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Abstract

Let P = {Ii,i +d,i +2d,...,I1 + (£ — 1) - d}, where £, d,
I, are fixed integers and £,d > 0. Suppose that G = (V,E) is a
graph and R is a labeling function which assigns an integer R(v)
to each v € V. An R-total dominating function of G is a function
f:V = P such that 3 .y, f(¥) 2 R(v) for all vertices v € V,
where Ng(v) = {u | (u,v) € E}. The R-total domination problem is
to find an R-total dominating function f of G such that 3 .y f(v)
is minimum. In this paper we present a linear-time algorithm to
solve the R-total domination problem on convex bipartite graphs.
Our algorithm gives a unified approach to the k-total, signed total,
and minus total domination problems for convex bipartite graphs.

Keywords: Graph algorithms; Minus total dominating functions;
Signed total dominating functions; Biconvex bipartite graphs; Planar
bipartite graphs

1 Introduction

Let G = (V, E) be a finite, simple, undirected graph with vertez set V and
edge set E. It is understood that |V| = n and [E| = m if nothing else is
stated. We also use V(G) and E(G) to denote the vertex and edge sets
of G, respectively. We denote by G[W] the subgraph of G induced by the
vertex set W C V. For any vertex v € V, the neighborhood of v in G
is Ng(v) = {u € V|(u,v) € E} and the closed neighborhood of v in G is
Ng[v] = Ng(v) U {v}. The degree of a vertex v in G is dega(v) = |[Ng(v)|-
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A clique is a subset of pairwise adjacent vertices of V. A mazimal clique
is a clique that is not a proper subset of any other clique.

A total dominating set of a graph G = (V, E) is a subset D of V such
that [DNNg(v)| 2 1 for every vertex v € V. The total domination number
of G, denoted by 7:(G), is the minimum cardinality of a total dominating
set of G. The total domination problem is to find a total dominating
set of G of minimum cardinality. For a fixed positive integer k, a k-total
dominating set of G is a subset D of V such that |D N Ng(v)| > k for
every vertex v € V. The k-total domination problem is to find a k-total
dominating set of G of minimum cardinality.

Definition 1. Suppose that G = (V,E) is a finite, simple, undirected
graph. Let P be a subset of real numbers. Let f : V — P be a function
which assigns to each v € V' a value in P. The set P is called the weight set
of f. Let f(S) = Y ,cs f(u) for any subset S of V. Then f(V) is called
the weight of f.

A function f : V — {0,1} is a total dominating function of a graph
G = (V,E) if f(Ne(v)) > 1 for every vertex v € V. A total dominating
set can be viewed as a total dominating function f and thus v(G) =
min{f(V) | f is a total dominating function of G}. A function f : V —» P
is a signed (respectively, minus) total dominating function of G if P is
{-1,1} (respectively, {—1,0,1}). The signed (respectively, minus) total
domination number of G, denoted by 7}(G) (respectively, v; (G)), is the
minimum weight of a signed (respectively, minus) total dominating function
of G. The signed (respectively, minus) total domination problem is to find
a signed (respectively, minus) total dominating function of G of minimum
weight.

Total domination is a well-known subject in graph theory. It has been
thoroughly studied in the literature, and surveyed in 8, 9, 11]. Recently
its variations, signed total domination and minus total domination, have
been widely studied in (7, 10, 12, 13, 14, 19, 20, 21, 22, 23]. From the
algorithmic point of view, the signed and minus total domination problems
are linear-time solvable for trees (7, 13] and biconvex bipartite graphs [14],
and these two problems can be solved in O(n?) time for chordal bipartite
graphs [13]. However, the decision problems corresponding to these two
problems are NP-complete for bipartite graphs, planar bipartite graphs,
and doubly chordal graphs (7, 13, 14].

In [13], Lee introduced the concept of R-total domination to develop a
unified approach to the signed and minus total domination problems for
trees and chordal bipartite graphs.

Definition 2. Let ¢, d, I; be fixed integers and £,d > 0. Let P be the
weight set {I1,1 +d,I1 +2d,...,I; +(£—1)-d}. Suppose that G = (V, E)
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is a graph and R is a labeling function which assigns an integer R(v) to
each v € V. An R-total dominating function of G = (V, E) is a function
f : V. = P such that f(Ng(v)) > R(v) for all vertices v € V. The
R-total domination number -y r(G) is the minimum weight of an R-total
dominating function of G. The R-total domination problem is to find an
R-total dominating function of G of minimum weight.

The R-total domination problem includes the k-total, signed total, and
minus total domination problems as special cases. For example, if P =
{0,1} and R(v) = k (where k is an integer) for every vertex v of a graph
G, then we obtain the k-total domination problem. If P = {—1,1} and
R(v) = 1 for every vertex v of G, then we obtain the signed total domination
problem. Finally, if P = {-1,0,1} and R(v) =1 for every vertex v of G,
then we obtain the minus total domination problem.

Lee showed that the R-total domination problem can be solved in O(n+
m) time for trees [13] and biconvex bipartite graphs [14], and that it can
be solved in O(n?) time for chordal bipartite graphs [13].

Convex bipartite graphs are a subclass of chordal bipartite graphs and a
superclass of biconvex bipartite graphs. They were introduced by Glover [5],
motivated by several industrial and scheduling applications. In this paper,
we present a linear-time algorithm for the R-total domination problem on
convex bipartite graphs. Our algorithm gives a unified approach to the
k-total, signed total, and minus total domination problems for convex bi-

partite graphs.

2 Preliminaries

Given a graph G = (V, E), a vertex v is simplicial if all vertices of Ng[v]
form a clique. The ordering v, vs,...,vn of the vertices of V' is a perfect
elimination ordering of G if for all i € {1,...,n}, v; is a simplicial vertex
of the subgraph G; of G induced by {vi, vi41,...,vn}. A chord of a cycle is
an edge between two vertices of the cycle that is not an edge of the cycle.
A graph G is called a chordal graph if each cycle in G of length at least 4
has at least one chord. Rose [17] showed the characterization that a graph
is chordal if and only if it has a perfect elimination ordering. Let N;[v]
denote the closed neighborhood of v in G;. A perfect elimination ordering
is called a strong elimination ordering if it has the following property:

Fori<j<kif vj and v belong to N,'[’Ui] in G;, then Ni['u,-] (- N,-[vk].
Farber [4] showed that a graph is strongly chordal if and only if it admits a
strong elimination ordering. Currently, the fastest algorithms for recogniz-
ing a strongly chordal graph and giving a strong elimination ordering run
in O(mlogn) [16] or O(n?) time [18].
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A graph G = (V| E) is a bipartite graph if V' can be partitioned into two
disjoint sets A and B such that every edge has its ends in different sets.
We call the sets, A and B, the bipartition of V and use G = (4, B, E) to
denote a bipartite graph. An ordering of the vertices in B (respectively, A)
has the adjacency property if for each vertex a € A (respectively, b € B)
N¢(a) (respectively, Ng(b)) consists of vertices which are consecutive in
the ordering of the vertices in B (respectively, A). We say that G is convez
on B (respectively, A) if an ordering of the vertices in B (respectively, A)
fulfills the adjacency property.

A bipartite graph is a chordal bipartite graph if every cycle of length at
least 6 has a chord. A bipartite graph G = (A, B, E) is a convez bipartite
graph if G is convex on A or B, and G is a biconvez bipartite graph if it is
convex on both A and B.

Convex bipartite graphs are a subclass of chordal bipartite graphs,
and a superclass of biconvex bipartite graphs and bipartite permutation
graphs [3]. For convex bipartite, biconvex bipartite, and bipartite permu-
tations graphs, there are linear-time recognition algorithms that produce
the corresponding orderings on the vertex sets in linear time [1, 6, 15).

Definition 3. Let G = (A, B, E) be a convex bipartite graph. An ordering
of the vertices in A U B is a convez ordering of G if the corresponding
ordering of the vertices in B fulfills the adjacency property.

Definition 4. Suppose that G = (A, B, E) is a bipartite graph. Let G4
(respectively, Gg) be the graph obtained by adding all possible edges be-
tween vertices of A (respectively, B) such that the set A (respectively, B)
is a clique of G4 (respectively, Gg).

Lemma 1 shows a connection between chordal bipartite graphs and
strongly chordal graphs.

Lemma 1 ([2, 4]). The graphs G4 and Gp obtained from a chordal bi-
partite graph G = (A, B, E) are strongly chordal graphs.

Throughout this paper, we assume that a convex bipartite graph G =
(A, B, E) is convex on B, and that the corresponding orderings of vertices
in A and B are aj,az,...,a)4) and by, b, ..., b ;. Figure 1 shows a convex
bipartite graph.

Note that an R-total dominating function of a graph does not exist if the
graph contains an isolated vertex. We assume that all graphs considered
in this paper do not contain isolated vertices.

3 R-total domination on convex bipartite graphs

In this section, we develop a linear-time algorithm to solve the R-total dom-
ination problem on convex bipartite graphs. Suppose that G = (4, B, E)
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is a convex bipartite graph with [AU B| = n and |E| = m. By Lemma 1,
the graphs G4 and Gpg are strongly chordal graphs. We compute a strong
elimination ordering of G4 (respectively, Gg) from a convex ordering of G
in Section 3.1. Then, using strong elimination orderings of G4 and Gpg, we
give a linear-time algorithm to solve the R-total domination problem for G
in Section 3.2.

Note that the fastest algorithms for recognizing a strongly chordal graph
and giving a strong elimination ordering run in O(mlogn) [16] or O(n?)
time [18]. We can use one of these two recognition algorithms to compute
strong elimination orderings of G4 and Gp, but the running time is not
linear. Furthermore, to our knowledge, there is no algorithm for comput-
ing a strong elimination ordering of G4 (respectively, Gg) from a convex
ordering of G. Therefore, we give a linear-time algorithm in Section 3.1
to compute a strong elimination ordering of G4 (respectively, Gg). The
idea of the method for constructing a strong elimination ordering of G4
(respectively, Gp) is as follows.

By our assumption, a convex bipartite graph G = (A, B, E) is convex on
B and the corresponding orderings of vertices in A and B are a;, az,...,q)4
and by, ba,...,b 8. The ordering of the vertices in B has the adjacency
property. However, the ordering of the vertices in A does not necessar-
ily have the adjacency property. Therefore, we partition the set A into
Ay, Az,..., A p such that the maximum index of the vertices in Ng(a) is
i for each vertex a € A; if A; is nonempty, where 1 < ¢ < |B|. For each
nonempty set A;, we arrange the vertices of A; in non-decreasing order
of their degrees. For 1 < i < |B|, let |A;] = n; and let a;,,a,,, .. -1 @iy,
be the vertices of A; if A; is nonempty. Then, we visit the sets A;, Ao,
.+, Ajp| one by one and output the vertices a;,,ai,,...,ai,, while a vis-
ited set A; is nonempty. The sequence of all vertices output from the
visited sets results in a new ordering of the vertices in A. The new or-
dering of the vertices in A can lead to a new convex ordering of the ver-
tices in AU B. Let a},a3,..., a’A|, b1,b2,...,b ) be the new convex order-
ing. This ordering is a strong elimination ordering of Gg and the ordering
b1, bs,...,b | 01,05,... ,aiA is a strong elimination ordering of G4. See
Section 3.1 for further details.

3.1 Strong convex orderings and strong elimination or-
derings

Let G = (A, B, E) be a convex bipartite graph. Define #(a) and r(a) such

that Na(a) = {b((a),bg(a)+1,. . ,b,.(a)} foralla€ A. For1 <i< IBI, we

use A; to denote a maximum subset of A such that b,.(4) = b; for all a € 4.

In other words, the maximum index of the vertices in Ng(a) is ¢ for each
vertex a € A; if A; is nonempty. Then, A = A; UA; U---U Ajg|. Let
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Figure 1: A convex bipartite graph.

|Ai] = ni. If ng # 0, let £(A;) = min{f(a)|a € A;} and let the vertices in 4;
be ordered as a,, ai,, .. .,ai,, such that £(a;, ) < {(ai, _,) <+ < £ay,).
Clearly, degg(ai,) < dega(a,,) <. L dega(a,ﬂ ). Suppose that W is
a collection of all nonempty sets of Al, Az,...,Ajp- Obviously, any two
nonempty sets of W are disjoint if |[W| > 2.

_ We give the function ConvexSets(G, A, B) to compute a list M of sets
A, A[ B| for a convex bipartite graph G = (4, B, E). For 1 < j < |B|,
A is a subset of A and implemented as a list of vertices. To illustrate, we
let H = (A, B, FE) be the convex bipartite graph with A = {a1,a3,a3, a4}
and B = {b;, b, b3, bs} as shown in Figure 1. In this function, the set M
is implemented as a list of sets, and S; and A; are implemented as lists of
vertices for 1 < ¢ < 4. At the end of Step 9, S} = {a1,a3}, S2 = {a2},

S3 =0, and Sy = {a4}. Note that {(as) = r(as) = 4. In Steps 10-16, the
function visits the sets S4, S3, S2, 91 one by one in decreasing order of their
indices. At the end of Step 16, A; = 0, A, = 0, A3 = {a1}, and Ay =
{a4,a2,a3} with £(a3) < £(az) < £(aq). The function ConvexSets(H, A, B)
returns a list of sets M = 0,0, {a:}, {a4,a2,a3}.

Lemma 2. Let G = (A, B, E) be a convez bipartite graph. Suppose that a

list M = Ay, Ay, ..., Ap is returned from the function ConvexSets(G, A, B).
For each nonempty set ﬁ.j in the list M, where1l < j < |B|, letaj,,a;,,. ..,

j, be the vertices in fi,- listed from the beginning to the end of fij. Then,

Z(ajnj) < e(ajnj—l) <---< e(ajx)'

Proof. In this function, the set M is implemented as a list of sets, and
S; and A; are implemented as lists of vertices for 1 < i < |B|. At the end
of Step 9, S; consists of all vertices a in A with £(a) = j for 1 < j < |B|.
Then A = 51U52U-~~US|B|.

In Steps 10-16, the function visits the sets S|p, S5)-1,...,51 one by
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Function ConvexSets(G, A, B)

1: M « empty list of sets;

2: fori« 1to|B|do

3: S; + empty list of vertices;
4: fi,- + empty list of vertices;
5: .end for

6: fori« 1to|A|do

7 3« £as);

8: Append a; to Sj;

9: end for

10: for i« |B|to 1l do

11: if S; is not empty then

12 for each vertex a € S; do
13: Jj < r(a);

14: Append a to A,-;

15: end for

16: end for

17: for i « 1 to |B| do
18: Append A; to M;
19: end for

20: return M;

one in decreasing order of their indices. At the end of Step 186, fij consists of
all verticesa in Awithr(a) = jfor1 <j <|B}. If fij # 0, then the vertices
in A; are aj,,a,,. .. 1@j,, The lemma is trivial if |Aj| = 1. Suppose that
|Aj| > 2. For any two distinct vertices a;,,a;, € fij with z < y, let
7.9 € {1,2,...,|B|} such that a;, € Sp and a;, € S;. If p = g, then
£(aj,) = £(a;,). Suppose that p # ¢. Since z < y, the function appends
a;, to ./ij before appending a;, to A}. It implies that the function visits
Sp before visiting S,. Therefore, ¢ < p and ¢(a;,) < £(a;.). Following the
discussion above, we know that £(a;,) < £(a;,) for any two distinct vertices
aj,,aj, € /i,- with z < y. Hence, £(a;,,) < Z(aj“j_l) <. < aj) O
Lemma 3. The function ConvexSets(G, A, B) can be implemented in O(n+
m) time.

Proof. Let G = (A, B, E) be a convex bipartite graph. Note that G is con-
vex on B. For every a € A, £(a) and r(a) can be computed in O(degg(a))
time. Hence, the running time of the function is O (3, 4(dega(a) + 1)) =
O(n + m) time. O

Following Lemmas 2 and 3, we can compute A;, A2, A3, ...,4)p

215



by the function ConvexSets(G, 4, B) in O(n + m) time for a convex bi-
partite graph G = (A, B,E). We can visit the sets A;, A3, ..., A
one by one in increasing order of their indices, and output the vertices
@iyy @i, - -+ @i, While a visited set A; is nonempty. The sequence of all
vertices output from the visited sets results in a new ordering of the ver-
tices in A. The new ordering of the vertices in A can lead to a new convex
ordering of the vertices in A U B. We call the new convex ordering a
strong convez ordering of G. To illustrate, we let H = (A, B, E) be the
convex bipartite graph with A = {a1,a2,a3,a4} and B = {by, bs,b3,b4}
as shown in Figure 1. The function ConvexSets(H, A, B) returns a list
of sets M = 0,0,{a1},{as,az,a3}. Let A; = 0, Ay = 0, A3 = {a1},
and Ay = {as,az,a3}. Clearly, £(as) < 4(az) < £(as). The ordering
a1,a4, @z, a3, by, bz, bs, by (respectively, by, ba, b3, bs, a1, a4, az, as) is a strong
convex ordering of H.

The following theorem can be easily verified according to the discussion
above.

Theorem 1. Let G = (A, B,E) be a convez bipartite graph. A strong
convezx ordering of G can be computed in O(n +m) time.

Let G = (A,B,E) be a convex bipartite graph. We use (A, B) (re-
spectively, (B, A)) to denote a strong convex ordering vi,v2,...,vn of G
such that A = {v1, ...,v4} and B = {vj4/41,...,vn} (respectively, B =
{v1,...,yp} and A = {vp|41,...,vn}). For any strong convex ordering
(A,B) = v1,v2,...,vn (respectively, (B, A) = v1,v2,...,Vn), Vaj4i = b
(respectively, v; = b;) for 1 <i < |B|.

Suppose that A; # @ for some integer ¢ € {1,2,...,|B|}. By the con-
struction of a strong convex ordering of G as mentioned above, the ver-
tices of A; in the ordering (A, B) are consecutive. Let vi,4j-1 = a;; for
1 < j < ni. Then A; = {vk,,Vk;+1y--+»Vki+n;—1}, Where (Vg 4n,—1) <
‘e(vki+ni—2) § e < e(vks')'

We use H; (respectively, H;) to represent the subgraph of G induced
by A; U B (respectively, A; U A1 U---UAgUB) for1 <4< |B| For
1 < j < n;, we use fIiJ. (respectively, H;;) be the subgraph of H, (re-
spectively, H;) induced by {vk;1j—1,Vki+j, - -+ s Uki+ni—1} U B (respectively,
{vki+j—17vki+j’ ceey 'Uki-i-n.'—l} U -At'+1 u---u A|B| U B)

Lemma 4. Let G = (A, B,E) be a convex bipartite graph with a strong
convez ordering (A,B) = v1,v,...,vs. Suppose that A; # D for some
integer i € {1,2,...,|B|}. In H;, the ordering vk,,Vk;+1,- - - » Vk;4+ni—1 JOT
the set A; fulfills the adjacency property.

Proof. The lemma is trivial if [A4;] = 1 or 2. Suppose that |4;| > 3.
Note that &(vk;+n;-1) < l(Vki4ni—2) < --+ < (vr;). Clearly, £(A;) =
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£(Vk;+n;—1). Let b = €(vg,4n,—1). Then Uye 4, Ny, (v) = {bn, br+1,...,bi}
C B. We assume for contrary that the ordering vk, Uk, +1,-- . Yk +n;—1
does not have the adjacency property. There exists a vertex b;, where
h < j < i, such that the vertices in Ng (b;) are not consecutive. Let
Uk, +2 Vki+2+1s - - ©» Vki+z+s € Ai be consecutive vertices such that vy, 4z,
Vk;+z+s € Ny (05), Vkitz+p € Npg, (b;), where 1 < p < s — 1. Therefore
e(vki-b-r) < b.‘i and b.'i < e(vki+=+P)' Then l(vk‘..;.,,) < bj < e(vki+x+P)v
which contradicts that £(vk;4z4p) < €(vk;+z). Hence, the ordering v,
Vk;+1) - - - » Uk +n; —1 fulfills the adjacency property. )

Lemma 5. Let G = (A, B,E) be a convez bipartite graph with a strong
convez ordering {A,B) = vy,vs,...,Vn. Suppose that A; # @ for some
integer i € {1,2,...,|B|}. Let j be an integer such that 1 < j < n;. For
any two vertices by, by € NH.-j (Vki4j-1) withz <y, ij (b)) = Nﬂaj (by)-

Proof. Notice that &(vi,4n;-1) < €(Vkiyn;—2) < -+ < €(vx;). Then
E(vkitni-1) S E(Vki+j-1). Since bz, by € Ny, (vki+j—1) and & <y, vk, +5-1)
<z <y <i. We have &(vg,4n,—1) < z < y < i. The vertex vi;4n;—1
is therefore adjacent to b and b,. Following Lemma 4, the ordering
Uk Vk+1y -« - » Uky+ni—1 for the set A; fulfills the adjacency property in
H;. Since both b, and by are adjacent to vk,4+j—1 and Uk;4n;—1, We have
Ng,, (bz) = Ny, (by) = {Vketio1: Vketis - -2 Vkitme—1}- o

Theorem 2. Let G = (A, B, E) be a convez bipartite graph with a strong
conver ordering (A,B) = v1,vq,...,Vn. Suppose that A; # @ for some
integer 1 € {1,2,...,|Bl|}. Let j be an integer such that 1 < j < n,.
Then Ny, (bz) © Ny, (by) for any two vertices bz,by, € N, (vk;4j-1)
with z < y.

Proof. The theorem can be proved by induction as follows. Let p be a
positive integer. Suppose that p = |B|. The graph H, is the subgraph of G
induced by A, U B, and thus H, = I-?,,. By Lemma 5, we have N H,, (b)) =
N, 1, (bz) = N a,, (by) = Na,,(by). The theorem therefore holds. We
assume that the theorem holds for Hp, with i + 1 < p (the inductive
hypothesis). Note that H; is the subgraph of G induced by A; U V(H;4.1).
Let b € B be a vertex in Ny, (vk;+5-1). It can be easily verified that
N, (b) = Ng, (b)U N, ,,(b). We consider the following cases.

Case 1: b, is not adjacent to any vertex in A;41 U Aip2 U ---U Ajg).
Then Ny, (bz) = N a1, (b:). By Lemma 5, we have Ny, (b;) = N a, (b)) =
Ng,. (by). Hence Ny, (bz) € N, (by)-

Case 2: b; is adjacent to a vertex in Aiy1 U Ajy2 U+ U Ajp). Let
W = {Aili +1 < t < |B| and b, is adjacent to a vertex in A;}. Suppose
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¢ is the smallest index of the sets of W. Let s be the minimum number
of 1,2,...,|A¢| such that vk,4s—1 € Ae is adjacent to b,. It is clear that
Ny, (b:) = Np, (b:). Since by is adjacent to vk, +j—1, we have < y <
i < £. Therefore, vk,s—1 is adjacent to b,. By the inductive hypothesis,
Ny, (bz) € Ng,, (by). Following Lemma 5, we have ij (bz) = N;,‘,j (by)-

Hence NHi, (b)) = Nﬁ‘,j (bz) U Ny, (bs) = fo.»j (bz) U Ny, (b:) C
N, i, (by) U Ny, (by) € N, A, (by) U N, ,(by) = NH,.J_ (by). Following the
discussion above, the theorem holds. ]

Theorem 3. Suppose that G = (A, B, E) is a convez bipartite graph
with a strong convex ordering (A,B). Then, the strong conver ordering
(A,B) = vy,v9,...,Un is a strong elimination ordering of Gp.

Proof. Following Lemma 1, the graph Gg obtained from G is a strongly
chordal graph. Let G}, be the subgraph of G g induced by {vp, vp+1,...,vn},
where 1 < p < n. Let Ny(v) denote the neighborhood of v in G, and let
Np[v] = Np(v) U {v} denote the closed neighborhood of v in Gp. It can be
easily verified that Np[v,] is a clique of Gp for 1 < p < n. Therefore, the
ordering vy, ve, ..., Vn is a perfect elimination ordering of Gg. Suppose that
there exist three positive integers p, s, and t suchthat 1 <p<s<t<n
and v,, v, € Npfvp). We prove that the strong convex ordering vy, vo, ..., v
is a strong elimination ordering of Gp by showing that Np[vs] C Np[ve].
We consider the following cases:

Case 1: |A| +1 < p < n. Then V(G,) C B. Note that B is a clique of
GB. Hence, Np[vs] = Np[vy).

Case2: 1 < p<|A|. Thenv, € A, B C V(G,), and v,,v; € B. Clearly,
Np[vs] = (Np[vs] N A)U(Np[v5]NB) and Np[ve] = (Np[ve] NA)U(Np[ve] N B).
Note that B is a clique of Gg. Then (Np[vs] N B) = (Np[v¢] N B). In the
following, we consider the inclusion relationship between Np[vs] N A and
Np[Ut] NnA.

Since vs, vt € B, Np[vs) N A = Np(vs) N A and Ny[ve] N A = Np(ve) N A.
Note that G, is the subgraph of G5 induced by {vp, vp+1,..., Vjap Yaj41-- -,
vn}. Let br,by € B with z < y such that b; = v, and b, = v;. Suppose
that v, € A; and vp = vk, 4j—1, where1 < i < |Bland 1< j < n;. We
have {vp, Up+1,.- YA Yaj+1 -1 Vn} = {Vkidjm1:Vkitjo e e s Ukigni=1} U
Ai41U---UAp U B. Therefore, Ny(vs)NA = Np(b:)NA = Ny, (bz) and
Np(ve)NA = Np(by)NA = Ny, (by). By Theorem 2, Ny, (bz) C Ny, (by).
Then, (Np[vs) N A) C (Np[ve] N A).

Following the discussion above, Ny[v;] € Nplvi]. Hence, the strong
convex ordering (A, B) = vy, vs,...,v, is a strong elimination ordering of
Gpg. (]
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Theorem 4. Suppose that G = (A, B, E) is a conver bipartite graph with
a strong convez ordering (B, A) = v1,vs,...,vs. Then, vy,v2,...,0, is a
strong elimination ordering of Ga.

Proof. Following Lemma 1, the graph G4 obtained from G is a strongly
chordal graph. Let G; be the subgraph of G4 induced by {v;, vit+1,...,vn},
where 1 < i < n. Let N;[v] denote the closed neighborhood of v in G;. It
can be easily verified that N;[v;] is a clique of G; for 1 < ¢ < n. Therefore,
the ordering vy, vs, ..., v, is a perfect elimination ordering of G4. Suppose
that there exist three positive integers ¢, j, and ksuchthat ] <i<j <k <
n and vj, vx € N;[v;]. We prove the strong convex ordering v1,v3,...,vn is
a strong elimination ordering of G4 by showing that N;[v;] C Ni[vx]. We
consider the following cases:

Case 1: |B|+1 < i < n. Then V(G;) C A. Note that A is a clique of
G4. Hence, N;[v;] = N;[uvg).

Case 2: 1 <i < |B|. Thenv; € B, AC V(G;), and vj,v; € A. Clearly,
Ni[vj] = (Ni[v;)N A)U(N;[v;]NB) and Nj[ug] = (Nifvx] N A)U(N;[ve] N B).
Since A is a clique of G 4, (N;[v;]N A) = (Ni[ve] N A). In the following, we
consider the inclusion relationship between N;[v;] N B and N;[vx] N B.

Note that G is convex on B. The vertices in N;[v;] N B (respectively,
Ni[ux] N B) are consecutive in the strong convex ordering. Therefore,
Ni[vj] NB = {vi,’v.'+1, ceey ‘U,.(,,J.)} and N,-[vk] NB= {vi, Vitly--- ,‘U,.(vk)}. If
7(v;) = r(vk), then (N;[v;] N B) = (Ni[vk] N B). We have N;[v;] = N;[vx].
Suppose that 7(v;) # r(vx). Let v; € Ap and vy € Ay, where1 < p,q < |B|.
Note that j < k. By the construction of a strong convex ordering of G, we
know that p < g and thus 7(v;) < r(vk). Then, (N;[v;]NnB) C (N;[vk]NB).
We have N;{v;] C Nj[vg].

Following the discussion above, the strong convex ordering v1,vs, ..., v,
is a strong elimination ordering of G 4. (=]

Theorem 5. Let G = (A, B, E) be a convex bipartite graph with |AUB| =
n and |E| = m. A strong elimination ordering of G4 (respectively, Gg)
can be computed from G in O(n + m) time.

Proof. It follows from Theorems 1, 3 and 4. O

3.2 Algorithm

Let ¢, d, I} be fixed integers and £,d > 0. Let P be the weight set
{h,+d, ]y +2d,...,I1 + (£ —1) - d}. Suppose that G = (4,B,FE) is a
bipartite graph with a labeling function R which assigns an integer R(v)
to each vertex v € V(G). Let R4 (respectively, Rg) be a labeling function
of G which assigns an integer R4(v) (respectively, Rg(v)) to each vertex
in G such that R4(v) = I; - dege(v) (respectively, Rg(v) = I - degg(v))
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for every v € A (respectively, v € B), and Ra(v) = R(v) (respectively,
Rp(v) = R(v)) for every v € B (respectively, v € A).

Definition 5. An R4-total dominating function f of a bipartite graph
G = (A, B,E) is called an RY-total dominating function of G if f(v) =
I, + (¢ —1) - d for every v € B. An Rp-total dominating function g of G
is called an Rg-total dominating function of G if g(v) =1, + (£ — 1) -d for
every v € A.

Lemma 6 shows that a minimum R-total dominating function of a
chordal bipartite graph G can be obtained from a minimum R}-total dom-
inating function and a minimum R%-total dominating function of G.

Lemma 6 ([13]). Suppose that G = (A, B, E) is a bipartite graph with
a labeling function R as mentioned above. Let fa (respectively, fg) be
a minimum R} -total (respectively, Ry-total) dominating function of G.
Let f be a function of G defined by f(v) = fa(v) for every v € A and
f(v) = fB(v) for every v € B. Then f is a minimum R-total dominating
SJunction of G.

In [14], Lee proposed a linear-time algorithm for computing a min-
imum R}-total (respectively, R%-total) dominating function of a bicon-
vex bipartite graph. Based upon Lee’s algorithm, we give the function
RTD(G,(X,Y), R, 1,,¢,d) for computing a minimum R} -dominating func-
tion of a convex bipartite graph G. The function RTD(G,(X,Y), R, I,
£,d) takes G, (X,Y), R, I1, £, and d as inputs. Input G represents a
convex bipartite graph, and X and Y are the bipartition of V(G). Input
(X,Y) is a strong convex ordering of G. Input R is a labeling function
assigning an integer R(v) to each vertex v € X UY. Inputs ¢, d, I)
are integers and ¢,d > 0. The weight set P is assumed to be the set
{hyh+d, +24,...,1 +(£-—1)-d}.

If (X,Y) = (B, A), the function RTD(G, (B, A), R, I, £,d) computes a
minimum RJ}-total dominating function of a convex bipartite graph G =
(A, B, E). If (X,Y) = (A, B), the function RTD(G, (4, B), R, I, ¢, d) com-
putes a minimum R}-total dominating function of G.

To illustrate RTD(G,(X,Y), R, 51, {,d) , we let H = (A, B, E) be the
convex bipartite graph with A = {a),a2,a3,a4} and B = {by, ba, b3, b4}
as shown in Figure 1. Let X = A, Y =B, I; = -1,¢£ =3, and d =
1. Then the weight set P = {—1,0,1}. Let R(v) = 1 for every vertex
v € AU B. By the function ConvexSets(H, A, B), we know that (4, B) =
a1,a4, a2, a3, by, b, b3, by is a strong convex ordering of G.

At the end of Step 4 of RTD(G, (4, B),R,—1,3,1), Rg(b;) = -2,
Rp(b2) = Rp(bs) = Rp(by) = -3, and Rp(v) = R(v) = 1 for every
vertex v € A. At the end of Step 5, v; = a3, v2 = a4, v3 = a2, v4 = a3, and
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Function RTD(G, (X,Y), R, I1,4,d)

1: for every vertexve XUY do

2: if ve Y then Ry (v) = I - dege(v);

3 else Ry(v) = R(v);

4: end for

5 vy, ...,vn — (X,Y);

6. fori+1ltondo

7 fw)<L+(-1)-4d;

8: end for

9: fori+—1ltondo

10: if Ry(v,-) > f(NG('Ui))

11: then stop and return the infeasibility of the problem;
12: end for

13: fori«+ 1tondo

14: if v; €Y then

15: M + min{f(Ng(v)) — Ry(v)Jv € Ng(v;)};
16: Fui) « max{l, 1 + ([£- 4] -1)-d};
17: end for

18: return the function f;

Vi+q = b; for 1 < i < 4. In Steps 6-8, f(v;) is initialized with the value 1 for
1 <4< n. Forl << n,itcan beeasily verified that Rg(v;) > f(Neg(v:))
for 1 £ i £ n. Therefore, RTD(G, (4, B), R, —1, 3, 1) does not stop in Step
11. For 5 < i < 8, v; is a vertex of B. RTD(G, (A, B), R, -1,3,1) assigns
the values —1, 1, 1, 1 to f(vs), f(vs), f(v7), f(vs), respectively. Then the
function f is an Rp-total dominating set of G.

In the following, Lemmas 7- 9 show the correctness of RTD(G, (X, Y), R,
I;,¢,d). Lemma 10 shows that the running time of RTD(G, (X,Y), R, 1,4, d)
is O(n + m) time. They can be proved by the arguments similar to those
for Lemmas 6-9 in [14].

Lemma 7. If the function f initialized by RTD(G, (X,Y), R,1,,¢,d) in
Steps 6-8 is not an R3 -total dominating function of G, then G has no
R-total dominating functions.

Lemma 8. The function f returned from Step 18 of RTD(G,(X,Y), R, I},
¢,d) is an Ry -total dominating function of G.

Lemma 9. The function f found by RTD(G,(X,Y),R, I1,¢,d) is a min-
imum Ry -total dominating function of G.

Lemma 10. The function RTD(G,(X,Y), R, I1,¢,d) computes a mini-
mum Ry, -total dominating function of a convez bipartite graph G = (X,Y, E)
in O(n + m) time.

221



Theorem 6. Given a convez bipartite graph G = (A, B, E) with|AUB| = n
and |E| = m, the R-total domination problem can be solved in O(n + m)
time.

Proof. By Lemmas 7-9, a function f4 (respectively, fg) obtained by
RTD(G, (B, A), R, I, ¢, d) (respectively, RTD(G, (4, B), R, I1,¢,d)) is
a minimum R} -total (respectively, Rj-total) dominating function of G.
Following Lemmas 6 and 10, the R-total domination problem is linear-time
solvable for a convex bipartite graph G. o

4 Conclusions

In this paper, we have presented a linear-time algorithm for the R-total
domination problem on convex bipartite graphs. Since the R-total domi-
nation problem includes the k-total, signed total, and minus total domina-
tion problems as special cases, our algorithm can also solve these problems
in linear time. In [13], the author solved the R-total domination problem
in O(n?) time for chordal bipartite graphs. Suppose that we are given a
chordal bipartite graph G. For further study, it is a great challenge to
design an algorithm to solve this problem on G in o(n?) time.

Acknowledgements. The author would like to thank the anonymous ref-
erees for their insightful comments which led to considerable improvements
in the presentation of the paper.
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