R-total domination on convex bipartite graphs

Chuan-Min Lee[†]

Department of Computer and Communication Engineering
Ming Chuan University

5 De Ming Rd., Guishan District, Taoyuan County 333, Taiwan. Email: joneslee@mail.mcu.edu.tw

Abstract

Let $\mathcal{P}=\{I_1,I_1+d,I_1+2d,\ldots,I_1+(\ell-1)\cdot d\}$, where ℓ,d , I_1 are fixed integers and $\ell,d>0$. Suppose that G=(V,E) is a graph and R is a labeling function which assigns an integer R(v) to each $v\in V$. An R-total dominating function of G is a function $f:V\to \mathcal{P}$ such that $\sum_{u\in N_G(v)}f(u)\geq R(v)$ for all vertices $v\in V$, where $N_G(v)=\{u\mid (u,v)\in E\}$. The R-total domination problem is to find an R-total dominating function f of G such that $\sum_{v\in V}f(v)$ is minimum. In this paper we present a linear-time algorithm to solve the R-total domination problem on convex bipartite graphs. Our algorithm gives a unified approach to the k-total, signed total, and minus total domination problems for convex bipartite graphs.

Keywords: Graph algorithms; Minus total dominating functions; Signed total dominating functions; Biconvex bipartite graphs; Planar bipartite graphs

1 Introduction

Let G = (V, E) be a finite, simple, undirected graph with vertex set V and edge set E. It is understood that |V| = n and |E| = m if nothing else is stated. We also use V(G) and E(G) to denote the vertex and edge sets of G, respectively. We denote by G[W] the subgraph of G induced by the vertex set $W \subseteq V$. For any vertex $v \in V$, the neighborhood of v in G is $N_G(v) = \{u \in V | (u, v) \in E\}$ and the closed neighborhood of v in G is $N_G[v] = N_G(v) \cup \{v\}$. The degree of a vertex v in G is $deg_G(v) = |N_G(v)|$.

[†]This research was partially supported by National Science Council in Taiwan, under the grant number NSC-99-2221-E-130-006.

A clique is a subset of pairwise adjacent vertices of V. A maximal clique is a clique that is not a proper subset of any other clique.

A total dominating set of a graph G=(V,E) is a subset D of V such that $|D\cap N_G(v)|\geq 1$ for every vertex $v\in V$. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. The total domination problem is to find a total dominating set of G of minimum cardinality. For a fixed positive integer k, a k-total dominating set of G is a subset D of V such that $|D\cap N_G(v)|\geq k$ for every vertex $v\in V$. The k-total domination problem is to find a k-total dominating set of G of minimum cardinality.

Definition 1. Suppose that G = (V, E) is a finite, simple, undirected graph. Let \mathcal{P} be a subset of real numbers. Let $f: V \to \mathcal{P}$ be a function which assigns to each $v \in V$ a value in \mathcal{P} . The set \mathcal{P} is called the *weight set* of f. Let $f(S) = \sum_{u \in S} f(u)$ for any subset S of V. Then f(V) is called the *weight* of f.

A function $f:V\to\{0,1\}$ is a total dominating function of a graph G=(V,E) if $f(N_G(v))\geq 1$ for every vertex $v\in V$. A total dominating set can be viewed as a total dominating function f and thus $\gamma_t(G)=\min\{f(V)\mid f \text{ is a total dominating function of }G\}$. A function $f:V\to \mathcal{P}$ is a signed (respectively, minus) total dominating function of G if \mathcal{P} is $\{-1,1\}$ (respectively, $\{-1,0,1\}$). The signed (respectively, minus) total domination number of G, denoted by $\gamma_t^s(G)$ (respectively, $\gamma_t^-(G)$), is the minimum weight of a signed (respectively, minus) total domination problem is to find a signed (respectively, minus) total domination problem is to find a signed (respectively, minus) total domination of G of minimum weight.

Total domination is a well-known subject in graph theory. It has been thoroughly studied in the literature, and surveyed in [8, 9, 11]. Recently its variations, signed total domination and minus total domination, have been widely studied in [7, 10, 12, 13, 14, 19, 20, 21, 22, 23]. From the algorithmic point of view, the signed and minus total domination problems are linear-time solvable for trees [7, 13] and biconvex bipartite graphs [14], and these two problems can be solved in $O(n^2)$ time for chordal bipartite graphs [13]. However, the decision problems corresponding to these two problems are NP-complete for bipartite graphs, planar bipartite graphs, and doubly chordal graphs [7, 13, 14].

In [13], Lee introduced the concept of *R*-total domination to develop a unified approach to the signed and minus total domination problems for trees and chordal bipartite graphs.

Definition 2. Let ℓ , d, I_1 be fixed integers and ℓ , d > 0. Let \mathcal{P} be the weight set $\{I_1, I_1 + d, I_1 + 2d, \dots, I_1 + (\ell - 1) \cdot d\}$. Suppose that G = (V, E)

is a graph and R is a labeling function which assigns an integer R(v) to each $v \in V$. An R-total dominating function of G = (V, E) is a function $f: V \to \mathcal{P}$ such that $f(N_G(v)) \geq R(v)$ for all vertices $v \in V$. The R-total domination number $\gamma_{t,R}(G)$ is the minimum weight of an R-total dominating function of G. The R-total domination problem is to find an R-total dominating function of G of minimum weight.

The R-total domination problem includes the k-total, signed total, and minus total domination problems as special cases. For example, if $\mathcal{P} = \{0,1\}$ and R(v) = k (where k is an integer) for every vertex v of a graph G, then we obtain the k-total domination problem. If $\mathcal{P} = \{-1,1\}$ and R(v) = 1 for every vertex v of G, then we obtain the signed total domination problem. Finally, if $\mathcal{P} = \{-1,0,1\}$ and R(v) = 1 for every vertex v of G, then we obtain the minus total domination problem.

Lee showed that the R-total domination problem can be solved in O(n+m) time for trees [13] and biconvex bipartite graphs [14], and that it can be solved in $O(n^2)$ time for chordal bipartite graphs [13].

Convex bipartite graphs are a subclass of chordal bipartite graphs and a superclass of biconvex bipartite graphs. They were introduced by Glover [5], motivated by several industrial and scheduling applications. In this paper, we present a linear-time algorithm for the R-total domination problem on convex bipartite graphs. Our algorithm gives a unified approach to the k-total, signed total, and minus total domination problems for convex bipartite graphs.

2 Preliminaries

Given a graph G = (V, E), a vertex v is simplicial if all vertices of $N_G[v]$ form a clique. The ordering v_1, v_2, \ldots, v_n of the vertices of V is a perfect elimination ordering of G if for all $i \in \{1, \ldots, n\}$, v_i is a simplicial vertex of the subgraph G_i of G induced by $\{v_i, v_{i+1}, \ldots, v_n\}$. A chord of a cycle is an edge between two vertices of the cycle that is not an edge of the cycle. A graph G is called a chordal graph if each cycle in G of length at least 4 has at least one chord. Rose [17] showed the characterization that a graph is chordal if and only if it has a perfect elimination ordering. Let $N_i[v]$ denote the closed neighborhood of v in G_i . A perfect elimination ordering is called a strong elimination ordering if it has the following property:

For i < j < k if v_j and v_k belong to $N_i[v_i]$ in G_i , then $N_i[v_j] \subseteq N_i[v_k]$. Farber [4] showed that a graph is *strongly chordal* if and only if it admits a strong elimination ordering. Currently, the fastest algorithms for recognizing a strongly chordal graph and giving a strong elimination ordering run in $O(m \log n)$ [16] or $O(n^2)$ time [18].

A graph G=(V,E) is a bipartite graph if V can be partitioned into two disjoint sets A and B such that every edge has its ends in different sets. We call the sets, A and B, the bipartition of V and use G=(A,B,E) to denote a bipartite graph. An ordering of the vertices in B (respectively, A) has the adjacency property if for each vertex $a \in A$ (respectively, $b \in B$) $N_G(a)$ (respectively, $N_G(b)$) consists of vertices which are consecutive in the ordering of the vertices in B (respectively, A). We say that G is convex on B (respectively, A) if an ordering of the vertices in B (respectively, A) fulfills the adjacency property.

A bipartite graph is a *chordal* bipartite graph if every cycle of length at least 6 has a chord. A bipartite graph G = (A, B, E) is a *convex* bipartite graph if G is convex on A or B, and G is a *biconvex* bipartite graph if it is convex on *both* A and B.

Convex bipartite graphs are a subclass of chordal bipartite graphs, and a superclass of biconvex bipartite graphs and bipartite permutation graphs [3]. For convex bipartite, biconvex bipartite, and bipartite permutations graphs, there are linear-time recognition algorithms that produce the corresponding orderings on the vertex sets in linear time [1, 6, 15].

Definition 3. Let G = (A, B, E) be a convex bipartite graph. An ordering of the vertices in $A \cup B$ is a *convex* ordering of G if the corresponding ordering of the vertices in B fulfills the adjacency property.

Definition 4. Suppose that G = (A, B, E) is a bipartite graph. Let G_A (respectively, G_B) be the graph obtained by adding all possible edges between vertices of A (respectively, B) such that the set A (respectively, B) is a clique of G_A (respectively, G_B).

Lemma 1 shows a connection between chordal bipartite graphs and strongly chordal graphs.

Lemma 1 ([2, 4]). The graphs G_A and G_B obtained from a chordal bipartite graph G = (A, B, E) are strongly chordal graphs.

Throughout this paper, we assume that a convex bipartite graph G = (A, B, E) is convex on B, and that the corresponding orderings of vertices in A and B are $a_1, a_2, \ldots, a_{|A|}$ and $b_1, b_2, \ldots, b_{|B|}$. Figure 1 shows a convex bipartite graph.

Note that an R-total dominating function of a graph does not exist if the graph contains an isolated vertex. We assume that all graphs considered in this paper do not contain isolated vertices.

3 R-total domination on convex bipartite graphs

In this section, we develop a linear-time algorithm to solve the R-total domination problem on convex bipartite graphs. Suppose that G = (A, B, E)

is a convex bipartite graph with $|A \cup B| = n$ and |E| = m. By Lemma 1, the graphs G_A and G_B are strongly chordal graphs. We compute a strong elimination ordering of G_A (respectively, G_B) from a convex ordering of G in Section 3.1. Then, using strong elimination orderings of G_A and G_B , we give a linear-time algorithm to solve the R-total domination problem for G in Section 3.2.

Note that the fastest algorithms for recognizing a strongly chordal graph and giving a strong elimination ordering run in $O(m \log n)$ [16] or $O(n^2)$ time [18]. We can use one of these two recognition algorithms to compute strong elimination orderings of G_A and G_B , but the running time is not linear. Furthermore, to our knowledge, there is no algorithm for computing a strong elimination ordering of G_A (respectively, G_B) from a convex ordering of G. Therefore, we give a linear-time algorithm in Section 3.1 to compute a strong elimination ordering of G_A (respectively, G_B). The idea of the method for constructing a strong elimination ordering of G_A (respectively, G_B) is as follows.

By our assumption, a convex bipartite graph G = (A, B, E) is convex on B and the corresponding orderings of vertices in A and B are $a_1, a_2, \ldots, a_{|A|}$ and $b_1, b_2, \ldots, b_{|B|}$. The ordering of the vertices in B has the adjacency property. However, the ordering of the vertices in A does not necessarily have the adjacency property. Therefore, we partition the set A into $A_1, A_2, \ldots, A_{|B|}$ such that the maximum index of the vertices in $N_G(a)$ is i for each vertex $a \in A_i$ if A_i is nonempty, where $1 \le i \le |B|$. For each nonempty set A_i , we arrange the vertices of A_i in non-decreasing order of their degrees. For $1 \leq i \leq |B|$, let $|A_i| = n_i$ and let $a_{i_1}, a_{i_2}, \ldots, a_{i_{n_i}}$ be the vertices of A_i if A_i is nonempty. Then, we visit the sets A_1 , A_2 , ..., $A_{|B|}$ one by one and output the vertices $a_{i_1}, a_{i_2}, \ldots, a_{i_{n_i}}$ while a visited set A_i is nonempty. The sequence of all vertices output from the visited sets results in a new ordering of the vertices in A. The new ordering of the vertices in A can lead to a new convex ordering of the vertices in $A \cup B$. Let $a'_1, a'_2, \ldots, a'_{|A|}, b_1, b_2, \ldots, b_{|B|}$ be the new convex ordering. This ordering is a strong elimination ordering of G_B and the ordering $b_1, b_2, \ldots, b_{|B|}, a'_1, a'_2, \ldots, a'_{|A|}$ is a strong elimination ordering of G_A . See Section 3.1 for further details.

3.1 Strong convex orderings and strong elimination orderings

Let G = (A, B, E) be a convex bipartite graph. Define $\ell(a)$ and r(a) such that $N_G(a) = \{b_{\ell(a)}, b_{\ell(a)+1}, \dots, b_{r(a)}\}$ for all $a \in A$. For $1 \le i \le |B|$, we use A_i to denote a maximum subset of A such that $b_{r(a)} = b_i$ for all $a \in A_i$. In other words, the maximum index of the vertices in $N_G(a)$ is i for each vertex $a \in A_i$ if A_i is nonempty. Then, $A = A_1 \cup A_2 \cup \cdots \cup A_{|B|}$. Let



Figure 1: A convex bipartite graph.

 $|A_i|=n_i$. If $n_i \neq 0$, let $\ell(A_i)=\min\{\ell(a)|a\in A_i\}$ and let the vertices in A_i be ordered as $a_{i_1},a_{i_2},\ldots,a_{i_{n_i}}$ such that $\ell(a_{i_{n_i}})\leq \ell(a_{i_{n_i-1}})\leq \cdots \leq \ell(a_{i_1})$. Clearly, $deg_G(a_{i_1})\leq deg_G(a_{i_2})\leq \cdots \leq deg_G(a_{i_{n_i}})$. Suppose that W is a collection of all nonempty sets of $A_1,A_2,\ldots,A_{|B|}$. Obviously, any two nonempty sets of W are disjoint if $|W|\geq 2$.

We give the function ConvexSets(G,A,B) to compute a list \mathcal{M} of sets $\hat{A}_1,\ldots,\hat{A}_{|B|}$ for a convex bipartite graph G=(A,B,E). For $1\leq j\leq |B|$, \hat{A}_j is a subset of A and implemented as a list of vertices. To illustrate, we let H=(A,B,E) be the convex bipartite graph with $A=\{a_1,a_2,a_3,a_4\}$ and $B=\{b_1,b_2,b_3,b_4\}$ as shown in Figure 1. In this function, the set \mathcal{M} is implemented as a list of sets, and S_i and \hat{A}_i are implemented as lists of vertices for $1\leq i\leq 4$. At the end of Step 9, $S_1=\{a_1,a_3\}, S_2=\{a_2\}, S_3=\emptyset$, and $S_4=\{a_4\}$. Note that $\ell(a_4)=r(a_4)=4$. In Steps 10–16, the function visits the sets S_4,S_3,S_2,S_1 one by one in decreasing order of their indices. At the end of Step 16, $\hat{A}_1=\emptyset$, $\hat{A}_2=\emptyset$, $\hat{A}_3=\{a_1\}$, and $\hat{A}_4=\{a_4,a_2,a_3\}$ with $\ell(a_3)\leq \ell(a_2)\leq \ell(a_4)$. The function ConvexSets(H,A,B) returns a list of sets $\mathcal{M}=\emptyset$, $\{a_1\},\{a_4,a_2,a_3\}$.

Lemma 2. Let G = (A, B, E) be a convex bipartite graph. Suppose that a list $\mathcal{M} = \hat{A}_1, \hat{A}_2, \ldots, \hat{A}_{|B|}$ is returned from the function ConvexSets(G, A, B). For each nonempty set \hat{A}_j in the list \mathcal{M} , where $1 \leq j \leq |B|$, let $a_{j_1}, a_{j_2}, \ldots, a_{j_{n_j}}$ be the vertices in \hat{A}_j listed from the beginning to the end of \hat{A}_j . Then, $\ell(a_{j_{n_j}}) \leq \ell(a_{j_{n_j}-1}) \leq \cdots \leq \ell(a_{j_1})$.

Proof. In this function, the set \mathcal{M} is implemented as a list of sets, and S_i and \hat{A}_i are implemented as lists of vertices for $1 \leq i \leq |B|$. At the end of Step 9, S_j consists of all vertices a in A with $\ell(a) = j$ for $1 \leq j \leq |B|$. Then $A = S_1 \cup S_2 \cup \cdots \cup S_{|B|}$.

In Steps 10-16, the function visits the sets $S_{|B|}, S_{|B|-1}, \ldots, S_1$ one by

```
Function ConvexSets(G, A, B)
  1:
         \mathcal{M} \leftarrow \text{empty list of sets};
  2:
         for i \leftarrow 1 to |B| do
  3:
              S_i \leftarrow \text{empty list of vertices};
  4:
              \hat{A}_i \leftarrow \text{empty list of vertices};
  5:
        end for
  6:
         for i \leftarrow 1 to |A| do
  7:
              j \leftarrow \ell(a_i);
  8:
              Append a_i to S_i;
  9:
         end for
 10:
         for i \leftarrow |B| to 1 do
 11:
             if S_i is not empty then
 12:
                 for each vertex a \in S_i do
 13:
                     j \leftarrow r(a);
                     Append a to \hat{A}_i;
 14:
                 end for
 15:
        end for
 16:
         for i \leftarrow 1 to |B| do
 17:
 18:
             Append A_i to \mathcal{M};
 19:
        end for
 20:
        return \mathcal{M};
```

one in decreasing order of their indices. At the end of Step 16, \hat{A}_j consists of all vertices a in A with r(a) = j for $1 \le j \le |B|$. If $\hat{A}_j \ne \emptyset$, then the vertices in \hat{A}_j are $a_{j_1}, a_{j_2}, \ldots, a_{j_{n_j}}$. The lemma is trivial if $|\hat{A}_j| = 1$. Suppose that $|\hat{A}_j| \ge 2$. For any two distinct vertices $a_{j_x}, a_{j_y} \in \hat{A}_j$ with x < y, let $p, q \in \{1, 2, \ldots, |B|\}$ such that $a_{j_x} \in S_p$ and $a_{j_y} \in S_q$. If p = q, then $\ell(a_{j_y}) = \ell(a_{j_x})$. Suppose that $p \ne q$. Since x < y, the function appends a_{j_x} to \hat{A}_j before appending a_{j_y} to \hat{A}_j . It implies that the function visits S_p before visiting S_q . Therefore, q < p and $\ell(a_{j_y}) < \ell(a_{j_x})$. Following the discussion above, we know that $\ell(a_{j_y}) \le \ell(a_{j_x})$ for any two distinct vertices $a_{j_x}, a_{j_y} \in \hat{A}_j$ with x < y. Hence, $\ell(a_{j_{n_j}}) \le \ell(a_{j_{n_j-1}}) \le \cdots \le \ell(a_{j_1})$

Lemma 3. The function ConvexSets(G, A, B) can be implemented in O(n+m) time.

Proof. Let G = (A, B, E) be a convex bipartite graph. Note that G is convex on B. For every $a \in A$, $\ell(a)$ and r(a) can be computed in $O(deg_G(a))$ time. Hence, the running time of the function is $O\left(\sum_{a \in A} (deg_G(a) + 1)\right) = O(n+m)$ time.

Following Lemmas 2 and 3, we can compute $A_1, A_2, A_3, \ldots, A_{|B|}$

by the function $\mathsf{ConvexSets}(G,A,B)$ in O(n+m) time for a convex bipartite graph G=(A,B,E). We can visit the sets $A_1,\ A_2,\ \ldots,\ A_{|B|}$ one by one in increasing order of their indices, and output the vertices $a_{i_1},a_{i_2},\ldots,a_{i_{n_i}}$ while a visited set A_i is nonempty. The sequence of all vertices output from the visited sets results in a new ordering of the vertices in A. The new ordering of the vertices in A can lead to a new convex ordering of the vertices in $A\cup B$. We call the new convex ordering a strong convex ordering of G. To illustrate, we let H=(A,B,E) be the convex bipartite graph with $A=\{a_1,a_2,a_3,a_4\}$ and $B=\{b_1,b_2,b_3,b_4\}$ as shown in Figure 1. The function $\mathsf{ConvexSets}(H,A,B)$ returns a list of sets $\mathcal{M}=\emptyset,\emptyset,\{a_1\},\{a_4,a_2,a_3\}$. Let $A_1=\emptyset,\ A_2=\emptyset,\ A_3=\{a_1\},\ \mathsf{and}\ A_4=\{a_4,a_2,a_3\}$. Clearly, $\ell(a_3)\leq\ell(a_2)\leq\ell(a_4)$. The ordering $a_1,a_4,a_2,a_3,b_1,b_2,b_3,b_4$ (respectively, $b_1,b_2,b_3,b_4,a_1,a_4,a_2,a_3$) is a strong convex ordering of H.

The following theorem can be easily verified according to the discussion above.

Theorem 1. Let G = (A, B, E) be a convex bipartite graph. A strong convex ordering of G can be computed in O(n + m) time.

Let G=(A,B,E) be a convex bipartite graph. We use $\langle A,B\rangle$ (respectively, $\langle B,A\rangle$) to denote a strong convex ordering v_1,v_2,\ldots,v_n of G such that $A=\{v_1,\ldots,v_{|A|}\}$ and $B=\{v_{|A|+1},\ldots,v_n\}$ (respectively, $B=\{v_1,\ldots,v_{|B|}\}$ and $A=\{v_{|B|+1},\ldots,v_n\}$). For any strong convex ordering $\langle A,B\rangle=v_1,v_2,\ldots,v_n$ (respectively, $\langle B,A\rangle=v_1,v_2,\ldots,v_n\rangle$, $v_{|A|+i}=b_i$ (respectively, $v_i=b_i$) for $1\leq i\leq |B|$.

Suppose that $A_i \neq \emptyset$ for some integer $i \in \{1, 2, ..., |B|\}$. By the construction of a strong convex ordering of G as mentioned above, the vertices of A_i in the ordering $\langle A, B \rangle$ are consecutive. Let $v_{k_i+j-1} = a_{i_j}$ for $1 \leq j \leq n_i$. Then $A_i = \{v_{k_i}, v_{k_i+1}, ..., v_{k_i+n_i-1}\}$, where $\ell(v_{k_i+n_i-1}) \leq \ell(v_{k_i+n_i-2}) \leq \cdots \leq \ell(v_{k_i})$.

We use \hat{H}_i (respectively, H_i) to represent the subgraph of G induced by $A_i \cup B$ (respectively, $A_i \cup A_{i+1} \cup \cdots \cup A_{|B|} \cup B$) for $1 \leq i \leq |B|$. For $1 \leq j \leq n_i$, we use \hat{H}_{i_j} (respectively, H_{i_j}) be the subgraph of \hat{H}_i (respectively, H_i) induced by $\{v_{k_i+j-1}, v_{k_i+j}, \ldots, v_{k_i+n_i-1}\} \cup B$ (respectively, $\{v_{k_i+j-1}, v_{k_i+j}, \ldots, v_{k_i+n_i-1}\} \cup A_{i+1} \cup \cdots \cup A_{|B|} \cup B$).

Lemma 4. Let G = (A, B, E) be a convex bipartite graph with a strong convex ordering $\langle A, B \rangle = v_1, v_2, \dots, v_n$. Suppose that $A_i \neq \emptyset$ for some integer $i \in \{1, 2, \dots, |B|\}$. In \hat{H}_i , the ordering $v_{k_i}, v_{k_i+1}, \dots, v_{k_i+n_i-1}$ for the set A_i fulfills the adjacency property.

Proof. The lemma is trivial if $|A_i| = 1$ or 2. Suppose that $|A_i| \ge 3$. Note that $\ell(v_{k_i+n_i-1}) \le \ell(v_{k_i+n_i-2}) \le \cdots \le \ell(v_{k_i})$. Clearly, $\ell(A_i) = 1$

 $\ell(v_{k_i+n_i-1})$. Let $h = \ell(v_{k_i+n_i-1})$. Then $\bigcup_{v \in A_i} N_{\hat{H}_i}(v) = \{b_h, b_{h+1}, \dots, b_i\}$ $\subseteq B$. We assume for contrary that the ordering $v_{k_i}, v_{k_i+1}, \dots, v_{k_i+n_i-1}$ does not have the adjacency property. There exists a vertex b_j , where $h \leq j \leq i$, such that the vertices in $N_{\hat{H}_i}(b_j)$ are not consecutive. Let $v_{k_i+x}, v_{k_i+x+1}, \dots, v_{k_i+x+s} \in A_i$ be consecutive vertices such that $v_{k_i+x}, v_{k_i+x+s} \in N_{\hat{H}_i}(b_j), v_{k_i+x+p} \notin N_{\hat{H}_i}(b_j)$, where $1 \leq p \leq s-1$. Therefore $\ell(v_{k_i+x}) \leq b_j$ and $b_j < \ell(v_{k_i+x+p})$. Then $\ell(v_{k_i+x}) \leq b_j < \ell(v_{k_i+x+p})$, which contradicts that $\ell(v_{k_i+x+p}) \leq \ell(v_{k_i+x})$. Hence, the ordering $v_{k_i}, v_{k_i+1}, \dots, v_{k_i+n_i-1}$ fulfills the adjacency property.

Lemma 5. Let G = (A, B, E) be a convex bipartite graph with a strong convex ordering $\langle A, B \rangle = v_1, v_2, \dots, v_n$. Suppose that $A_i \neq \emptyset$ for some integer $i \in \{1, 2, \dots, |B|\}$. Let j be an integer such that $1 \leq j \leq n_i$. For any two vertices $b_x, b_y \in N_{\hat{H}_{i,j}}(v_{k_i+j-1})$ with x < y, $N_{\hat{H}_{i,j}}(b_x) = N_{\hat{H}_{i,j}}(b_y)$.

Proof. Notice that $\ell(v_{k_i+n_i-1}) \leq \ell(v_{k_i+n_i-2}) \leq \cdots \leq \ell(v_{k_i})$. Then $\ell(v_{k_i+n_i-1}) \leq \ell(v_{k_i+j-1})$. Since $b_x, b_y \in N_{\hat{H}_{i_j}}(v_{k_i+j-1})$ and $x < y, \ell(v_{k_i+j-1}) \leq x < y \leq i$. We have $\ell(v_{k_i+n_i-1}) \leq x < y \leq i$. The vertex $v_{k_i+n_i-1}$ is therefore adjacent to b_x and b_y . Following Lemma 4, the ordering $v_{k_i}, v_{k_i+1}, \ldots, v_{k_i+n_i-1}$ for the set A_i fulfills the adjacency property in \hat{H}_i . Since both b_x and b_y are adjacent to v_{k_i+j-1} and $v_{k_i+n_i-1}$, we have $N_{\hat{H}_{i_i}}(b_x) = N_{\hat{H}_{i_i}}(b_y) = \{v_{k_i+j-1}, v_{k_i+j}, \ldots, v_{k_i+n_i-1}\}$.

Theorem 2. Let G = (A, B, E) be a convex bipartite graph with a strong convex ordering $\langle A, B \rangle = v_1, v_2, \ldots, v_n$. Suppose that $A_i \neq \emptyset$ for some integer $i \in \{1, 2, \ldots, |B|\}$. Let j be an integer such that $1 \leq j \leq n_i$. Then $N_{H_{i_j}}(b_x) \subseteq N_{H_{i_j}}(b_y)$ for any two vertices $b_x, b_y \in N_{H_{i_j}}(v_{k_i+j-1})$ with x < y.

Proof. The theorem can be proved by induction as follows. Let p be a positive integer. Suppose that p = |B|. The graph H_p is the subgraph of G induced by $A_p \cup B$, and thus $H_p = \hat{H}_p$. By Lemma 5, we have $N_{H_{p_j}}(b_x) = N_{\hat{H}_{p_j}}(b_x) = N_{\hat{H}_{p_j}}(b_y) = N_{H_{p_j}}(b_y)$. The theorem therefore holds. We assume that the theorem holds for H_{p_j} with $i+1 \leq p$ (the inductive hypothesis). Note that H_i is the subgraph of G induced by $A_i \cup V(H_{i+1})$. Let $b \in B$ be a vertex in $N_{H_{i_j}}(v_{k_i+j-1})$. It can be easily verified that $N_{H_{i_j}}(b) = N_{\hat{H}_{i_j}}(b) \cup N_{H_{i+1}}(b)$. We consider the following cases.

Case 1: b_x is not adjacent to any vertex in $A_{i+1} \cup A_{i+2} \cup \cdots \cup A_{|B|}$. Then $N_{H_{i_j}}(b_x) = N_{\hat{H}_{i_j}}(b_x)$. By Lemma 5, we have $N_{H_{i_j}}(b_x) = N_{\hat{H}_{i_j}}(b_x) = N_{\hat{H}_{i_j}}(b_x)$. Hence $N_{H_{i_j}}(b_x) \subseteq N_{H_{i_j}}(b_y)$.

Case 2: b_x is adjacent to a vertex in $A_{i+1} \cup A_{i+2} \cup \cdots \cup A_{|B|}$. Let $W = \{A_t | i+1 \le t \le |B| \text{ and } b_x \text{ is adjacent to a vertex in } A_t\}$. Suppose

 ℓ is the smallest index of the sets of W. Let s be the minimum number of $1, 2, \ldots, |A_{\ell}|$ such that $v_{k_{\ell}+s-1} \in A_{\ell}$ is adjacent to b_x . It is clear that $N_{H_{i+1}}(b_x) = N_{H_{\ell_s}}(b_x)$. Since b_y is adjacent to v_{k_i+j-1} , we have $x < y \le i < \ell$. Therefore, $v_{k_{\ell}+s-1}$ is adjacent to b_y . By the inductive hypothesis, $N_{H_{\ell_s}}(b_x) \subseteq N_{H_{\ell_s}}(b_y)$. Following Lemma 5, we have $N_{\hat{H}_{i,j}}(b_x) = N_{\hat{H}_{i,j}}(b_y)$. Hence $N_{H_{\ell_s}}(b_x) = N_{\hat{H}_{\ell_s}}(b_x) = N_{\hat{H}_{\ell_s}}(b_x) \subseteq N_{\hat{H}_{\ell_s}$

Hence $N_{H_{i_j}}(b_x) = N_{\hat{H}_{i_j}}(b_x) \cup N_{H_{i+1}}(b_x) = N_{\hat{H}_{i_j}}(\hat{b}_x) \cup N_{H_{\ell_s}}(\hat{b}_x) \subseteq N_{\hat{H}_{i_j}}(b_y) \cup N_{H_{\ell_s}}(b_y) \subseteq N_{\hat{H}_{i_j}}(b_y) \cup N_{H_{i+1}}(b_y) = N_{H_{i_j}}(b_y)$. Following the discussion above, the theorem holds.

Theorem 3. Suppose that G = (A, B, E) is a convex bipartite graph with a strong convex ordering $\langle A, B \rangle$. Then, the strong convex ordering $\langle A, B \rangle = v_1, v_2, \ldots, v_n$ is a strong elimination ordering of G_B .

Proof. Following Lemma 1, the graph G_B obtained from G is a strongly chordal graph. Let G_p be the subgraph of G_B induced by $\{v_p, v_{p+1}, \ldots, v_n\}$, where $1 \leq p \leq n$. Let $N_p(v)$ denote the neighborhood of v in G_p and let $N_p[v] = N_p(v) \cup \{v\}$ denote the closed neighborhood of v in G_p . It can be easily verified that $N_p[v_p]$ is a clique of G_p for $1 \leq p \leq n$. Therefore, the ordering v_1, v_2, \ldots, v_n is a perfect elimination ordering of G_B . Suppose that there exist three positive integers p, s, and t such that $1 \leq p < s < t \leq n$ and $v_s, v_t \in N_p[v_p]$. We prove that the strong convex ordering v_1, v_2, \ldots, v_n is a strong elimination ordering of G_B by showing that $N_p[v_s] \subseteq N_p[v_t]$. We consider the following cases:

Case 1: $|A| + 1 \le p \le n$. Then $V(G_p) \subseteq B$. Note that B is a clique of G_B . Hence, $N_p[v_s] = N_p[v_t]$.

Case 2: $1 \leq p \leq |A|$. Then $v_p \in A$, $B \subset V(G_p)$, and $v_s, v_t \in B$. Clearly, $N_p[v_s] = (N_p[v_s] \cap A) \cup (N_p[v_s] \cap B)$ and $N_p[v_t] = (N_p[v_t] \cap A) \cup (N_p[v_t] \cap B)$. Note that B is a clique of G_B . Then $(N_p[v_s] \cap B) = (N_p[v_t] \cap B)$. In the following, we consider the inclusion relationship between $N_p[v_s] \cap A$ and $N_p[v_t] \cap A$.

Since $v_s, v_t \in B$, $N_p[v_s] \cap A = N_p(v_s) \cap A$ and $N_p[v_t] \cap A = N_p(v_t) \cap A$. Note that G_p is the subgraph of G_B induced by $\{v_p, v_{p+1}, \dots, v_{|A|}, v_{|A|+1}, \dots, v_n\}$. Let $b_x, b_y \in B$ with x < y such that $b_x = v_s$ and $b_y = v_t$. Suppose that $v_p \in A_i$ and $v_p = v_{k_i+j-1}$, where $1 \le i \le |B|$ and $1 \le j \le n_i$. We have $\{v_p, v_{p+1}, \dots, v_{|A|}, v_{|A|+1}, \dots, v_n\} = \{v_{k_i+j-1}, v_{k_i+j}, \dots, v_{k_i+n_i-1}\} \cup A_{i+1} \cup \dots \cup A_{|B|} \cup B$. Therefore, $N_p(v_s) \cap A = N_p(b_x) \cap A = N_{H_{i_j}}(b_x)$ and $N_p(v_t) \cap A = N_p(b_y) \cap A = N_{H_{i_j}}(b_y)$. By Theorem 2, $N_{H_{i_j}}(b_x) \subseteq N_{H_{i_j}}(b_y)$. Then, $(N_p[v_s] \cap A) \subseteq (N_p[v_t] \cap A)$.

Following the discussion above, $N_p[v_s] \subseteq N_p[v_t]$. Hence, the strong convex ordering $\langle A, B \rangle = v_1, v_2, \dots, v_n$ is a strong elimination ordering of G_B .

Theorem 4. Suppose that G = (A, B, E) is a convex bipartite graph with a strong convex ordering $\langle B, A \rangle = v_1, v_2, \dots, v_n$. Then, v_1, v_2, \dots, v_n is a strong elimination ordering of G_A .

Proof. Following Lemma 1, the graph G_A obtained from G is a strongly chordal graph. Let G_i be the subgraph of G_A induced by $\{v_i, v_{i+1}, \ldots, v_n\}$, where $1 \leq i \leq n$. Let $N_i[v]$ denote the closed neighborhood of v in G_i . It can be easily verified that $N_i[v_i]$ is a clique of G_i for $1 \leq i \leq n$. Therefore, the ordering v_1, v_2, \ldots, v_n is a perfect elimination ordering of G_A . Suppose that there exist three positive integers i, j, and k such that $1 \leq i < j < k \leq n$ and $v_j, v_k \in N_i[v_i]$. We prove the strong convex ordering v_1, v_2, \ldots, v_n is a strong elimination ordering of G_A by showing that $N_i[v_j] \subseteq N_i[v_k]$. We consider the following cases:

Case 1: $|B| + 1 \le i \le n$. Then $V(G_i) \subseteq A$. Note that A is a clique of G_A . Hence, $N_i[v_j] = N_i[v_k]$.

Case 2: $1 \leq i \leq |B|$. Then $v_i \in B$, $A \subset V(G_i)$, and $v_j, v_k \in A$. Clearly, $N_i[v_j] = (N_i[v_j] \cap A) \cup (N_i[v_j] \cap B)$ and $N_i[v_k] = (N_i[v_k] \cap A) \cup (N_i[v_k] \cap B)$. Since A is a clique of G_A , $(N_i[v_j] \cap A) = (N_i[v_k] \cap A)$. In the following, we consider the inclusion relationship between $N_i[v_j] \cap B$ and $N_i[v_k] \cap B$.

Note that G is convex on B. The vertices in $N_i[v_j] \cap B$ (respectively, $N_i[v_k] \cap B$) are consecutive in the strong convex ordering. Therefore, $N_i[v_j] \cap B = \{v_i, v_{i+1}, \ldots, v_{r(v_j)}\}$ and $N_i[v_k] \cap B = \{v_i, v_{i+1}, \ldots, v_{r(v_k)}\}$. If $r(v_j) = r(v_k)$, then $(N_i[v_j] \cap B) = (N_i[v_k] \cap B)$. We have $N_i[v_j] = N_i[v_k]$. Suppose that $r(v_j) \neq r(v_k)$. Let $v_j \in A_p$ and $v_k \in A_q$, where $1 \leq p, q \leq |B|$. Note that j < k. By the construction of a strong convex ordering of G, we know that p < q and thus $r(v_j) < r(v_k)$. Then, $(N_i[v_j] \cap B) \subseteq (N_i[v_k] \cap B)$. We have $N_i[v_j] \subseteq N_i[v_k]$.

Following the discussion above, the strong convex ordering v_1, v_2, \ldots, v_n is a strong elimination ordering of G_A .

Theorem 5. Let G = (A, B, E) be a convex bipartite graph with $|A \cup B| = n$ and |E| = m. A strong elimination ordering of G_A (respectively, G_B) can be computed from G in O(n+m) time.

Proof. It follows from Theorems 1, 3 and 4.

3.2 Algorithm

Let ℓ , d, I_1 be fixed integers and ℓ , d > 0. Let \mathcal{P} be the weight set $\{I_1, I_1 + d, I_1 + 2d, \ldots, I_1 + (\ell - 1) \cdot d\}$. Suppose that G = (A, B, E) is a bipartite graph with a labeling function R which assigns an integer R(v) to each vertex $v \in V(G)$. Let R_A (respectively, R_B) be a labeling function of G which assigns an integer $R_A(v)$ (respectively, $R_B(v)$) to each vertex in G such that $R_A(v) = I_1 \cdot deg_G(v)$ (respectively, $R_B(v) = I_1 \cdot deg_G(v)$)

for every $v \in A$ (respectively, $v \in B$), and $R_A(v) = R(v)$ (respectively, $R_B(v) = R(v)$) for every $v \in B$ (respectively, $v \in A$).

Definition 5. An R_A -total dominating function f of a bipartite graph G = (A, B, E) is called an R_A^* -total dominating function of G if $f(v) = I_1 + (\ell - 1) \cdot d$ for every $v \in B$. An R_B -total dominating function g of G is called an R_B^* -total dominating function of G if $g(v) = I_1 + (\ell - 1) \cdot d$ for every $v \in A$.

Lemma 6 shows that a minimum R-total dominating function of a chordal bipartite graph G can be obtained from a minimum R_A^* -total dominating function and a minimum R_B^* -total dominating function of G.

Lemma 6 ([13]). Suppose that G = (A, B, E) is a bipartite graph with a labeling function R as mentioned above. Let f_A (respectively, f_B) be a minimum R_A^* -total (respectively, R_B^* -total) dominating function of G. Let f be a function of G defined by $f(v) = f_A(v)$ for every $v \in A$ and $f(v) = f_B(v)$ for every $v \in B$. Then f is a minimum R-total dominating function of G.

In [14], Lee proposed a linear-time algorithm for computing a minimum R_A^* -total (respectively, R_B^* -total) dominating function of a biconvex bipartite graph. Based upon Lee's algorithm, we give the function RTD $(G, \langle X, Y \rangle, R, I_1, \ell, d)$ for computing a minimum R_Y^* -dominating function of a convex bipartite graph G. The function RTD $(G, \langle X, Y \rangle, R, I_1, \ell, d)$ takes $G, \langle X, Y \rangle, R, I_1, \ell$, and d as inputs. Input G represents a convex bipartite graph, and X and Y are the bipartition of V(G). Input $\langle X, Y \rangle$ is a strong convex ordering of G. Input G is a labeling function assigning an integer G0 to each vertex G1 input G2. Inputs G3 in G4 in G5 in G6 in G7 inputs G8 is a sum of G9. The weight set G9 is assumed to be the set G9 is assumed to be the set G9.

If $\langle X,Y\rangle=\langle B,A\rangle$, the function $\mathsf{RTD}(G,\langle B,A\rangle,R,I_1,\ell,d)$ computes a minimum R_A^* -total dominating function of a convex bipartite graph G=(A,B,E). If $\langle X,Y\rangle=\langle A,B\rangle$, the function $\mathsf{RTD}(G,\langle A,B\rangle,R,I_1,\ell,d)$ computes a minimum R_B^* -total dominating function of G.

To illustrate RTD(G, $\langle X,Y \rangle$, R, I_1 , ℓ , d), we let H = (A,B,E) be the convex bipartite graph with $A = \{a_1,a_2,a_3,a_4\}$ and $B = \{b_1,b_2,b_3,b_4\}$ as shown in Figure 1. Let X = A, Y = B, $I_1 = -1$, $\ell = 3$, and d = 1. Then the weight set $\mathcal{P} = \{-1,0,1\}$. Let R(v) = 1 for every vertex $v \in A \cup B$. By the function ConvexSets(H,A,B), we know that $\langle A,B \rangle = a_1,a_4,a_2,a_3,b_1,b_2,b_3,b_4$ is a strong convex ordering of G.

At the end of Step 4 of RTD(G, (A, B), R, -1, 3, 1), $R_B(b_1) = -2$, $R_B(b_2) = R_B(b_3) = R_B(b_4) = -3$, and $R_B(v) = R(v) = 1$ for every vertex $v \in A$. At the end of Step 5, $v_1 = a_1$, $v_2 = a_4$, $v_3 = a_2$, $v_4 = a_3$, and

```
Function RTD(G, \langle X, Y \rangle, R, I_1, \ell, d)
  1:
         for every vertex v \in X \cup Y do
  2:
              if v \in Y then R_Y(v) = I_1 \cdot deg_G(v);
  3:
              else R_Y(v) = R(v);
  4:
        end for
  5:
         v_1,\ldots,v_n \leftarrow \langle X,Y\rangle;
         for i \leftarrow 1 to n do
  6:
  7:
              f(v_i) \leftarrow I_1 + (\ell - 1) \cdot d;
  8:
        end for
  9:
        for i \leftarrow 1 to n do
 10:
              if R_Y(v_i) > f(N_G(v_i))
 11:
              then stop and return the infeasibility of the problem;
 12:
        end for
 13:
        for i \leftarrow 1 to n do
 14:
              if v_i \in Y then
                    M \leftarrow \min\{f(N_G(v)) - R_Y(v) | v \in N_G(v_i)\};
 15:
                    f(v_i) \leftarrow \max\{I_1, I_1 + (\lceil \ell - \frac{M}{d} \rceil - 1) \cdot d\};
 16:
 17:
        end for
 18:
        return the function f;
```

 $v_{i+4} = b_i$ for $1 \le i \le 4$. In Steps 6-8, $f(v_i)$ is initialized with the value 1 for $1 \le i \le n$. For $1 \le i \le n$, it can be easily verified that $R_B(v_i) \ge f(N_G(v_i))$ for $1 \le i \le n$. Therefore, $\mathsf{RTD}(G, \langle A, B \rangle, R, -1, 3, 1)$ does not stop in Step 11. For $5 \le i \le 8$, v_i is a vertex of B. $\mathsf{RTD}(G, \langle A, B \rangle, R, -1, 3, 1)$ assigns the values -1, 1, 1, 1 to $f(v_5), f(v_6), f(v_7), f(v_8)$, respectively. Then the function f is an R_B^* -total dominating set of G.

In the following, Lemmas 7-9 show the correctness of RTD(G, $\langle X, Y \rangle$, R, I_1, ℓ, d). Lemma 10 shows that the running time of RTD(G, $\langle X, Y \rangle$, R, I_1, ℓ, d) is O(n+m) time. They can be proved by the arguments similar to those for Lemmas 6-9 in [14].

Lemma 7. If the function f initialized by $RTD(G, \langle X, Y \rangle, R, I_1, \ell, d)$ in Steps 6-8 is not an R_Y^* -total dominating function of G, then G has no R-total dominating functions.

Lemma 8. The function f returned from Step 18 of RTD $(G, \langle X, Y \rangle, R, I_1, \ell, d)$ is an R_Y^* -total dominating function of G.

Lemma 9. The function f found by $RTD(G, \langle X, Y \rangle, R, I_1, \ell, d)$ is a minimum R_Y^* -total dominating function of G.

Lemma 10. The function $RTD(G, \langle X, Y \rangle, R, I_1, \ell, d)$ computes a minimum R_Y^* -total dominating function of a convex bipartite graph G = (X, Y, E) in O(n+m) time.

Theorem 6. Given a convex bipartite graph G = (A, B, E) with $|A \cup B| = n$ and |E| = m, the R-total domination problem can be solved in O(n + m) time.

Proof. By Lemmas 7-9, a function f_A (respectively, f_B) obtained by RTD $(G, \langle B, A \rangle, R, I_1, \ell, d)$ (respectively, RTD $(G, \langle A, B \rangle, R, I_1, \ell, d)$) is a minimum R_A^* -total (respectively, R_B^* -total) dominating function of G. Following Lemmas 6 and 10, the R-total domination problem is linear-time solvable for a convex bipartite graph G.

4 Conclusions

In this paper, we have presented a linear-time algorithm for the R-total domination problem on convex bipartite graphs. Since the R-total domination problem includes the k-total, signed total, and minus total domination problems as special cases, our algorithm can also solve these problems in linear time. In [13], the author solved the R-total domination problem in $O(n^2)$ time for chordal bipartite graphs. Suppose that we are given a chordal bipartite graph G. For further study, it is a great challenge to design an algorithm to solve this problem on G in $o(n^2)$ time.

Acknowledgements. The author would like to thank the anonymous referees for their insightful comments which led to considerable improvements in the presentation of the paper.

References

- [1] K.S. Booth, G.S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, Journal of Computer and System Sciences, 13 (1976), 335–379.
- [2] A. Brandstädt, F.F. Dragan, V. Chepoi, V. Voloshin, Dually chordal graphs, SIAM Journal on Discrete Mathematics, 11 (1998), 437-455.
- [3] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 1999.
- [4] M. Farber, Characterizations of strongly chordal graphs, Discrete Mathematics, 43 (1983), 173-189.
- [5] F. Glover, Maximum matching in a convex bipartite graph, Naval Research Logistics Quarterly, 14 (1967), 313-316.

- [6] M. Habib, R. McConnell, C. Paul, L. Viennot, Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing, Theoretical Computer Sceince, 234 (2000), 59-84.
- [7] L. Harris, J.H. Hattingh, The algorithmic complexity of certain functional variants of total domination in graphs, Australasian Journal of Combinatorics, 29 (2004), 143-156.
- [8] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [9] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [10] M. A. Henning, Signed total domination in graphs, Discrete Mathematics, 278 (2004), 109-125.
- [11] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Mathematics, 309 (2009), 32-63.
- [12] L.Y. Kang, E.F. Shan, L. Caccett, Total minus domination in k-partite graphs, Discrete Mathematics, 306 (2006), 1771–1775.
- [13] C.M. Lee, On the complexity of signed and minus total domination in graphs, Information Processing Letters, 109 (2009), 1177–1181.
- [14] C.M. Lee, Signed and minus total domination on subclasses of bipartite graphs, Ars Combinatoria, 100 (2011), 129–149.
- [15] J. Meidanis, O. Porto, G.P. Telles, On the consecutive ones property, Discrete Applied Mathematics, 131 (1998), 325–354.
- [16] R. Paige, R.E. Tarjan, Three partition refinement algorithms, SIAM Journal on Computing, 16 (1989), 973-989.
- [17] D.J. Rose, Triangulated graphs and the elimination process, Journal of Mathematical Analysis and Applications, 32 (1970) 597-609.
- [18] J.P. Spinrad, Doubly Lexical Ordering of Dense 0-1 Matrices, Information Processing Letters, 45 (1993), 229–235.
- [19] E. Shan, T.C.E. Cheng, Remarks on the minus (signed) total domination in graphs, Discrete Mathematics, 308 (2008), 3373-3380.
- [20] E. Shan, T.C.E. Cheng, Upper bounds on the upper signed total domination number of graphs, Discrete Applied Mathematics, 157 (2009), 1098-1103.

- [21] H.C. Wang, E.F. Shan, Upper minus total domination of a 5-regular graph, Ars Combinatoria, 91 (2009), 383-389.
- [22] H. Yan, X.Q. Yang, E.F. Shan, Upper minus total domination in small-degree regular graphs, Discrete Mathematics, 307 (2007), 2453-2463.
- [23] B. Zelinka, Signed total domination number of a graph, Czechoslovak Mathematical Journal, 51 (2001), 225–229.