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Abstract

This note will complete the computation of all Ramsey numbers
(G, H) for graphs G of order at most five and disconnected graphs
H of order six.

In (3], the Ramsey numbers r(G, H) have been determined for all graphs
G of order at most five and all disconnected graphs H of order six, ex-
cept the three cases (G, H) € {(Ks —2K>,2K3), (Ks —e,2K3), (Ks,2K3)},
where the bounds 12 < r(G,2K3) < 13 for G € {K5 — 2K, K5 — e} and
15 < r(K5,2K3) < 16 could be established. Here we will prove that the
lower bound matches the exact value in the first two cases, whereas in the
third case the upper bound gives the exact value. The following specialized
notation will be used. When considering a 2-coloring x of the edges of K,
we refer to colors green and red. For given graphs G and H, we say that x
is a (G, H)-coloring, if it neither contains a green subgraph isomorphic to
G nor a red subgraph isomorphic to H. We use V to denote the vertex set
of K, and for V' C V we define [V'] to be the subgraph induced by V”.
In case of V' = {vy,..., v} we write [v1,...,vx] instead of [{v1,...,v}].
Moreover, the green and red subgraphs induced by V' are denoted by [V’],
and [V’],., respectively.

Theorem 1.

'I‘(K5 - 2K2, 2K3) = T(K5 — €, 2K3) =12.

Proof. It is already known that r(G, 2K3) > 12 for G € {Ks—2K,, Ks—e}.
Moreover, r(Ks — 2K3,2K3) < r(Ks — e,2K3). Thus, it is sufficient to
prove that (K5 — e,2K3) < 12. Suppose to the contrary that there is a
r(Ks — e,2K3)-coloring of Ko with vertex set V. From r(K5 —e, K3) =11 -
(see [2]) we obtain K3 C [V],. Let U = {u),u2,us} be the vertex set of a
red K3 in (V] and let W = {w;,wa,...,we} = V \ U. Then 2K; ¢ [V],
implies K3 ¢ [(W],. Thus, K4 C [W], follows from (K4, K3) = 9 (see [1]),
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and we may assume that W' = {w;,w;, w3, w,} induces a green K;. We
distinguish the following two cases.

Case I: 2K, C [W],. We may assume that W" = {ws, wg, wr, ws} induces
a second green Kjy. Since K5 ~ e ¢ [V],, at least two of the edges joining
wg to W', say wow; and wgwsy, have to be red. Similarly, at least two
of the edges between wy and W*, say wows and wewe, must be red. Then
[wy, w2, ws, we] has to be a green K, because of K3 ¢ [W],.. Moreover, K5 —
e ¢ [V], forces all remaining edges in [wy, w2, w7, ws] and in [ws, wy, ws, we)
to be red. Furthermore, K3 ¢ [W], implies only green edges between wyg
and {ws,ws,wr, wg}. Now consider the edges between U and W. From
Ks—e ¢ [V], we deduce that every u € U is joined by red edges to at least
two vertices of the green K induced by {w;, we, ws, wg}. Thus, one vertex
in {w;,ws,ws,we}, say w;, has to be joined by red edges to two vertices
in U, say to u; and u,. First assume that uzw; or uzw, is green. Since
Ks — e ¢ [V]g, the two green subgraphs K4 induced by {w;,ws, ws, ws}
and {wy,ws, w3, ws} force at least one red edge from u3 to w3 or wy and
at least one red edge from us to ws or we. But this produces a red K3 =
[u3,v,w] with v € {w3, w4} and w € {ws,we} yielding a red 2K3 with
[w1,uy,uz). The remaining case is that the edges uaw; and uzws are both
red. No green K5 — e in [u3,u2, wr, ws, wg] forces at least one red edge
from u, or ug, say from u;, to {wy, ws, we} yielding a red K3 = [u;,w,v]
with v € {wy,ws, wo}. Now a red 2Kj3 can only be avoided, if the edge
ugwo is green. But then either one of the subgraphs [w), w3, ws,ws] and
[wy, we, w3, w4) together with uy yields a green K5 — e or we obtain a red
K3 = [ug,v,w] with v € {w3,ws} and w € {ws,we} yielding a red 2Kj3
together with [wy, u, us], a contradiction.

Case II: 2K, ¢ [W],. Let W" = W\W’. One of the following to subcases
must occur.

(i) The subgraph [W"], contains an odd cycle. Then K3 ¢ [W], forces
[W"], to be a cycle Cs. Since K5 — e ¢ [V]g, every w € W" must be
joined by red edges to at least two vertices in W’ yielding at least ten red
edges between W' and W', Thus, one vertex in W’ has to be joined red
to at least three vertices of the red Cs in W' yielding a red K3 in [W], a
contradiction.

(ii) The subgraph [W"'], is bipartite. This implies K} U K4 C [W"], or
K, U K3 C [W'"],. Since 2Ky ¢ [Wlg, only Ko U K3 C (W', is left. We
may assume that [ws,wg) and [wy, ws, we| are a green K, and a green K3,
respectively. Then 2K4 ¢ {W], forces at least one red edge between every
w € {ws,we} and {wy, ws,we}. First assume that some w € {ws,ws},
say ws, is joined by red edges to two vertices in {ws, ws, wo}, say to we
and to ws. Moreover, since K5 — e ¢ {V],, we may assume that wsw; and

258



wswy are red edges. Then K3 ¢ [W], forces [wy, wq, w7, ws) to be a green
K. Consequently, all edges between {w3, w,} and {w7,ws} have to be red.
Furthermore, the edges wsws and wswy must be green. To avoid a green
2K, in [W], one of the edges wgws and wgw,, say wews, has to be red. This
forces wewr and wewg to be green. Then 2Ky ¢ (W], and K5 —e & [V],
imply only red edges between wg and {w;,ws,wg}. But this yields a red
K3 in [W] if one of the edges between wg and {w;,ws, w3} is red, and
otherwise we obtain a green K5 — e in [wo, wy, w2, w3, wy), a contradiction.
In the remaining case, for every w € {ws,wg} there is exactly one red edge
between w and {wz7,ws,wo}. Since 2K4 ¢ [W],, a common red neighbor
of ws and we in {wr, ws, wy} is forbidden. Thus, we may assume that the
edges wswy and wews are red. Moreover, two edges between ws and W', say
wsw; and wswz, have to be red because of K5 — e ¢ [W],. Consequently,
wyw; and wyws must be green, wyws and wrwy red, wsws and wsw, green.
Then K5 — e ¢ [w), w2, ws, w7, ws), forces at least one red edge between
{we,ws} and {w1,w2}. We may assume that wew, is red. This implies that
wywg is green. Moreover, one of the edges wgws and wswy, say wsws, must
be red. Consequently, wewsz has to be green. Now a green 2K, consisting
of [w1, wa, wy, ws) U [w3, wq, ws, we] can only be avoided if one of the edges
wgwy and wgw,, say wsws, is red. Then wew, has to be green, wew, red and
wsw, green. Thus, all edges in [W\ {wo}] are colored. Note that [W\ {wg}],
consists of the cycle Cs = (w),ws, Wa, Ws, w3, wr, Wy, we) together with the
two diagonals wswr and wews. Consider now the edges between wg and
W', If one of the edges wew; and wews is colored green and also one of the
edges wows and wow,, say wew; and wews, We obtain a green Ky — e in
[wy,wq, ws, wr, we), a contradiction. Thus, we may assume that the edges
wow; and wyws are red. It remains to color the edges wows and wywy, and
all edges between U and W, To avoid a lengthy and tedious discussion of
many cases we used a simple backtracking algorithm and proved, supported
by a computer, that any coloring of these edges leads to a green K5 — e or
to a red 2K3, a contradiction. | |

Theorem 2.
T(K5,2K3) = 16.

Proof. It is already known that r(Ks,2K3) < 16. To prove that r( K5, 2K3)
> 16, a (Ks,2K3)-coloring of K5 with vertex set V = {vy,vq,...,v15} is
constructed as follows. Let U = {v;,v2,...,v12} and W = {v13,v14,v15}-
Take the (Ks, K3)-coloring of [U] with {U], as given in Figure 1. Note that
K4 ¢ [v1,v2,...,vs)y. Then add a red K3 with vertex set W. Join every
v € W by red edges to v, v10, ¥11, V12 and by green edges to v, vs,...,vs.
The resulting coloring does not contain a red 2K3 since every red subgraph
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K3 contains at least two vertices belonging to W. To see that a green
subgraph K cannot occur, note that K5 ¢ {V],. Moreover, a green Ks
with at least one vertex belonging to W is impossible, because [W] contains
only red edges and for every v € W its green neighbors are v;,vs,...,vs
where Ky & [v1,v2,...,v8]g. [ ]

Figure 1: The graph [U],.
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