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Abstract

The Hosoya indez of a graph is defined as the summation of the
coefficients of the matching polynomial of a graph. In this paper,
we give explicitly expression of the graph C(n,v1v),Q(n,v1v,) and
D(s,t), and also characterized the extremal graphs with respect to
the upper and lower bounds of the Hosoya index of these graphs. In
particular, we give the Hosoya index order for graph C(n,v,v;) and
Q(n,v1v,), respectively.

1 Introduction

Let G be a simple graph, V(G) and E(G) be its vertex set and edge set,
respectively. Let m(G, k) denote the number of k—element matchings in
G. For convenience, we set m(G,0) = 1. Furthermore, m(G,1) = |E(G)| is
the number of edges. In [7}, E. J. Farrell defines the matching polynomial

as
n/2

u(G,z) =Y _(-1)*m(G, k)z"~2* (1)

k>0
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The Hosoya indez of a graph originated from the work of Hosoya [2],
in 1971. A topological parameter to study the relationship between the
molecular structure and the physical and chemical properties of the certain
hydrocarbon compounds, the Hosoya index is denoted as

Z(G) =) _m(G,k). (2)
k=0

Let P,, C, be the path and cycle of length n. Among all n vertex trees,
the path P, has the greatest Hosoya index Z(P,), and the star S, has
the smallest Hosoya index Z(S,) = n. Among the trees we have following
inequality:

n=2(S,) £ Z(T) £ Z(P,) = fa+1, (3)
where fn1 is the (n + 1)th Fibonacci number. This fact was established a
long time ago. Let /,, be the Lucas number, I,41 =l +lp_1, lo =2,0; = 1.
C(n,vv;) is obtained by joining vertices of v; and v; of C,, with an edge
(see in Fig.1.), where 1 < i < |Z]. Q(n,v1v,) is the graph obtained by
identifying a vertex of C, and a one degree vertex of P,_,4; (see in Fig.2.).
D(s,t),s <t is the graph obtained by identifying two vertices C; and C,
on vertex u, (see in Fig 3.). In this paper, we give explicitly expressions
of the graph C(n,v1v;), Q(n,v1vs) and D(s,t), and also characterized the
extremal graphs with respect to the upper and lower bounds of the Hosoya
index of these graphs. In particular, we give the Hosoya index order for
graph C(n,v1v;) and Q(n, v1v,), respectively. All other graph terminologies
are not introduced here, please refer to [1].

2 Basic lemmas

The following basic results will be used, we cited as lemmas.

Lemma 2.1. [3] Let G be a graph, then

1. Ifuv € E(G), then Z(G) = Z(G — wv) + Z(G — {wv}),

2. Ifue V(G), then Z(G) = Z(G —v) + Z,,ENG(”) Z(G - {u,v}),

3. If G1,Gs,...,Gr are k components of a graph G, then Z(G) =
=k z(G)).

i=1

Meanwhile, we need some results about Fibonacci numbers:
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Lemma 2.2. Let f,,l, be the Fibonacci and Lucas number. Then

L fmin = fmfnt1 + fafm-1i

2. fn=Jfefa—k+1+ fe-1fn-k, for 1 <k <n;
3. fa-rfa+ fnfat1 = foni

4. (Lucas 1680) frni1fn-1 — f? - (-1)m;

5. fa-kfmik = fnfm = (=1)"fm-n—tSis

where w is golden rational.

Lemma 2.3.

1 1+V5. .01
e
Z(Cp)=f(n=1)+ f(n+1).

Z(P)=f(n+1)= \/_)""’1

We need another two important relations between Fibonacci numbers
and Lucas number which are used to simplify our equations, we give as
lemmas 2.4 and 2.5.

Lemma 2.4. .
fkfn—k = g[ln - (—1)kln—2k]a (4)

where f, and l,, be the Fibonacci and Lucas numbers, respectively.
Proof. By the Binet’s formula f, = 71§[¢“ ~ (=¢)~™], we have
famtdi = 58" = (=) H8" — (=)=,
expand this equation, and with (—¢¢) = 1 we have
— _[¢n ~ (=1)k[p 2 4 (=g)~(P=28)],
meanwhile I, = ¢™ + (—¢)~", therefore

Frot i = Eltn = (=1) -]
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Lemma 2.5. ]
fsfter + fomrfe = g(la+t+l +ls4e-1), (5)

where f, and l,, be the nth Fibonacci number and nth Lucas number re-
spectively.

By the Binet’s formula, we can have Lemma 2.5 easily.

3 Main results

v

Fig.1. Graph C(n,vv;)

Theorem 3.1. Let n = 4m + 4,7 € {1,2,3,4},m = O then the Hosoya
indez of C(n,viv;) is

Z(C(n,n1v)) = fa—1 + fat1r + fimrfazigr,
and
Z(C(n,vnv4)) > Z(C(n,n1v8)) > ... > Z(C(n,v1vom4ar)) >
Z(C(n,v1v2m+1)) > Z(C(n,v102m-1)) > ... > Z(C(n,v1v5)) > Z(C(n,v1v3)),

i=1

where | = |5

Proof. By Lemma 2.1, take the chord v,v; = e as the edge we delete, then
easily have:

Z(C(n,n1%)) = fao1 + fas1 + fic1fa-in (6)
by the Lemma 2.4 E.q(4),

1 .
fa~it1fic1 = g[ln = (=1)"Up_giy2)



hence
Z(Cn,v0)) = f(n — 1)+ Fn+1) + gl — (-1 Snzisa

the only term depending on i is (—1)*"!l,_0;42. Since lp—2i42 is al-
ways positive and monotonically decrease respect to ¢ and C(n,v;v;) &
C(n,v1Un—i+1), then we may the order of the Hosoya index is:

Z(C(n,v1v4)) > Z(C(n,v106)) > ... > Z(C(n, v1vamsar)) >
Z(C(n,v1v2m+1)) > Z(C(n, vivem-1))
> ... > Z(C(n,v1v5)) > Z(C(n,v1v3)),
where [ = |#52, or in the sequence
Z(C(n,v1v4)) > Z(C(n,v196) > ... > Z(C(n,v1,V|n/2}))
> Z(C(n,v1vn2)) > ... > Z(C(n,v1v3))
O

Corollary 8.2. For graph C(n,vyv4) has the largest Hosoya index f,—1 +
Sfa+1 +2fn—3 and C(n,viv3) has the smallest Hosoya indezx fn_1+ fry1 +
fn—2 the bound is

Jrne1+ fag1 + frn-2 < Z(C(n1%)) < fa—1+ fay1 +2fn-3.

REMARK:

when n is even, then
Z(C(n,v1v4)) > Z(C(n,v16)) > ... > Z(C(n,v19ns2)))

1, 2 1, 3
=fa-1+ frrr + gla+ 2 > 2(C(L,n/2) = fac1 + frr + gla— ¢

>...2> Z(C’(n,vlvs))
For graph Q(n,v,v,), we have the following theorem.

Fig.2. Graph Q(n,v1v,)
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For the sake of simplicity, we write Q(¢,j) (where i,j is the length of the
cycle and the length of the path) instead of Q(n,v,v;) in theorem 3.3.

Theorem 3.3. The Hosoya index of graph Q(s,n — s) respect to s is:
Z(Q(4,n—4)) > Z(Q(6,n—86)) >...> Z(Q(2m,n — 2m))
>Z(Q(2m —-1,n-2m+1))>...> Z(Q(3,n — 3)).

Proof. Take an edge from C, which adjacent to the degree of vertex 3, by
Lemma 2.1,we have

Z(Q(syn = 3)) = fnt1 + fom1fa-s+1,
by lemma 2.4 E.q (4),

1 1
Z(Q(31 n-— S)) = fat1+ gln - (“l)s_lgln—23+2,

similar discuss as theorem 3.1, we have
Z(Q(4,n—4)) > Z(Q(6,n —6)) > ... > Z(Q(2m,n — 2m))
>Z(Q2m—-1,n-2m+1))>...> Z(Q(3,n - 3)).
]

For graph Q(s, t), Q(4, n—4) has the largest Hosoya index and Q(3,n—3)
has least Hosoya index, the bound is

Ja—2 +4fn+1 < Z(Q(8,1)) < fr41 +2fn-3.

Fig. 3. Infinity graph D(s,t)

Theorem 3.4. The Hosoya indez of infinity graph D(s,t),n = s+t—1,s <
tis

Z(D(s,t)) = 2fagt — foft,

furthermore, when s+t > 8, D(3, s+t —3) has the minimum Hosoya inder
which is 4fn_1. D([(n +1)/2], [(n + 1)/2]) has the largest Hosoya indez.
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Proof. By Lemma 2.1, we have
Z(D(s,t)) = Z(Ps-1)Z(Pe-1) + 2Z2(Ps—2)Z(Pe-1) + 2Z(P-2)Z(P;-1).
Since Z(Pn) = fas1, hence |
Z(D(s,t)) = fsfe + 2fs—1ft +2ft-11s

= fsft + 2fe—lft + th—lfs + 2fsft+1 - 2fsft+l
= foft + 2(fo-1fo + fofra1) + 2(fe-1fs — fsfea1),
by Lemma 2.2 fs_1fi + fsfe+1 = fste, and fey1 = fe + fi—1, we have

Z(D(s:t)) = 2fo4t — foft

By Lemma 2.4, f, fi = fn—1-sfs = $[ln—1—(—1)*ln—1-2,) has largest value
when s = 3. Then D(3,s +t — 3) has the minimum Hosoya index. D(s,t)
when |s — t| < 1 has the largest Hosoya index. O

REMARK:
For the infinity graph of order 5 < n < 8, it is to calculate the Hosoya

index of it.
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