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Abstract In this paper, we discuss the properties of a class of gen-

eralized harmonic numbers H,, . Using Riordan arrays and generating
functions, we establish some identities involving Hn . Furthermore,
we investigate certain sums related to harmonic polynomials Hyn(z). In
particular, using the Riordan array method, we explore interesting rela-
tionships between these polynomials, the generating Stirling polynomi-
als, the Bernoulli polynomials and the Cauchy polynomials. Finally, we
obtain the asymptotic expansion of certain sums involving H, ..
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1. Introduction

The harmonic numbers are defined by

1
Hy=0,Hy=) ¢, for n=12-,
k=1

and the generating funtion of H, is
e —In(1-1¢)
n _ N 7
E H,t" = T3

n=0

The harmonic numbers H,, play an important role in number theory
and has been generalized by several authors (see for example [1,2,3,4]). In
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this paper, we consider a class of generalized harmonic numbers Hy, .. The
definition of H, ,» ([3]) is
Hy,o=1 and H,,= E15n1<--.<n,5n n—l,ﬁ for n,r>1.
The generating funtion of H, . is

(r+1)! (- In(1 — &)+
Z — g Hat” = (1.1)

n=0

From (1.1) we have

[t"](—l’-‘(l—t—)— =riH,,. (1.2)

The concept of Riordan arrays has been introduced in [5]. A Riordan

array is an infinite, lower triangular array D = (dn.k)n,ke y defined by a
couple of formal power series: D = R(dnx) = (g(t), f(t)), such that

dnk = [t")g(t)(tf(t))*, VYneN. (1.3)

Basically, the concept of a Riordan array is used in a constructive way to
find the generating funtion of many combinatorial sums. For any sequence
hi having h(z) as its generating funtion, we have

Z dnchi = [t")g(t)R(tf(t)) . (1.4)

k=0

The paper is organized as follows. In Section 2, we investigate the
properties of H, .. In Section 3, we obtain some identities for harmonic
polynomials H,(z) and several polynomials by means of Riordan array.
In Section 4, we give the asymptotic expansion of certain sums related
to H,, and a-Cauchy numbers (generalized Lah numbers and binomials
coefficients), where r is fixed.

For convenience, we recall some definitions involved in the paper. The
generalized Stirling numbers of the second kind S(n, k; r) have the following
exponential generating function:

> S(n,k; r)— = e"(—et;,—l)k. (1.5)
n>k ’

The generalized harmonic numbers H,, , may be related to the Bernoulli
polynomials By (z) and generalized Bernoulli polynomials B,(,"‘)(z), which
are defined by:

ZBn(z)_ =21 (1.6)

n=0
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> B = (e, (1.7)

n=0

The generalized Lah numbers L(n, k;r) are given by:

(5

> L(n k; r) = =+ g (1.8)

n2k

2. Some identities involving H, ,

Let us define H = [Hy +Jn>r>0 to be an infinite lower triangular array.
It is easy to show that H does not constitute a Riordan array but

H = R(r1Hn) = (70 20— (21)

is a Riordan array. Thus we obtain

n(=In(1 —2))"
Hn,r ![t ]——_t_

From the generating function of H,, and generalized Stirling numbers
of the second kind S(n, k;r), we have

Theorem 2.1 Letr>0,n >0and k >0, then

Zm() T HnS(h ki) = (P,

h=0
where (n)g =n(n —1)...(n — k + 1) is the falling factorial.

Proof. From (1.3),(1.5) we have

n

> AHp o S(h k;r)

h=0
=[t" ] —[e™(e? — 1)*ly = —In(1 - 2)]
n 1 t
=t —t(l—t)"(l—t)k
= [tn_ 1

k
Sa—preee

=(a23):

Which completes the proof. (]}
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Theorem 2.2 Let By,(z) be Bernoulli polynomials given by (1.6), then

n k
(—1)**ez_
z=: Z Hk,rBr(z)T___k—)!——k = 6n0.

k=0r=0
Proof. From (1.3),(1.6) we have
33 Hop Byt = =8 (2.2)

n>0 r=0 t(1-t)

For the a-Cauchy numbers of the first kind ¢ have the following exponen-
tial generating function:

Y Epn o SOHOT

=6 n! In(1 +1¢)
Furthermore we can get

—)neE, H1—t)®
- =—(1n(1—)t)' 23)

n>0

Then (2.3), (2.4) we have

SN (=) _y
DD HurBr(2)— =
k=0 r=0 (n—k)!
Nk oI =) g —t(1 - 8)*
= z;:[tk] SR e Gl b ey
€ k) o )

t1—¢tF —In(1—-9 ™
Which completes the proof. a

For generalized Bernoulli polynomials BS."‘)(z) have the following iden-
tity.

Theorem 2.3 Let B,(,"‘)(z) be generalized Bernoulli polynomials given by
(1.7), then

Z Hn,rBﬁz)(z) = Hn.,_z’zz!,

r=0

> rHprSp(2) = Hpyz2(z — 1)),

r=0
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where S,,(z) has been defined by the generating function(1]

z Z Sp(2)t" = (2.4)
n=0
Proof. Firstly, from (1.3),(1.7) we have
(2)
> HopBO(a) = 3o riH, B )
r=0 r=0
— [4+n y 2z 0%y —_ —
= [l ey = ~ (1 ~ 1)
— "] 1 (-In(Q-2))*(1-¢)* 1
U1t tz (1-1t)=
— [tn+z]%_t_t)l_ = Hn+z,zZ! .
Secondly, from (1.3) and (2.5) we have
2 rlH,.5.(2)
r=0
= ) 255y = ~ a1 - 1)
= [t"] 1 (- ln(l —t))* (1-1t)*
TP I—-t (1-t) tz
L ) Y
Which completes the proof. O

Theorem 2.4 The generalized harmonic numbers H, , may be expressed
by means of the harmonic numbers Hy:

n

Bn_kr-1(1,1,2,3L,--)

THn’r = EHk ’ ; ’
k=1 (n - k)!

where the exponential Bell polynomials B;, ; are defined by:

ZB"kl k'(z:zm ¥, k=0,1,2,-

n>k
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Proof. From the generating function of (1.1) we have

i T!Hn o7 = (_ ln(l — t))r

= 1-1¢
_M( In(1 -¢))™~

E H.t". (Z _)r—-
Hnt" - (Z(n - 1)!-75)'-1
n=1 )

n
00

=Y Hpt"- () _(r —1)!Bnr-1(1,1,2,31,--+)
n=1 n=1

= T —1)!Bp_gr-1(1,1,2,3,--.) .
T ey he

It
8 QMEB I

2

nl

]
v M

Comparing the coeflicients of t™ on both sides of, we obtain

— n Bp_kr-1(1,1,21,3,---)
THyr = ; H, - _

3. Harmonic polynomials of degree n

In this section, we develop the polynomials generating the harmonic
numbers H,, with the generating function :l—':(__l—t_—’l

For n € N, let us define the polynomials H,(z) in z € C of degree n
by
n_ 1n(1 t)
Z%H n(2)t D=t (3.1)

with the alternative representation

n

r+1
Hn(z+1)=zn+l—

r=0

n,rzr . (32)

Theorem 3.1 The harmonic polynomials H,(2) may be expressed by



means of the associated Stirling cycle numbers:
> k+1 [n+1 k
Hn(z) E(n-{-l)'[k-l—l](l_z)’

where the associated Stirling cycle number array

(k+1)![n+1],  ,—In(1—¢t) —In(1-1¢)
((n+1)l[k+1])"( ’ nt ) (3:3)

Proof. Let h(t) = el=2t = 3, 8=2" from (3.3),(1.1), (1.3) we have
n+1 k
[ k+1 ](1 = 2)

S (k+ D) n+1 ] —2)*
Z:( +1)|[k+1] T

=0

k=
= =28 =D -0y — (s - )
n ln(l ) 1 |
= [t"]—; e H,(z).
Which completes the proof. (]

Let z = 0 in the Theorem 3.1, we have the following corollary.

Corollary 3.1 For the harmonic numbers H,,, we have
k41 [n+1
Hus1 = Z (n+1)'[ k+1 ]
Let P, i(z) are the generalized Stirling polynomials of the first kind

defined by:
P = 3 ([ 7], (3.0

j=k+1
with the alternative representation:

(- 1)" &1 [In(1 - )}
(8tn—1 (1=2)1-= |e=0) -

F, n,k (Z)
Now, let us define the infinite lower triangular matrice P(z) by:

k!
P(2) = [ Pr+1,6(2)ln,keNo-
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It is easy to show that P(z) may be expressed by the Riordan array:

1 —ln(l—t))

Pla) = (7= Hi—=' " ¢

(3.5)

Theorem 3.2 Let H,(2) be harmonic polynomials given by (3.1).Then
_ N\ Pot1,k(2)Bs
H,(2+1) = ,;, —

where B, is a Bernoulli number, P, (z) are the generalized stirling poly-
nomials of the first kind.

Proof. From (1.3) and (3.5) we have

" P,y14(2)Bs
Eé; +1n!
" KPyi1x(2)B
=k§ .
= Pl gy =~ - 0]
1 —I1-t)
_[t](1—t)1-=' = -1
= [ t(ll“(lt) “h28 _ gzt1).

From (3.4) we can obtain

Hn(z+1)—zn: 'il (—z)i~k1 ( )[ j ] n+1:l'(z)Bk

k=0 j=k+1
O

We list more new identities for the harmonic polynomials H,(z) with
related to some other polynomials.

Theorem 3.3 The harmonic polynomials H,(z) may be expressed by
means of the Bernoulli polynomials

Ho(1-2)=)_ HarB.(2),
r=0

where H,, , be generalized harmonic numbers given by (1.2).
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Proof. From (1.2),(1.3) and (1.6) we have

> H,.B.(2)
r=0
A 2
= r!
= [ ¥ = _In1 -
="l =l —glv=—1n(1 %))

1 —In(1-¢) 1-¢
1-t  t (1-¢t)7

-In(1 -¢)®
——tle = Hn(l - Z) .

= (¢
= [

Which completes the proof.
O

Theorem 3.4 The harmonic polynomials H,(z) may be expressed by
means of the generalized Stirling polynomials of the first kind
" kPoy1,k(2)

Hn—l(z + 1) = Z 1
k=1 n!

Proof. Let h(t) = tet = 2on>1 '(;Tt—"—lﬁ’ and from (1.3), (3.5) we have

k' Poak(z) 1
g :Jk (k- 1)!
= =gy lvetly = —ln(1 - 0]
w1 —In(1-¢)
=t ](1—t)1-2 1-t¢
—In(1-1¢)
t(1—1t)->

Which completes the proof. O

= [t*] =Hu (2 +1).

Let us consider the Cauchy polynomials of degree n of the second type
¢$;2)(z) defined by ¢$;2)(z) = j;)l [z = z]ndz. and the exponential generating
function of ¢$,2)(z) is

= tn —t
2 ST = TRy (36)

n=0

27



we may define the Cauchy polynomials of degree of n of the first type
oV (2) by o (z) = fo (z — 2)ndz. and the exponential generating function

of ¢$,1)(z) is

t
,§>¢(l) nlC (+trm+e) (3.7)

In this section, we show that the harmonic polynomials are closely re-
lated to the Cauchy polynomials.

Theorem 3.5 The Cauchy polynomials of both types, ¢$,1)(z) and ¢$,2)(z),
are connected in the following way:

n

S (1) Lin, k;r)el (2) = 6@ (r + 2). (3.8)

k=0

(L(n, k )nkeN may be expressed by:

-1

1+t)

R(L(n, ki) = (1 +1)",

and from (1.3), (3.6), (3.7) we have

z"jL(n,k; re (2)

k=0

(1)
—nlz L( k; )¢1(Z)

—t
[(1 +y)’1n(1 +y)|y T 1+t
. t
M s oA o
n n -t
= (D

= al[t")(1 +¢)" ]

= (-1)"¢@(r +2).

Which completes the proof.

Let z = 0 in the Theorem 3.5, we have the following corollary.

Corollary 3.2
> (=1)"L(n, k;r)ee = ¢ (r),

k=0
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where ¢, is the Cauchy numbers of the first kind.
By means of the method of coefficients we have the following identities:

Theorem 3.6 Let H,(z) be the harmonic polynomials, then

3 (Z) K Hi(2)¢P, (2) = (n = 2z +1),,,
=0

=1

i (=1)"*~*Hi(2)$%)  (2)

P (n—H)!

Proof. From (1.1),(3.6) and (3.7) we have

i In(1-1) i —t
= kz:%([tklt(l t)l")[ | (1 —t)I—=In(1 —t)

_ e —In(1 —1t) =t
= [ ]t(l — t)l-z (1 —_ t)l'—z ln(l - t)

-l = (U0,

which completes the proof.By the same method we can prove(ii). a

Let z = 0 in the Theorem 3.6, we obtain the following corollary.

Corollary 3.3

n

z (:) kK Hpy16n—k = (n + 1)},

k=0

z": (=" *Hisscnok _
= (n—k)! ’

where ¢,, é, are the Cauchy numbers of both kinds.

4. Asymptotic value involving H, ,

In this section, we give asymptotic expansions of certain sums involving
H,, . a-Cauchy numbers of the first kind are defined by:

oad o
Zcztn=t(1+t) .
In(1+¢)

n=0
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In the following, we give the asymptotic value of certain sums related
to Hn,» and a~-Cauchy numbers of the first kind. At first, we recall a lemma.

Lemma([7]) Let & be a real number and

L(2) =ln1_

When n — oo,
[zn](l - Z)aLk(Z) ~ ﬂ'_lT&Tn_a_l lnk n, (a g {07112:"'})
[2"](1 — z)™L* ~ (=1)™kmin~™In*"1n, (m € Z>o,k € Z>)).
Now we give the asymtotic expansions of certain sums involving H, ,
using above lemma.

Theorem 4.1 Let o be a real number and a € {0,1,2---}, we have

n _1\n—k,.a
Zr!Hk,,( (17)1 — kc)'!'_k ~ I‘(ia) (n—-1)"%n""Yn-1).

Proof. From (1.2),(2.3) we have

(=1)*eq
Zan, m=F) k

(— ln(l t)) .- t(1—t)*
= i

k=0
ny (Z10(1 - )) —t(1 —t)°
=l o ma oy
= (- In(1 - &) i — )
Application of the above Lemma({7]) ,we have

- n-k
Z’r Hk,,.( 1) k)f!l-k ~ I‘(—l-a) (n—1)"%n""Yn-1).

Let a@ = 0 in the Theorem 4.1, we have the following corollary.

—1)n—k

Corollary 4.1 Y7 _, r!Hk,ri—(nL,Wc."-—i In™}(n-1).
Theorem 4.2 Let r € Z,h > 1 and h € Z, then

n 1 H .
> ——k'L(Z; ki) (1) R Hg p ~ (1) 0 + 1) In*
k=1 )
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Proof. It follows from (1.2), (1.3),(1.8) and Lemma, we have

Xn: k'L('::; k; 7‘) (—l)n_kh!Hk,h
k=1 )
=[t")(1 - )™ (ln )"( DP ~ (=1 h(r + 1in" In" " 0

Let 7 = 0 in the Theorem 4.2, we have the following corollary.

Corollary 4.2 Y7, ket (_1)n=kplHy j, ~ (=1)**hIn* 0

For the generalized combinatorial coefficients ::;‘;’,‘c), we have the fol-
n+ak th—a

lowing Riordan array :R((7*%5)) = (m’ ;(1—,5:)

Theorem 4.3 For combinatorial coefficients we have:

+ ak In"(n-m — k(b- m '
Z(J )i~ B EE D o o - ke

= m + bk D(m+ kb+2)
Proof.
2. (j+ak n—qy (=In(1 —¢))"
% () ese - Z“t T
tm t”"“ —In(1 —-¢))"
= [t"] = )m+1((1 t)b)k( n( )
= [tn—m—k(b—a)] ( ln(l - t))r
(1 — t)m+kb+2
B KO 0 m - e,
O

Let ¢ = b = 1,m = 0 in the Theorem 4.3, we have the following
corollary.

Corollary 4.3 When a = b=1,m = 0 we have

S (i+k _ n*+1n"n
2 e
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