n Z = 2K f(Psn),

on the other hand,

3n 3n
3n i=1 Ul Hi 3n—1
1= (—1)Plag,
T - *
— Hj Q3n
j=1 Kj
j=1

Noticing that K f(Ps,) = (3");_3" = 9"32'" by the formula that K f(P,) =

"36— 2 we complete the proof. a

For 1 < i < 3n, let D; be the ith order principal sub-matrix formed by
the first ¢ rows and columns of Lg and d; be the value of determinant of
D;. Then by expanding the determinate of D; with respect to its last row,
we readily have

Lemma 3.2. d; =3,dy=5and for3<i<3n-1,

di = 4d,‘_1 - d,'_z, ifi = 0,1 (mod 3),
“ | 2di-y —d;_3, otherwise,

dsn = det Ls = 3d3n—1 — d3n—2.
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Now we construct a sequence {d;}:>o such that dop =1,d; =3,d; =5
and for ¢ > 3,

di = 4di..1 -~ di_2, ifi= 0,1 (mod 3),
. 2d;.y —d;_o, otherwise.

In order to find the explicit formula for the n—th term of sequence {d;}:>o,
we construct three new sequences {a;}i>0, {b:}i>0 and {ci}i>0 from {d;}i>0
such that for ¢ > 0, a; = d3;, b; = d3;41 and ¢; = d3;p2. We first show the
following result:

Lemma 3.3. ap =1, a1 =17 and fori > 1,
a; = 22a;_1 — a;_». (4)
In addition, b; end c; satisfy the same recurrence formula.

Proof. It is easy to verify that ap = 1 and a; = 17. Since ag = dp = 1,
al=d1=3anda2=d2=5andfori_>_1,

ai = 4cio1 —bic1, (%)
b; =4da; — ¢y, (%)
¢ = 2b; — a;. (% * %)

Substituting Eq. (***) into Eqs. (*) and (**), we have

a; = Tbi_y — 4da;_;, (i
b; =4a; — 2bj_; +a;_;. (ii)

By Eq. (i), bi—y = 2¥3%=1_ Substituting b;_; and b; into Eq. (ii) we have
Sisibdas _ 4o, - 22830im1 4 g, that is @41 = 22a; — a;-;. We can
obtain b; 1 = 22b; — b;—; and ¢;+1 = 22¢; — ¢;—1 in the similar way. |

Lemma 3.4. Fori >0,

_10+J_ 10 — \/’—

i — (11 -2v30)™; (5)
by = 6+‘/—(11 +2v30)" + 8= ‘/_(11 2v/30)"; (6)
=20 ‘/_(11 +2v30)+t 4 10 ‘/—(11 —2v30)"t. (1)

(11 +2v/30)" +

Proof. We only show the expression for a;, Eqs. (6) and (7) can be proved
in the same way. The characteristic equations of (a)i>0 is 22 =222 —1
with z; = 11 + 2v/30, 23 = 11 — 21/30 as its roots. Suppose that

a; = (11 + 2v/30)'y; + (11 — 2v/30) . (8)
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Then the initial conditions ag = 1 and @) = 4 lead to the system of equa-
tions

n + 2 = 1

(114+2v30) v + (11-2v30) 3 = 17
Solving it we obtain y; = 1°+‘/_ 103(‘,/3_0 . The desired result follows
by substituting y; and y2 back mto Eq. (8). O

Bearing in mind that
det Ls = 3dan—1 = d3n-2 = 8cpn—y — bn-y,
by Lemma 3.4, we immediately have

Lemma 3.5.
det Lg = £((11 +2v30)" — (11 — 2v30)™). (9)

The only thing left is to calculate a3,_;. For convenience, we denote
the diagonal entries of L; by l;,1=1,2,:-- ,3n. For 1 <1 < 3n, let

= 1 0 0 0 1] 0
1 —lgg e 0 0 0 0 0
Li= 0 0 —lic1,ie1 0 0 e 0
U100 0 0 —liv1i41 1 0
0 o ... 0 0 cor —l3p-1,3n-1 1

0 0 ‘et 0 0 v 1 "l3n,3n

Then as,_; can be computed as in the following lemma.

Lemma 3.6.

S 1)3"-1[29" (11 +2v30)" + (11 — 2v/30)™)
61
2;30_((11 +2v/30)" — (11 — 2v/30)")). (10)
Proof. First notice that
3n 3n 3n-1
a3n-1 = ZL.' = (~1)3"1 st-1d3n—' (—1)31 Z didan—1-i.
i=1 i=1 =0
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Thus,

3n—1

azn-1 = (-—1)3"_1 Z didsn—l—i
i=0
n—1

= (-1)*-1 Z(d3kd3n—1-3k + dak41d3n—1-3k-1d3k+2d3n—1-3k—2)
k=0
n-1

= (-1)3! Z(akcn—k—l + bibn—k—1 + Ck@n—k-1)-
k=0

By Egs. (5), (6) and (7), simple computations show that
QkCrk—1 = —((11 +2v30)" + (11 — 2v/30)")
23 — 4\/_ k n—-1-k
+ ——-(11 +2v30)* x (11 — 2v/30)
23+4‘/_(11 +2v30)" 1k (11 — 2v/30).

bebn_p_1 = §((11 +2v/30)" + (11 — 2v/30)"

+ (11 + 2v30)¥(11 - 2v30)*~1~*
+(11+2\/_ 0)*~1k(11 — 2v/30)*).

Ck@n—k-1 ((11 +2V30)" + (11 - 2v30)")
+ %(n +2v30)k(11 - 2v/30)"~1-*
+ -23—_4—‘;‘/3—0(11 +2V30)"~1-*(11 — 2v30)*.

Hence

29"((11 +2v/30)" + (11 — 2V/30)")

Q3n_1 = ( 1)311—1(

+ E ;((11 +2V30)% (11 — 24/30)" "1+

+ (11 + 2v30)"1¥(11 — 2v/30)%))

= (-1)3'*—1(293‘ (11 + 2V30)" + (11 — 2/30)")

+ %15 g(u + 2V/30)¥(11 — 2v/30)*~ 1K), (11)
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Now we show that

n—1
> (11 +2v30)¥(11 - 2v30)" 1k = ‘/_((11+2\/_ 30)" — (11 — 2V/30)").
k=0

120
(12)
We only show the assertion holds if n is even, and the case that n is odd can
be proved in the same way. If n is even, since (114 2v/30)(11 —2+/30) = 1,

then

nf(n +2V/30)F(11 — 2v/30)" 1

k=0

%
=) ((11+2v30)%~! + (11 - 2v30)*7Y)
=1

3 2
= Z(ll +2v30)% 1 4 i(n — 2/30)%-1

i=1 i=1
_u + 2+/30 — (11 + 2V/30)**! gl —24/30 — (11 — 2¢/30)"+!
1 — (11 + 2+/30)2 1 - (11 —2/30)2
_(+ 24/30)"+1 — (11 + 2+/30) . (11 - 2¢/30)"+! — (11 — 2+/30)
240 + 44+/30 240 — 44+/30

(11+2\/")"—1 N 1— (11 -2v/30)"
41/30 4v/30

‘1/2—(;((11 +2v30)" — (11 — 2v/30)).

Combining Eq. (11) with Eq. (12), we can obtain Eq. (10) (]

Now we are arriving at our main result:
Theorem 3.7.

n)=9 —_n
Kf(PHa) =90 + = v 1™ * 1™

2n
20v/30 (11 + 2v30)*" + 1 a2 2 (13)
Proof. Substituting Eqs. (9) and (10) into Eq. (3), we have Eq. (13). O
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