Computation of the Folkman Number $F_v(3,5;6)^{\dagger}$

Zehui Shao

School of Information Science & Technology Chengdu University, Chengdu 610106, China; Key Laboratory of Pattern Recognition and Intelligent Information Processing kidszh_mail@163.com

Meilian Liang

School of Mathematics and Information Science Guangxi University, Nanning 530004, China

Linqiang Pan

Key Laboratory of Image Processing and Intelligent Control;
Department of Control Science and Engineering
Huazhong University of Science and Technology, Wuhan 430074, China

Xiaodong Xu

Guangxi Academy of Sciences Nanning, Guangxi 530007, China xxdmaths@sina.com

Abstract We prove that $F_{\nu}(3,5;6) = 16$, which solves the smallest open case of vertex Folkman numbers of the form $F_{\nu}(3,k;k+1)$. The proof uses computer algorithms.

1 Introduction

We shall only consider simple graphs without multiple edges or loops. If G is a graph, then the set of vertices of G is denoted by V(G), the set of

[†]Supported by Chengdu University School Foundation (2010XJZ27), Science and Technology Project of Chengdu (10RKYB041ZF-023), Sichuan Youth Science & Technology Foundation (2010JQ0032), the NFS of GuangXi (2011GXNSFA018142, 0991027) and the National Natural Science Foundation of China (grants 61033003 and 60903105).

edges by E(G) and the complementary graph of G by \overline{G} . The subgraph of G induced by $S \subseteq V(G)$ will be written as G[S].

Graph G is an (s,t)-graph if G contains neither clique of order s nor independent set of order t. We denote by $\mathcal{R}(s,t)$ the set of all (s,t)-graphs, and an (s,t)-graph of order n is called an (s,t;n)-graph. Let $\mathcal{R}(s,t;n)$ be the set of all (s,t;n)-graphs.

For a graph G, complete graph K and a vertex set $S \subseteq V(G)$, we say that S is (G, +v, K)-maximal if and only if $K \not\subseteq G[S]$ and $K \subseteq G[S \cup \{v\}]$, for every vertex $v \in V(G) - S$.

In this note, we study vertex Folkman numbers and graphs, which form a branch of Ramsey theory. For a graph G and positive integers a_1, a_2, \dots, a_r , we write $G \to (a_1, a_2, \dots, v_r)^v$ if every r-coloring of the vertices of G results in a monochromatic a_i -clique of color i, for some $i \in \{1, 2, \dots, r\}$. Let

$$\mathcal{F}_{v}(a_1, a_2, \cdots, a_r; k) = \{G : G \to (a_1, a_2, \cdots, a_r)^v \text{ and } K_k \not\subseteq G\}.$$

The graphs in $\mathcal{F}_{v}(a_{1}, a_{2}, \dots, a_{r}; k)$ are called (Folkman) $(a_{1}, a_{2}, \dots, a_{r}; k)^{v}$ -graphs. An $(a_{1}, a_{2}, \dots, a_{r}; k)^{v}$ -graph of order n will be called an $(a_{1}, a_{2}, \dots, a_{r}; k; n)^{v}$ -graph. The set of all $(a_{1}, a_{2}, \dots, a_{r}; k; n)^{v}$ -graphs will be denoted by $\mathcal{F}_{v}(a_{1}, a_{2}, \dots, a_{r}; k; n)$. Then, the vertex Folkman numbers are defined by

$$F_v(a_1, a_2, \dots, a_r; k) = \min\{|V(G)| : G \in \mathcal{F}_v(a_1, a_2, \dots, a_r; k)\}.$$

One can easily see that $F_v(a_1, a_2, \dots, a_r; k)$ does not depend on the order of a_1, \dots, a_r and thus without loss of generality we will assume that $a_1 \leq a_2 \leq \dots \leq a_r$. Folkman [1] proved that $\mathcal{F}_v(a_1, \dots, a_r; k)$ is nonempty if and only if $k > \max\{a_1, \dots, a_r\}$. By the pigeonhole principle, we observe that $K_m \to (a_1, \dots, a_r)^v$, if

$$m = 1 + \sum_{i=1}^{r} (a_i - 1).$$

This easily leads to the solution in the case of k=m+1, namely the equality $F_v(a_1,\ldots,a_r;m+1)=m$. As k becomes smaller the problem of computing Folkman numbers of this form is getting harder. Luczak, Ruciński and Urbański [2] proved that $F_v(a_1,\ldots,a_r;m)=a_r+m$. For $k\leq m-1$ only partial results are known. Interestingly, one of the smallest nontrivial cases, $F_v(3,3;4)=14$ (k=m-1=4), was quite difficult to prove [7, 10]. It is also the first case in the family of vertex Folkman numbers of the form $F_v(3,k-1;k)$, which attracted significant attention in previous studies. In particular, Nenov, in 2001 [9], proved that $F_v(3,4;5)=13$ and later [8] he also established a general bound as in the following theorem.

Theorem 1 For $k \geq 3$, $2k + 4 \leq F_v(3, k; k + 1) \leq 4k + 2$.

In this note, we obtain the exact value for the first open case in this family, $F_v(3,5;6)$. The proof is computational. The exact values of $F_v(3,k;k+1)$ remain open for $k \ge 6$.

By Theorem 1, we have $F_v(3,5;6) \geq 14$. Some general bounds for numbers of this form were obtained in [11], in particular the bound $F_v(3,5;6) \leq 16$. Hence we know that $14 \leq F_v(3,5;6) \leq 16$. The computations described in the next sections show that there is no graph of order 15 which is K_6 -free and satisfies $G \to (3,5)^v$. This will imply that $F_v(3,5;6) \geq 16$ and thus $F_v(3,5;6) = 16$.

2 Proof of $F_v(3,5;6) \ge 15$

Luczak, Ruciński and S. Urbański [2] proved the following theorem.

Theorem 2 Let $m = 1 + \sum_{i=1}^{r} (a_i - 1)$. The graph $K_{a_r+m} - C_{2a_r+1}$ is the unique $(a_r + m)$ -vertex graph G with properties $G \to (a_1, a_2, \dots, a_r)^v$ and $K_m \nsubseteq G$.

If $r=2, a_1=2$ and $a_2=5$, then for m=6 by Theorem 2 we have that $\overline{C_{11}}$ is the unique 11-vertex K_6 -free graph with the property $\overline{C_{11}} \to (2,5)^v$. All 263520 (6,3;14)-graphs are given in [5]. With the help of a computer, we found that none of these graphs is a Folkman $(3,5;6)^v$ -graph. Hence, if there exists a Folkman $(3,5;6;14)^v$ -graph G, then G contains a 3-independent set. Let the graph G be obtained by removing a 3-independent set from G. Then, clearly, G by Theorem 2, G is the unique graph G order 11 satisfying G by Theorem 2, G and thus G by the following procedure Find G by the following procedure Find G is the unique graph G order 14 by the following procedure Find G is the unique graph G order 14 by the following procedure Find G is the unique graph G in G is the unique graph G order 14 by the following procedure Find G is the unique graph G in G is the unique graph G is the unique graph G in G is the unique graph G in G in G is the unique graph G in G is the unique graph G in G in

We implemented the algorithm $\operatorname{Find} F_v 356\operatorname{Graph}$. Multiple independent checks were done to ensure the correctness of the intermediate steps. The computations using $\operatorname{Find} F_v 356\operatorname{Graph}$ and starting with $H \cong \overline{C_{11}}$ produced an empty set \mathcal{T} . Hence we have the following lemma.

Lemma 1 $F_v(3,5;6) \ge 15$.

Procedure 1 FindF_v356Graph

```
    T ← ∅;
    find the family M = {S ⊆ V(H) : S is (H, +v, K<sub>5</sub>)-maximal} let |M| = n and M = {S<sub>1</sub>, S<sub>2</sub>, ..., S<sub>n</sub>};
    for all S<sub>1</sub>, S<sub>2</sub>, S<sub>3</sub> ∈ M do
    construct in all possible ways graph F by adding three vertices v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub> to H, such that N<sub>F</sub>(v<sub>i</sub>) = S<sub>i</sub> for i = 1, 2, 3;
    if F ∈ F<sub>v</sub>(3, 5; 6) then
    add F to the set T;
    end if
    end for
```

3 Proof of $F_v(3,5;6) \ge 16$

We will say that the graph G has Property A if

$$G \in \mathcal{F}_{v}(3,4;6;12) \cap \mathcal{F}_{v}(2,5;6;12).$$

All the 116792 (6,3;12)-graphs are known and they are available from [4]. Processing them with straightforward computer algorithms and using some simple reasonings, we found that the facts stated in the next three observations hold.

Observation 1 There are exactly 283 graphs which have Property A and have no 3-independent sets.

Observation 2 If $G \in \mathcal{F}_v(3,5;6;15)$, then G has a 3-independent set.

Proof. Suppose that there is a graph $G \in \mathcal{F}_{\nu}(3,5;6;15)$ containing no 3-independent sets. Then G is a (6,3;15)-graph. All 64732 (6,3;15)-graphs are given in [6]. By a simple computer search, it is easy to verify that there is no (6,3;15)-graph G satisfying $G \to (3,5)^{\nu}$.

Observation 3 If $G \in \mathcal{F}_{v}(3,5;6;15)$, then G has no 4-independent sets.

Proof. Suppose that there exists a graph $G \in \mathcal{F}_v(3,5;6;15)$ containing a 4-independent set. Let H be a graph obtained from G by removing a 4-independent set, so clearly $H \to (2,5)^v$. By Theorem 2, $\overline{C_{11}}$ is the unique graph H of order 11 satisfying $H \to (2,5)^v$. Thus we have $H \cong \overline{C_{11}}$. The graph $\overline{C_{11}}$ was extended to all potential Folkman graphs of order 15 by a slightly modified procedure Find F_v 356 Graph, which was adding 4 new vertices instead of 3. Similarly as before no graphs were produced.

Observations 2 and 3 imply that the largest independent set in every graph in $\mathcal{F}_{v}(3,5;6;15)$ has exactly 3 vertices. Hence, if H is a graph obtained by removing a 3-independent set from any such graph, then we have $H \in \mathcal{R}(6,4;12)$, $H \to (2,5)^{v}$ and $H \to (3,4)^{v}$. We will consider two cases:

Case 1. H contains no 3-independent set.

By Observation 1, there are 283 graphs possible graphs H. All of them were processed by the algorithm Find F_{ν} 356Graph and no Folkman graphs of the type (3,5;6;15) were found.

Case 2. H contains 3-independent set but no 4-independent set.

First, we claim that $\Delta(H) \leq 9$. Let v be any vertex in V(H). Since H is K_6 -free we know the subgraph of H induced by the neighbors of v in H is K_5 -free. Because $H \to (2,5)^v$, we can see that there must be a K_2 in the subgraph of H induced by the non-neighbors of v in H. This implies that the degree of v in H is at most v. Next, we will consider the following two subcases:

Subcase 2.1. $\delta(H) \geq 5$. Let

$$\mathcal{A}_{1} = \{G|G \in \mathcal{R}(6,4;12), \delta(G) \geq 5, \Delta(G) \leq 9\},
\mathcal{A}_{2} = \{G|G \in \mathcal{A}_{1}, G \text{ contains } K_{5}\},
\mathcal{A}_{3} = \{G|G \in \mathcal{A}_{2}, G \in \mathcal{F}_{v}(2,5;6)\},
\mathcal{A}_{4} = \{G|G \in \mathcal{A}_{3}, G \in \mathcal{F}_{v}(3,4;6)\}.$$

We generated all (6,4;12)-graphs with vertex degrees ranging from 5 to 9 (set \mathcal{A}_1) using program geng [3]. Next, the sets \mathcal{A}_2 , \mathcal{A}_3 and \mathcal{A}_4 were obtained from \mathcal{A}_1 by direct computations. In Table 1, we give the statistics of the number of graphs in \mathcal{A}_1 , \mathcal{A}_2 , \mathcal{A}_3 and \mathcal{A}_4 , broken by the number of edges ranging between 30 and 54. All graphs in \mathcal{A}_4 were extended by the algorithm Find F_v 356Graph and no target Folkman graphs were found. We note that because of large size of \mathcal{A}_1 , direct computations from the definitions were not feasible.

Table 1: Statistics of $|A_i|$ by the number of edges

edges	$ \mathcal{A}_1 $	$ \mathcal{A}_2 $	$ \mathcal{A}_3 $	$ \mathcal{A}_4 $	
54	5	4	1	0	
53	37	36	1	0	
52	384	378	22	11	
51	3609	3583	119	72	
50	28772	28626	440	225	
49	185632	184794	785	332	
		Continued on next page			

Table 1 – continued	from	previous	page
---------------------	------	----------	------

edges	$ \mathcal{A}_1 $	$ \mathcal{A}_2 $	$ \mathcal{A}_3 $	$ \mathcal{A}_4 $
48	962357	957268	872	241
47	4044300	4014482	635	120
46	13939178	13773581	331	36
45	39783385	38955541	112	9
44	94687495	91128734	26	1
43	188829276	176174913	3	0
42	316441087	280162007	0	0
41	446190267	363551169	0	0
40	529053391	380734861	0	0
39	525790315	317400595	0	0
38	434789038	207235423	0	0
37	295260018	104024127	0	0
36	161235786	39297469	0	0
35	68573182	10882328	0	0
34	21640455	2127510	0	0
33	4697021	276658	0	0
32	616123	21663	0	0
31	37832	871	0	0
30	590	15	0	0

Subcase 2.2. $\delta(H) \leq 4$.

Consider $v \in V(H)$ with $d(v) \leq 4$. Since $H \to (2,5)^v$, we have $H \setminus \{v\} \to (2,5)^v$. By Theorem 2, $H \setminus \{v\} \cong \overline{C_{11}}$. An initial graph family \mathcal{B}_1 was constructed by adding a vertex v to $\overline{C_{11}}$ in all possible ways, so that $d(v) \leq 4$. Then by processing \mathcal{B}_2 , \mathcal{B}_3 and \mathcal{B}_4 defined similarly to \mathcal{A}_i 's from the subcase 2.1, we obtained no final Folkman graphs. The computations for the subcase 2.2 were much faster.

Thus, the above analysis implies that $F_{\nu}(3,5;6) \geq 16$. Since $F_{\nu}(3,5;6) \leq 16$ [11], the following theorem holds.

Theorem 3 $F_{v}(3,5;6) = 16$.

3.1 Next Challenges

The next open case of the form $F_v(3, k; k+1)$ is for k=6. Theorem 1 implies that $16 \le F_v(3, 6; 7)$ and the upper bound of 18 was obtained in [11]. Computing the exact value of $F_v(3, 6; 7)$ is likely difficult, but might be doable.

For slightly different type of parameters, now avoiding K_{m-2} , it is known that $17 \le F_v(4,4;5) \le 23$ [12]. This is a very elegant case, yet

despite significant effort the gap between lower and upper bounds indicates that we don't understand it very well. Try to make this gap smaller!

Acknowledgment

The authors wish to thank Professor S. P. Radziszowski for his many helpful suggestions leading to the present form of this paper.

References

- [1] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring. SIAM Journal on Applied Mathematics 18 (1970) 19-24.
- [2] T. Luczak, A. Ruciński and S. Urbański, On minimal Folkman graphs. Discrete Mathematics 236 (2001) 245-262.
- [3] B. D. McKay, nauty user's guide, Technical Report TR-CS-90-02, Computer Science Department, Australian National University. Software available from http://cs.anu.edu.au/~bdm/nauty.
- [4] B. D. McKay, http://cs.anu.edu.au/~bdm/data/r36_12.g6.gz.
- [5] B. D. McKay, http://cs.anu.edu.au/~bdm/data/r36_14.g6.gz.
- [6] B. D. McKay, http://cs.anu.edu.au/~bdm/data/r36_15.g6.gz.
- [7] N. Nenov, An example of a 15-vertex Ramsey (3,3)-graph with clique number 4 (in Russian). C. R. Acad. Bulgare Sci. 34 (1981) 1487-1489.
- [8] N. Nenov, On a class of vertex Folkman graphs. Annuaire Univ. Sofia Fac. Math. Inform. 94 (2001) 15-25.
- [9] N. Nenov, On the vertex Folkman number F(3, 4). C. R. Acad. Bulgare Sci. 54 (2001) 21-24.
- [10] K. Piwakowski, S. P. Radziszowski and S. Urbański, Computation of the Folkman number $F_e(3,3;5)$. Journal of Graph Theory 32 (1999) 41-49.
- [11] Z. Shao, X. Xu and L. Pan, New upper bounds for vertex Folkman numbers $F_{v}(3, k; k+1)$. Utilitas Mathematica 80 (2009) 91–96.
- [12] X. Xu, H. Luo and Z. Shao, Upper and lower bounds for $F_{v}(4,4;5)$. The Electronic Journal of Combinatorics 17 (2010), #N34.