On the sum of powers of the signless Laplacian
eigenvalues of graphs

Shu-Yu Cui®, Gui-Xian Tian®*
@ Xingzhi College, Zhejiang Normal University,
Jinhua, Zhejiang, 321004, P.R. China
. ®College of Mathematics, Physics and Information Engineering,
Zhejiang Normal University, Jinhua, Zhejiang, 821004, P.R. China

Abstract

For a graph G and a real number & # 0, the graph invariant
5% (G) is the sum of the ath power of the non-zero signless Laplacian
eigenvalues of G. In this paper, Several lower and upper bounds
for s¥(G) with a # 0,1 are obtained. Applying these results, we
also obtain some bounds for the incidence energy of graphs, which
generalize and improve on some known results.

AMS classification: 05C50 05C80

Keywords: Graph; Signless Laplacian matrix; Signless Laplacian
eigenvalue; Incidence matrix; Incidence energy

1. Introduction

Let G be a simple graph with vertex set V = {v1,vs,...,v,}. The
adjacency matrix A(G) of G is defined by its (i, j)-entry is 1 if vertices v;
and v; are adjacent and 0 otherwise. Let D(G) be the diagonal matrix of
order n whose (i,7)-entry is the degree of the vertex v; of the graph G.
The matrices L(G) = D(G) — A(G) and Q(G) = D(G) + A(G) are called
the Laplacian matrix and the signless Laplacian matrix of G, respectively. -
The eigenvalues of L(G) are called the Laplacian eigenvalues and denoted
by u1 2 p2 = -+ 2 pin—1 2 pn = 0. The eigenvalues of Q(G) are called
the signless Laplacian eigenvalues and denoted by q; > g2 > -+ > g1 >
gn > 0. For the Laplacian matrix, readers may refer to [10, 17, 19, 21, 22]
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and the references therein. For more review about the signless Laplacian
matrix of G, readers may refer to [3, 6, 7, 8, 9] and the references therein.

Let G be a simple graph with n vertices. For the Laplacian matrix
L(G) of G, Lazié[13] studied some properties of the sum of the squares
of the Laplacian eigenvalues of G where Lazié called it the Laplacian en-
ergy of the graph G. In 2008, Liu and Liu[15] introduced the so-called
Laplacian-energy like invariant LEL(G), as the sum of the square roots of
the eigenvalues of the Laplacian matrix of G, i.e., LEL(G) = >, \/lt.
Some properties of LEL(G) were established in [15, 16, 18]. Motivated by
above, Zhou[22] introduced the graph invariant s, (G), as the sum of the ath
power of the non-zero Laplacian eigenvalues of G, i.e., s4(G) = E:;l ue,
where h is the number of non-zero Laplacian eigenvalues of G. Some prop-
erties of s4(G) were obtained in [19, 22].

For the signless Laplacian matrix @Q(G) of a graph G, Jooyandeh et
al.[14] introduced the concept of incidence energy IE(G) of a graph G,
defining it as the sum of the singular values of the incidence matrix I(G) of
G. In [12], Gutman et al. obtained the following basic property: IE(G) =

=1/ Some properties of I E(G) were established in [8, 11, 12, 14].

Motivated by these results, we consider the sum of the ath power of
the signless Laplacian eigenvalues of a graph G. Let G be a simple graph
with n vertices. For a non-zero real number o, s}(G), called the sum
of the ath power of the non-zero signless Laplacian eigenvalues of G, is
defined as s¥(G) = Y, ¢, where h is the number of non-zero signless
Laplacian eigenvalues of G. The case o = 1 is trivial as sT(G) = 2m, where
m is the number of edges. Akbari et al.[1, 2] obtained some inequalities
about s}(G). For a non-negative integral number a, Cvetkovié et al.[3]
established some properties of s} (G) where it was called the ath spectral
moment for the signless Laplacian eigenvalues of G (also see [5]). If « = 1,

then si‘(G) = I E(G), which is exactly the incidence energy of G. For more
review about the incidence energy of G, readers may refer to [8, 11, 12, 14]
and the references therein.

In this paper, we establish some properties for s} (G) whenever a is real
number with a # 0,1. Applying these results, we also obtain some bounds
for the incidence energy of graphs, which generalize and improve on some
known results.

2. Preliminaries

Lemma 1(4]. Let G be a graph on n vertices and m edges and let e be an
edge of G. Then

1(G) 2 q1(G—e) 2 ¢2(G) 2 q2(G—€) 2 -+ 2 a(G) 2 qa(G—¢) 2 0.
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Lemma 2(3]. Let G be a connected graph with diameter d. Then G has at
least d + 1 distinct signless Laplacian eigenvalues.

Lemma 3[7]. Let G be a connected graph without vertices of degree 1,
with maximum degree A. Then

1
> —_—
an=>2A+1+ A1
with equality if and only if G is a cycle C,.

Lemma 4[4]. Let G be a connected graph of order n > 2 and mazimum
degree A. Then q; > A + 1 with equality if and only if G is the star Sp.

Proof. In [4], Cvetkovic et al. proved that the result holds whenever
n > 4. It is easy to verify that the result also holds whenever n =2,3. O

Lemma 5. Suppose that 1,z3,...,Tn are any positive numbers:
(i) Ifa<0ora>1, then

n n @
Zw;" > nl-e (Z :z:;)
i= i=1

with equality if and only if £y = x2 = -+ = z,.
(#) If0<a <1, then

n n o
Zx? < pl-e (Ex,-)
3 i=1

with equality if and only if x1 =23 =+ - =z,
Proof. These are immediate consequences of the Jensen inequality.O

For a connected graph G and its vertex v;, let d; and t; denote the
degree of v; and the sum of the degrees of the first neighbors of v; in G,
respectively. For convenience, we define

2
. \J T (W +80 + 5y B 1)
iy (dF +1:)?
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Lemma 6[19]. Let G be a connected graph with degrees dy,ds,...,d,.
Then

a1 > 7(G). (1)

The equality holds in (1) if and only if there exists a positive constant
number t such that, for alli € {1,2,...,n},

di(d] +t:) + 30, (dF +15) .
d? + & -

In particular, the equality in (1) holds if G is a regular or semiregular bi-
partite graph.

Proof. By modifying slightly the proof of Theorem 1 in [19], we obtain
the required result.0

Applying Lemma 6, we can get the following result, which is exactly
Theorem 9 in [20] (also see [12]).

Corollary 1[12, 20]. Let G be a connected graph with degrees dy,dy, ..., dn.
Then

02 7(6) = (| Bl ELNS, @

with equality if and only if G is a regular or semiregular bipartite graph.

3. Main results

Theorem 1. Let G be a graph with n vertices and m edges. Suppose that
G has h non-zero signless Laplacian eigenvalues:
(i) Ifa<0ora>1, then

s3(G) 2 hi=*(2m)* 3)

with equality if and only if h = m and G consists of m copies of Ko and
possibly isolated vertices.
(i) If 0 < a < 1, then

s3(G) < hime(2m)° 4

with equality if and only if h = m and G consists of m copies of Ko and
possibly isolated vertices.



Proof. From Lemma 5, we immediately get that the inequality (3) holds
and the equality holds in (3) if and only if ¢, = g2 = -+ = gx. By Perron-
Frobenius Theorem, q; = g3 = - -- = g, if and only if h = m and G consists
of m copies of K and possibly isolated vertices, as required in (i).

By a parallel argument as (i), it can be shown that (ii) also holds. O

An alternative proof of Theorem 1. Suppose that @« < 0 or o > 1.
Let £(G) be the line graph of G and I,;, denote the unit matrix of order m.
Observe that I(G)I(G)T = Q(G) and I(G)TI(G) = 2I,, + A(L(G)) have
same non-zero eigenvalues. From Lemma 5, we have

h h «

st (G)= Z [2 4+ M(L(G))]* > h1~® (Z 2+ A,-(E(G))]) = h1=*(2m)*
i=1 i=1

with equality if and only if 2+ ;(£(G)) is a constant for all ¢ = 1,2,...,h,

which implies that £(G) consists of h isolated vertices. By Perron-Frobenius

Theorem, we get that the equality holds in (3) if and only if h =m and G

consists of m copies of K2 and possibly isolated vertices.

Similarly, the result in (ii) follows. O

Theorem 2. Let G be a graph on n wvertices and e be an edge of G.
Then
(i) st (G —e) < st (G) fora >0 and st (G —e) > st (G) fora < 0.
(i) st(G) < 2n —2)*+ (n - 1){(n - 2)* for a > 0 and s¥(G) >
(2n - 2)* 4+ (n = 1)(n — 2)* for a < 0 with either equality if and only if G
is the complete graph K,,.
Proof. To prove (i), observe that 3., ¢i(G) =2+ Y"1, ¢:(G — e). From
Lemma 5, we get the required result. ,
Observe that the signless Laplacian eigenvalues of a complete graph K,
are 2n — 2 with multiplicity 1 and n — 2 with multiplicity » — 1. From (i),
the result in (ii) holds. O

Next, we shall establish some fundamental properties of s} (G).

Proposition 1. (i) s} (G) > 0 with equality if and only if m = 0.
(i) If the graph G has components G1,Gs,...,G;, then

$£(6) = 355G
i=]1

Proof. Since the signless Laplacian eigenvalues of G are nonnegative, then
st (G) = 0 with equality if and only if ¢, = 0, which implies that m = 0.
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To see (ii), observe that the signless Laplacian spectrum of G is the
union of the signless Laplacian spectrums of G;(i = 1,2,...,r), which im-
plies that the result in (ii) follows. O

For a graph G with components G1,Ga, ..., Gy, Proposition 1 implies
that the sum of the ath power of the non-zero signless Laplacian eigenvalues
of G is equal to the sum of r sums of these of Gy, Gy, ...,G,. Without loss
generality, we shall always assume that G is a connected graph throughout.

Theorem 3. Let G be a connected graph without vertices of degree 1,
with n vertices, m edges and marimum degree A. Suppose that G has h
non-zero signless Laplacian eigenvalues:

(i) Ifa<0ora>1, then

s3(C) > (1+A+ Klz—l)a+(h— )1-e (2m— 1+A+ A;_l))“ 5)

with equality if and only if G is either K3 or Cj.
(ii) If0 < a < 1, then

o

sH(0G) < (1+A+ﬁ)a+(h—1)1‘°‘ (2m—(1+A+ A—l_—l)) (6)

with equality if and only if G is either K3 or Cj.

Proof. Suppose that & < 0 or a > 1. From Lemma 5, we derive

h h e
s3G) = @ +) =g+ (h-1)'" (Zq.-)

=2 =2

= g +(h—1)'"%(2m ~ @)

Take f(z) = z* + (h — 1)1=%(2m — z)*. By solving derivative function
f(z) = ajz®™! = (h - 1)1=%(2m — z)*~1] > 0, it is readily seen that
f(z) is increasing on z > 2. Since G is a connected graph, it follows
from Proposition 2.1 in (5] that either h = n or h = n — 1. Observe that
(n—1)A+(n—1) > 2m. From Lemma 3, we may obtain ¢, > A+1+ L7 >
A+12> 3—:‘1- > 3,? and then

2G) 2 fA+14+xT7)

_ (1+A+AL_1)a+(h—1)““(2’"’(”A+ﬁ))a

with equality if and only if go = q3 = --- = q» and G is a cycle C,..



Now suppose that the equality holds in (5). We consider the following
two cases: G is either bipartite or non-bipartite. If G is a connected bipar-
tite graph, then the Proposition 2.1 in [5] implies A = n — 1. This show
that G has exactly three distinct signless Laplacian eigenvalues. Lemma 2
implies that G has diameter at most 2. If the diameter of G equals to 1,
then G = Kj, which contradicts with the condition that G is a cycle C,,.
Hence, the diameter of G is 2, which implies that G is a complete bipartite
graph K, ., with 1 <7 <n —1. Since G is also a cycle Cy, then G must
is the cycle Cy4. If G is a connected non-bipartite graph, then h =n. So, G
has exactly two distinct signless Laplacian eigenvalues. By Lemma 2, the
diameter of G is 1, which implies that G is a complete graph K,. Since G
is a cycle Cy,, then G must is the complete graph Kj.

Conversely, suppose that G = K3 or Cy4. It is easy to verify that the
equality holds in (5).

To prove (ii), suppose that 0 < @ < 1. Lemma 5 implies that

sH(G) < qf + (h—1)1"%(2m — q1)®

with equality if and only if g2 = g3 = - - - = g». Observe that f(z) is decreas-
ing on z > 2. By similar arguments as (i), the result in (ii) also follows. D

Corollary 2. Let G be a connected graph of order n, n > 2, with m
edges and mazimum degree A. Suppose that G has h non-zero signless

Laplacian eigenvalues:
(i) Ifa<0ora>1, then

sEG) 2 (1+A8)* + (-1 (2m - (1 +4))" (M

with equality if and only if G is a star S,.
(i) If0 < a <1, then

sHB) < (1+A)* +(h—1)1"*(2m — (1 + A))* (8)
with equality if and only if G is a star S,.
Proof. We prove only (i); the proof of (ii) is similar and is omitted. Sup-
pose that @ < O or & > 1. It is quite evident that (7) holds with equality for
n = 2, In the following, we shall assume that n > 3. From Lemma 4 and

the proof of Theorem 3, one has g; > A +1 > 32 and f(z) is increasing
onz> ghﬂ Hence,

sHG) > flA+1)=10+A)*+(h-1)1"2m - (1+A))"

with equality if and only if g0 = g3 = --- = ¢ and G is a star S,. This
shows that G is bipartite. From the proof of Theorem 3, we get that
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G has diameter at most 2. If the diameter of G is 1, then G = Kj,
which contradicts with the assumption that n > 3. Hence, the diameter
of G is 2, which implies that G is a complete bipartite graph K, ,_, with
1 <r<n-—1. Hence G must is the star S,.

Conversely, suppose that G is the star S,. It is easy to verify that the
equality in holds (7). O

Theorem 4. Let G be a connected graph with n vertices, m edges, maxzi-
mum degree A and average degree d satisfying A > i('%l Suppose that
G has h non-zero signless Laplacian eigenvalues:

(i) Ifa<0ora>1, then

sHG) > 2" (A+d)% + (h—2)1% (2m — (A + d))°. (9)
(i) If0 < a < 1, then
sH(G) <2 (A+d)% + (h—2)'"* (2m — (A + d))°. (10)

Proof. Suppose that a < 0 or & > 1. From Lemma 5, we derive

h
(gF+a5)+_af

i=3

h [ 4
2'7%(gy +g2)° + (R—2)!"° (Z ‘Ii)

i=3
= 2"%(@1 + @)%+ (h-2)'"2m — (@1 + ¢2))*.
Take g(z) = 2!~%z* + (h —2)!~*(2m —z)*. By solving derivative function
¢ (z) = a[2!72z%71 — (h — 2)1~2(2m — z)*~1) > 0, it is readily seen that
g(z) is increasing on x > 42. The condition A > %%ll implies that
A+d> 2 > 42 where the last inequality holds as k is either n or n—1.

s3(6)

v

From Lemma 4 and Theorem 5.1 in [9], we get 1 + g2 > A +d > 42,
Thus, s (G) > f(A + d). Now suppose that s¥(G) = f(A + d). Lemma
5 implies that gq; = g2, which contradicts with the condition that G is a
connected graph. Hence, the inequality (9) follows.

If 0 < o < 1, then g(z) is decreasing on z > 4. By similar arguments
as (i), the result in (ii) also follows. O

Corollary 3. Let G be a connected non-bipartite graph with n vertices,
m edges, mazimum degree A and average degree d.
(i) Ifa<0ora>1, then

sG> 27 (A+d)* + (n-2)'"* (2m — (A + d))°. (11)
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(i) If0 < a < 1, then
sTH(G) <2 (A+d)% +(n—2)'"* (2m ~ (A +d))°. (12)

Proof. Since G is a connected non-bipartite graph, then A = n. Suppose
that @ < 0 or @ > 1. From the proof Theorem 4, we obtain g(z) is
increasing on = > 2d. Observe that A + d > 2d. Thus, the inequality (11)
follows.

Similarly, we may get that the inequality (12) also follows. O

Theorem 5. Let G be a connected graph with n vertices and m edges.
Suppose that G has h non-zero signless Laplacian eigenvalues:
(i) Ifa<0ora>1, then
s} (@) > 7*(G) + (h - 1)~ (2m — n(G))* (13)
with equality if and only if G is one of Kn, Sp or K3 5 where n is even.
(i) If0 < a < 1, then
$£(6) S 1°(6) + (h - 1) (2m = n(G)" (19
with equality if and only if G is one of Ky, Sp or K3 2 where n is even.

Proof. We prove only (i); the proof of (ii) is similar and is omitted.

Suppose that o < 0 or @ > 1. From the proof of Theorem 3, we get
st(G) > f(q1), where f(z) = 2* + (h — 1)!=*(2m — z)°. From Lemma 6,
Corollary 1 and the proof of Theorem 7 in [19], one has

am 2m 2m
—_— . S e
a2n(G)27(G) 2 —>—3 25

where the last inequality holds as h is either n or n — 1. Since f(z) is
increasing on z > 22, then s} (G) = f(n(G)), from which (13) follows.

Now suppose that the equality holds in (13). Then ¢1 = %(G) and
g2 = q3 = --- = g. Notice that G is connected. If G is non-bipartite,
then the Proposition 2.1 in [5] implies h = n. This show that G has
exactly two distinct signless Laplacian eigenvalues. Lemma 2 implies that
G has diameter 1. Thus G is the complete graph K,,. If G is bipartite,
then h = n — 1. Hence G has exactly three distinct signless Laplacian
eigenvalues. From Lemma 6 in [19], G is either S, or K 3.3 where n is
even.

Conversely, suppose that G is one of K, S, and K 2,3 Where n is even.
Lemma 6 implies that the equality holds in (13). O

Remark 1. For a connected graph G of order n, Proposition 2.1 in (3]

implies that » = n —1 if and only if G is bipartite. So, it is easy to directly
define the value h in above Theorems 1, 3-5 and Corollaries 2-3.
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4. Some related results with o = %

In this section, we consider the special case o = —;-, which is exactly the
incidence energy of a graph.
The following Corollary 4 is an immediate consequence of Theorem 1.

Corollary 4. Let G be a graph with m edges. Suppose that G has h
non-zero signless Laplacian eigenvalues. Then

IE(G) < V2hm

with equality if and only if h = m and G consists of m copies of K3 and
possibly isolated vertices.

From the alternative proof of Theorem 1, we have h < m. Thus,
IE(G) < V2hm < v/2m, which shows that Corollary 4 is an improve-
ment on Theorem 3.2 in [12].

Corollary 5. Let G be a connected graph without vertices of degree 1,
with n vertices, m edges and mazximum degree A. Suppose that G has h
non-zero signless Laplacian eigenvalues. Then

IE(G)s\/1+A+AL_1+\/(h-1) [2m-(1+A+ﬁ)]

with equality if and only if G is either K3 or Cy.

Proof. Taking a = -21; in Theorem 3, we immediately get the required
result. O

Corollary 6. Let G be a connected graph of order n, n > 2, with m
edges and mazimum degree A. Suppose that G has h non-zero signless
Laplacian eigenvalues. Then

IE@G) < VI+A+V(h-1)02m—(1+A4)

with equality if and only if G is a star S,.
Proof. This is an immediate consequence of Corollary 2. O

Observe that the function f(z) = vz + +/(h = 1)(2m — z) (witha = 1
2m

in the proof Theorem 3) is decreasing on x > 2®. Thus, Corollary 5
improves Corollary 6. However, from Corollary 6, we immediately get
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IE(G) < V1+ A+ /(n—1)(2m — (1 + A)). This shows that Corollary 5
is an improvement on Theorem 3.6 in [12].
Taking o = -;- in Theorem 4, we may get the following Corollary 7.

Corollary 7. Let G be a connected graph with n vertices, m edges, maz-
imum degree A and average degree d satisfying A > ﬂ:_;lll Suppose that
G has h non-zero signless Laplacian eigenvalues. Then

IE@) < /28 +d) +/(h-2)@m - (A + d)) (15)

Remark 2. We firstly remark that the condition A > ﬂ,%z can be
omitted whenever G is a non-bipartite graph in Corollary 7 (see Corollary
3). Secondly, Gutman et al.[12] proved the following result:

IE(G) < V1+ A+ /(n—-1)2m - (1 + A)). (16)

We also remark that the inequalities (15) and (16) are incomparable. Let
G, and G be the two graphs shown in Fig. 1. For G; the upper bounds
(15) is better than (16), whereas for G2 the upper bounds (16) is better

than (15).

G G,
Fig.1. Examples showing that inequalities (15) and (16) are incomparable.

Corollary 8. Let G be a connected graph with n vertices and m edges.
Suppose that G has h non-zero signless Laplacian eigenvalues. Then

IE(G) < v1(G) + V/(h - 1)(2m — n(G)) .
with equality if and only if G is one of Ky, Sp or Kp » where n is even.

Proof. Taking a = % in Theorem 5, we immediately get the required
result. O
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From the proof of Theorem 5, we have f(z) = vz + \/(h (2m — x)

(with & = } in the proof Theorem 5) is decreasing on z > 2. It follows
from g1 > 7(G) > 7(G) > 22 that IE(G) < f(n(G)) £ f((G)). Note that
h is either n or n — 1. Hence, Corollary 8 is an improvement on Theorem
3.7 in [12).

Before this paper ends, we consider the special case & = 2. Noting
that s7(G) = s2(G) = ¥, (d? + d;). Then s (G) and s3(G) have same
properties, for example,

Theorem 6[13]. Let G be a connected graph with n > 2 vertices. Then
6n —8 < s3(G) < (n-1)n

The left equality holds if and only if G is the path P, of order n, whereas
the right equality holds if and only if G is the complete graph K, of order n.

Proof. Let T be a spanning tree of G. From Theorem 1, we get s§ (T) <
s3(G) < s§ (Kpn), where the left equality holds if and only if G is the span-
ning tree T', whereas the right equality holds if and only if G is the complete
graph K, of order n. The rest proof can be seen in (13, 21]. O
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