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Abstract We prove that F,(3,5;6) = 16, which solves the smallest
open case of vertex Folkman numbers of the form F, (3, k; £+1). The proof
uses computer algorithms.

1 Introduction

We shall only consider simple graphs without multiple edges or loops. If
G is a graph, then the set of vertices of G is denoted by V(G), the set of
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edges by E(G) and the complementary graph of G by G. The subgraph of
G induced by S C V(G) will be written as G[S].

Graph G is an (s,t)-graph if G contains neither clique of order s nor
independent set of order t. We denote by R(s,t) the set of all (s,t)-graphs,
and an (s, t)-graph of order n is called an (s,t; n)-graph. Let R(s,¢;n) be
the set of all (s,t; n)-graphs.

For a graph G, complete graph K and a vertex set S C V(G), we say
that S is (G, +v, K)-maximal if and only if K ¢ G[S] and K C G[SU{v}],
for every vertex v € V(G) — S.

In this note, we study vertex Folkman numbers and graphs, which
form a branch of Ramsey theory. For a graph G and positive integers
ay,ag, - ,a., we write G — (aj,aq,---,v;)? if every r-coloring of the
vertices of G results in a monochromatic a;-clique of color 4, for some
i€ {1,2,---,r}. Let

Fola,az, -+ ,ar; k) = {G: G — (a1,a2,---,a,)” and Ky € G}.

The graphs in F,(a1,az,---,ar; k) are called (Folkman) (a;, az, ---,
ar;k)’-graphs. An (a1,a2,---,ar; k)V-graph of order n will be called an
(a1,a2,:--,ar; k;n)?’~graph. The set of all (a1, a2, :-,ar; k;n)*-graphs will
be denoted by F,(a1,as,--,a,; k;n). Then, the vertex Folkman numbers
are defined by

F,(a1,a2, -+ ,ar;k) = min{|V(G)|: G € F,(a1,az, - -,ar; k)}.

One can easily see that F,(ai,az,---,ar; k) does not depend on the
order of a;,...,a, and thus without loss of generality we will assume that
a1 € a3 < ... < a,. Folkman [1] proved that Fy(a1,...,ar; k) is nonempty
if and only if k¥ > max{a,,...,a,}. By the pigeonhole principle, we observe
that K, — (a1,...,a,)?, if

m= 1+zr:(0,i—1).
i=1

This easily leads to the solution in the case of ¥ = m + 1, namely the
equality Fy(a1,...,ar;m + 1) = m. As k becomes smaller the problem
of computing Folkman numbers of this form is getting harder. Luczak,
Ruciniski and Urbanski {2] proved that F,(ai,...,ar;m) = a, + m. For
k < m—1 only partial results are known. Interestingly, one of the smallest
nontrivial cases, F,(3,3;4) = 14 (k = m — 1 = 4), was quite difficult to
prove (7, 10]. It is also the first case in the family of vertex Folkman numbers
of the form F,(3,k —1; k), which attracted significant attention in previous
studies. In particular, Nenov, in 2001 [9], proved that F,(3,4;5) = 13 and
later [8] he also established a general bound as in the following theorem.
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Theorem 1 Fork >3, 2k+4< F,(3,k;k+1) < 4k + 2.

In this note, we obtain the exact value for the first open case in
this family, F,(3,5;6). The proof is computational. The exact values of
F,(3,k;k + 1) remain open for & > 6.

By Theorem 1, we have F,(3,5;6) > 14. Some general bounds for
numbers of this form were obtained in [11], in particular the bound
F,(3,5;6) < 16. Hence we know that 14 < F,(3,5;6) < 16. The com-
putations described in the next sections show that there is no graph of
order 15 which is Kg-free and satisfies G — (3,5)”. This will imply that
F,(3,5;6) > 16 and thus F,(3,5;6) = 16.

2 Proof of F,(3,5;6) > 15
Luczak, Rucinski and S. Urbaiiski (2] proved the following theorem.

Theorem 2 Letm =1+Y;_; (ai — 1). The graph Ko _tm — Caa, 41 is the
unique (ar + m)-vertex graph G with properties G — (a1,a2,--+,a,)" and
Kn¢G.

If r = 2,a) = 2anday = 5, then for m = 6 by Theorem 2 we have that Cj;
is the unique 11-vertex Kg-free graph with the property C1; — (2,5)".
All 263520 (6,3;14)-graphs are given in [5]. With the help of a com-
puter, we found that none of these graphs is a Folkman (3, 5; 6)"-graph.
Hence, if there exists a Folkman (3, 5; 6; 14)*-graph G, then G contains a 3-
independent set. Let the graph H be obtained by removing a 3-independent
set from G. Then, clearly, H — (2,5)”. By Theorem 2, Cj; is the unique
graph H of order 11 satisfying H — (2,5)” and thus H = C};. The graph
C1; was extended to potential Folkman graps of order 14 by the following
procedure Find F,,356Graph.

We implemented the algorithm Find 7,,356Graph. Multiple independent
checks were done to ensure the correctness of the intermediate steps. The
computations using Find F,,356Graph and starting with H = C1; produced
an empty set 7. Hence we have the following lemma.

Lemma 1 F,(3,5;6) > 15.
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Procedure 1 FindF,356Graph
T« 0
2: find the family M = {§ C V(H): S is (H, +v, K5)-maximal}
let |M| =n and M = {51, 5,,-+-,5,};
3: for all S;, S3, S3 € M do
4: construct in all possible ways graph F by adding three vertices
v1,v2,v3 to H, such that Np(v;) = S; for i = 1,2, 3;
5. if F e F,(3,5;6) then
6 add F' to the set T;
7.  end if
8: end for

3 Proof of F,(3,5;6) > 16
We will say that the graph G has Property A if
G € F,(3,4;6;12) N F,(2,5; 6;12).

All the 116792 (6,3;12)-graphs are known and they are available from
[4]. Processing them with straightforward computer algorithms and using
some simple reasonings, we found that the facts stated in the next three
observations hold.

Observation 1 There are exactly 283 graphs which have Property A and
have no 3-independent sets.

Observation 2 If G € F,(3,5;6;15), then G has a 3-independent set.

Proof. Suppose that there is a graph G € F,(3,5;6; 15) containing no 3-
independent sets. Then G is a (6,3;15)-graph. All 64732 (6, 3; 15)-graphs
are given in [6]. By a simple computer search, it is easy to verify that there
is no (6, 3; 15)-graph G satisfying G — (3,5)". D

Observation 3 If G € F,(3,5;6;15), then G has no 4-independent sets.

Proof. Suppose that there exists a graph G € F,(3,5;6; 15) containing a
4-independent set. Let H be a graph obtained from G by removing a 4-
independent set, so clearly H — (2,5)*. By Theorem 2, C1; is the unique
graph H of order 11 satisfying H — (2,5)”. Thus we have H & C);. The
graph C;; was extended to all potential Folkman graphs of order 15 by
a slightly modified procedure FindF,356Graph, which was adding 4 new
vertices instead of 3. Similarly as before no graphs were produced. O
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Observations 2 and 3 imply that the largest independent set in every
graph in F,(3, 5;6;15) has exactly 3 vertices. Hence, if H is a graph ob-
tained by removing a 3-independent set from any such graph, then we have
H e R(6,4;12), H — (2,5)" and H — (3,4). We will consider two cases:

Case 1. H contains no 3-independent set.
By Observation 1, there are 283 graphs possible graphs H. All of them
were processed by the algorithm FindF,,356Graph and no Folkman graphs

of the type (3, 5; 6;15) were found.

Case 2. H contains 3-independent set but no 4-independent set.

First, we claim that A(H) < 9. Let v be any vertex in V(H). Since H is
Ki-free we know the subgraph of H induced by the neighbors of v in H is
Ks-free. Because H — (2,5)”, we can see that there must be a K3 in the
subgraph of H induced by the non-neighbors of v in H. This implies that
the degree of v in H is at most 9. Next, we will consider the following two

subcases:
Subcase 2.1. §(H) > 5. Let

A = {G|G e R(6,4,12),6(G) > 5,A(G) <9},
A {G|G € A, G contains Ks},
As {G|G € A;,G € F,(2,5;6)},
Ay = {G|Ge A3,G € F,(3,4;6)}.

We generated all (6,4;12)-graphs with vertex degrees ranging from 5
to 9 (set A;) using program geng [3]. Next, the sets A;, A3 and A4 were
obtained from .A; by direct computations. In Table 1, we give the statistics
of the number of graphs in 4;, A2, A3 and A4, broken by the number of
edges ranging between 30 and 54. All graphs in A4 were extended by
the algorithm FindF,,356Graph and no target Folkman graphs were found.
We note that because of large size of A;, direct computations from the
definitions were not feasible.

Table 1: Statistics of | 4;| by the number of edges

edges |A,] [Az] |As| A4
54 5 4 1 0

53 37 36 1 0

52 384 378 22 11
51 3609 3583 119 72
50 28772 28626 440 225

49 185632 184794 785 332
Continued on next page
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Table 1 — continued from previous page
edges |A; | Az As| A4
48 962357 957268 872 241
47 4044300 4014482 635 120
46 13939178 13773581 331 36

45 39783385 38955541 112 9
44 94687495 91128734 26 1
43 188829276 176174913 3 0
42 316441087 280162007 O 0
41 446190267 363551169 O 0
40 529053391 380734861 O 0
39 525790315 317400595 O 0
38 434789038 207235423 O 0
37 295260018 104024127 0 0
36 161235786 39297469 O 0
35 68573182 10882328 O 0
34 21640455 2127510 0 0
33 4697021 276658 0 0
32 616123 21663 0 0
31 37832 871 0 0
30 590 15 0 0

Subcase 2.2. §(H) < 4.

Consider v € V(H) with d(v) < 4. Since H — (2,5)", we have H \
{v} = (2,5)*. By Theorem 2, H \ {v} 2 C};. An initial graph family B,
was constructed by adding a vertex v to Cj; in all possible ways, so that
d(v) € 4. Then by processing B3, B3 and By defined similarly to A;’s from
the subcase 2.1, we obtained no final Folkman graphs. The computations
for the subcase 2.2 were much faster.

Thus, the above analysis implies that F,(3,5;6) > 16. Since
F,(3,5;6) < 16 (11}, the following theorem holds.

Theorem 3 F,(3,5;6) = 16.

3.1 Next Challenges

The next open case of the form F,(3,k;k + 1) is for k = 6. Theorem 1
implies that 16 < F,(3,6;7) and the upper bound of 18 was obtained in
[11]. Computing the exact value of F,(3,6;7) is likely difficult, but might
be doable.

For slightly different type of parameters, now avoiding Kp,_s, it is
known that 17 < F,(4,4;5) < 23 [12]. This is a very elegant case, yet
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despite significant effort the gap between lower and upper bounds indi-
cates that we don’t understand it very well. Try to make this gap smaller!
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