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Abstract

Two graphs are defined to be adjointly equivalent if their complements
are chromatically equivalent. By h(G,z) and P(G, A) we denote the ad-
joint polynomial and the chromatic polynomial of graph G, respectively. A
new invariant of graph G, which is the fifth character Rs(G), is given in
this paper. Using this invariant and the properties of the adjoint polynomi-
als, we firstly and completely determine the adjoint equivalence class of the
graph ¢2. According to the relations between h(G, z) and P(G, A), we also
simultaneously determine the chromatic equivalence class of 3.
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real root, the fifth character.
AMS Classification: 05C15, 05C60.

1 Introduction

The graphs considered in this paper are finite undirected and simple graphs. We
follow the notation of Bondy and Murty[1], unless otherwise stated. For a graph
G,1let V(G), E(G), p(G), q(G) and G, respectively, be the set of vertices, the set
of edges, the order, the size and the complement of G.

*Supported by the National Science Foundation of China (No. 11161037) and the Science Found
of Qinghai Province (No. 2011-z-907).
tCorresponding author.
Email addresses: maoyaping@ymail.com (Y.P. Mao), yechf@qhnu.edu.cn(C.F. Ye).

JCMCC 81 (2012), pp. 33-63



For a graph G, we denote by P(G, A) the chromatic polynomial of G. A
partition {A;, Ay, --- , A} of V(G), where 7 is a positive integer, is called an
r-independent partition of graph G if every A; is nonempty independent set of
G. We denote by a(G, ) the number of r—independent partitions of G. Thus
the chromatic polynomial G is P(G,)) = Y 5, a(G,7)()),, where (A), =
AA=1)---(A =7+ 1) forall 7 > 1. The readers can turn to [19] for details on
chromatic polynomials.

Two graphs G and H are said to be chromatically equivalent, denoted by G ~
H, if P(G,)) = P(H,)). By [G] we denote the equivalence class determined
by G under “~". It is obvious that “~” is an equivalence relation on the family
of all graphs. A graph G is called chromatically unique (or simply x — unique)
if H = G whenever H ~ G. See {4, 5] for many results on this field.

Definition 1.1. [7] Let G be a graph with p vertices, the polynomial

h(G,z) = i:a(a", i)zt

i=1
is called its adjoint polynomial.

Definition 1.2. [7] Let G be a graph and hy(G, =) be the polynomial with a
nonzero constant term such that h(G,z) = z?©hy(G,z). If hi(G,z) is an
irreducible polynomial over the rational number field, then G is called irreducible
graph.

Two graphs G and H are said to be adjointly equivalent, denoted by G ~* H,
if h(G, ) = h(H,z). Evidently, “~"" is an equivalence relation on the family of
all graphs. Let [G]y, = {H|H ~" G}. A graph G is said to be adjointly unique(or
simply h-unique) if G = H whenever G ~* H.

Theorem 1.1. /3] (1) G ~* H ifand only if G ~ H.

(2) [Gls = {H|H € [G]}. _
(3) G is x—unique if and only if G is h—unique.

Now we define some classes of graphs with order n, which will be used
throughout the paper.

(1) Ch(resp. P,) denotes the cycle (resp. the path) of order n, and write
C= {Cnln > 3},’P = {Pn]n > 2} and U/ = {Ul,l,t,l,llt > 1}.

(2) Dn(n 2 4) denotes the graph obtained from C3 and P,_ by identifying
a vertex of C3 with a pendent vertex of P,,_s.

(3) Tty 15,1, is a tree with a vertex v of degree 3 such that T}, 1,1, — v =
B, UP}2 UP, and l3 > I3 > [, write To = {T1,1,13|l3 > 1} and 7 =
{Tll.lz.lsl(ll! lg,l3) # (1,1, 1)}

(4) J= {C'rn Dn; Kl)ﬂ;,lg,ls In Z 4}-

(5) E = {CT(PS)a Q(T3 S), Br,a.t, Fn, Ur,s,t,a,bs K4_}'
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(6) ¢ = {‘bf]i:d)?uwi(r; S),'(/):(T, 3), ’!/)2(7', S, t),'%bg}
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For convenience, we simply denote A(G, z) by h(G) and h (G, z) by hy(G).
By B(G) and Bmin(G) we denote the smallest real root and the minimal extremes
of the smallest real root of h(G), respectively. Let dg(v), simply denoted by
d(v), be the degree of vertex v. For two graphs G and H, G U H denotes the
disjoint union of G and H, and mH stands for the disjoint union of m copies.
By K, we denote the complete graph with order n, let ng(K3) and ng(K,)
denote the number of subgraphs isomorphic to K3 and Ky in G, respectively.
Let g(z)|f(z)(resp. g(z) t f(z)) denote g(x) divides f(z)(resp. g(z) does not
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divide f(z)) and 8(f(z)) denote the degree of f(z). By (f(z), g(z)) we denote
the largest common factor of f(x) and g(z) on the real field. Let Ng(v) be the
neighborhood set of a vertex v.

It is an interesting problem to determine [G] for a given graph G. From The-
orem 1.1, it is not difficult to see that the goal of determining [G] can be realized
by determining [G],. The determination of [G] for a given graph G has received
much attention in [14, 21, 22, 23] recently. In this paper, using the properties of
adjoint polynomials, we determine the [¢}] of graph ¢}, simultaneously, [C1] is
also determined, where n > 7.

2 Preliminaries
For a polynomial f(z) = z™ + bjz"~! + bpz™ 2 + - . - + by, we define

_f[ @)1 ifn=l
Ry(f(z)) = { by — (%12—1) +1, ifn>2

For a graph G, we write R;(G) instead of R; (h(G)).

Definition 2.1. [2, 7] Let G be a graph with q edges.
(1) The first character of a graph G is defined as

_ 0, ifg=0.
R(G) = { by— (M1 +1, ifg>o0.

(2) The second character of a graph G is defined as

Ra(6) = 1(6) - (") - (a(6) - 2 (bz(G) -(" (f))) -5(©),

where bi(G)(0 < i < 3) is the first four coefficients of h(G).

Lemma 2.1. [2,; 7] Let G be a graph with k fomponents of G1,G2,+++ ,Gk. Then
h(G) = [Ii=1 h(G:) and R;(G) = 3°;_, Ri(G:) forj =1,2.

It is obvious that R;(G) is an invariant of graphs. So, for any two graphs G
and H, we have R;(G) = R;(H) for j = 1,2 if h(G) = h(H) or hy(G) =
hi(H).

Lemma 2.2. [7, 8] Let G be a graph with p vertices and q edges. Denote M
the set of the triangles in G and by M (i) the number of triangles which cover the
vertex i in G. If the degree sequence of G is (dy,da, - - ,dp), then the first four
coefficients of h(G) are, respectively,

(1) bo(G) = 1, bl(G) =q.
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(2) b2(G) = (1F") - 4 Th df + na(Ks).

(3) b3(G) = (g +3q+4) - L2 Y P dF+4 30 df — quE‘(G) did; —
Siem A)/I(i)di + (g + 2)ne(Ks) + na(K4) where b;(G) = a(G,p — i)(i =
0,1,2,3).

For an edge e = vy vy of a graph G, the graph G # e is defined as follow: the
vertex set of G * e is (V(G) — {v1,v2}) Jv(v ¢ G), and the edge set of G x e is
{€'|e’ € E(G), €' is not incident with v; or v2} U {uv|u € Ng(v1) N Ng(v2)},
where N¢(v) is the set of vertices of G which are adjacent to v.

Lemma 2.3. [7] Let G be a graph with e € E(G). Then
h(G,z) = h(G — e,z) + h(G x ¢, z),
where G — e denotes the graph obtained by deleting the edge e from G.

Lemma 24. [7] (1) Forn > 2, h(Pn) = X4cp, (n_k):c"

(2) Forn 2 4, (Dy) = }:K,,( (af i) + (522 5))2"

(3) Fforn > 4, m > th,, = 2(h(Pa_1) + A(Pa_2)), K(Dyp) =
2(h(Dm-1) + A(Dm-2)).

Lemma 2.5. [20] Let {g;(z)}, simply denoted by {g;}, be a polynomial sequence
with integer coefficients and gn(z) = 2(gn-1(z) + gn—2(z)). Then

(1) gn(x) = h(Pr)gn—k(z) + h(Pe-1)gn-k-1(z).

(2) P1(Pr)|gk(nt1)+i(x) if and only if hi(Pn)|gi(z), where 0 < i < n,
n>2andk > 1.

Lemma 2.6. [6, 10] Let G be a nontrivial connected graph with n. vertices. Then

(1) R1(G) < 1, and the equality holds if and only if G & P,(n 2> 2) or
G = Ks.

(2) R1(G) =0ifand only if G € 0.

(3) Ri(G) = —1lifand only if G € &, especially, g(G) = p(G) + 1 ifand
onlyif G € {Fy|n 2 6} U {K [ }.

(4) R1(G) = —2ifand only if G € y(see Figure 3) for q(G) = p(G), G € ¢
for q(G) = p(G) + 1 and G = K, for q¢(G) = p(G) + 2.

(5) Ri1(G) = —3ifand only if G € ¢ (see Figure 5) for ¢(G) = p(G) + 1
and G € ¢ for q(G) = p(G) + 2.

(6) R1(G) = —4 ifand only if G € 0 (see Figure 4) for ¢(G) = p(G) + 2.

(7) Ri(G) = —5ifand only if G € 7 for ¢(G) = p(G) + 3.

Lemma 2.7. [11] Let G be a connected graph.
(1) If R1(G) = 0,—1,—2, then g(G) — p(G) < |R1 ()}
(2) If Ri(G) = =3, then q(G) — p(G) < |Ry(G) +1].
(8) If R1(G) < —4, then g(G) — p(G) < |R1(G) + 1.
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Lemma 2.8. [20] Let G be a connected graph and H a proper subgraph of G,
then

B(G) < B(H).

Lemma 2.9. [20] Let G be a connected graph. Then
(1) B(G) = —4 if and only if

G € {T(]" 21 5)? T(2s 2? 2)‘! T(l’ 3’ 3)$ Kl,4a C4(P2)) Ql,ls K.;_s DS} ui.

(2) B(G) > —4 ifand only if

G e {K1,T(1,2,i)(2<i<4),D:(4<i<T)}UPUCUT.

Lemma 2.10. [20] Let G be a connected graph. Then —(2++/5) < B(G) < —4
if and only if G is one of the following graphs:

(1) Tzh,z,l,forll =1l=2Il3>50rl; = 1,12 >2,l3>30rl; = Iy =
2,13 > 2qu1 = 2,l2 =l3 =3

(2) Urstapforr =a =1, (rs,t) € {(1,1,2),(2,4,2),(2,5,3),(3,7,3),
(3,8,4)},orr=a=1,52>112>1t*(s,b), b> 1, where (s,b) # (1,1) and

s+b+2, ifs
= b+3, ifs
b, if s

v

3.
2.
1.

(3) D forn 2 9.

(4) Cn(P;) forn 2> 5.

(5) Fpforn 2 9.

(6) Brseforr = 85,s =landt =3, 0orr > 1,s = 1ift =1, or
r>24,s=1ift=2,0rb>2c+3,s=1ift>3

(7) G = Cy(Ps) or Q2.

Corollary 2.1. [14] If a graph G satisfies R, (G) < —2, then B(G) < —2 — /5.

Definition 2.2. [10] Let G be a graph, e = viv; € E(G), then Ng(e) and d(e)
are defined as follow:

Ng(e) = Ng(v1) U Ng(v2) — {v1,v2} and d(e) = dg(e) = |Ng(e)|.

Lemma 2.11. [9] Let G, be a subgraph of G and q(G) 2 q(Gi1) > 2, then
Rz(G]_) > RQ(G)
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3 The algebraic properties of adjoint polynomials
3.1 The divisibility of adjoint polynomials and the fifth characters of graphs
Lemma 3.1. [20] For n,m 2 2, h(P,) | h(Py) ifand only if (n + 1)|(m + 1).

n—2 : ;
B> if niseven;
Theorem 3.1. (1) Forn > 7, p(¢}) = { nl1 £ therwise.

t\,|

22 if niseven;
(2) Forn 27,8(¢;) = { %, gtherwise.

(3) Forn 27, h(¢3) = =(h(Ga-1) + R(Ga2))-

Proof. (1) Choosing an edge e € E((!) whose deletion brings about a proper
subgraph K of ¢}, and by Lemma 2.3, we have h(¢l) = (K )h(Dn-4) +
zh(K3)h(Dn-s). Then we obtain, from Lemma 2.4, that

p(K7 UDn_4) =2+ |25%] and p(K1 UK3 U Dp_s) = 2+ | 252).

If nis even, then p(K; U Dp—y) = 3 > 252 = p(K; U K3U Dy_5),which
implies p(¢}) = 252. If n is odd, then we armive at p(K; U Dp—4) = p(K1 U
K3 U D,_s), which implies p(¢}) = &;—1 Hence the result holds.

(2) It obviously follows from (1).

(3) Choosing an edge e € E((!) whose deletion brings about a proper sub-
graph K] of 1. We have, by Lemma 2.4, that

h(¢h) = h(K7)R(Dn-s) + zh(K3)h(Da-s)
= h(K{)(zh(Da=s) + th(Dn-s)) + zh(K3)(zh(Dn-6) + zh(Dn-7))
= z(h(K])h(Dn-s) + zh(K3)h(Dn—g)) + z(h(K )h(Dn-6)
+zh(K3)h(Dn-7))
= z(h((ao1) + R(Gh2))

O

Theorem 3.2. Forn > 2, m > 9, h(P,) | h(¢k) ifand only if n = 2 and
m=3k+1fork>2 orn=4andm =>5k+2fork > 1.

Proof. Let go(z) = —z*—62°—1122-8z+1, g1 () = 2%+ 523+ 72% +52+2
and gm(z) = z(gm-1(2) + gm—-2(z)).

Let ¢i(z) = zgi(z) (0 < i < 6) and ¢;(z) = zh(¢})(@i > 7). Easily
to see that gm (z) = Z(gm-1(z) + gm-2(z)) and h1(P,)|gm(z) if and only if
h1(Pp)|gm(x). We can deduce that
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qQ(z) = —z5% —6z% - 112% — 822 + 1,

qi(z) = x5+ 5z + 7% + 522 + 2z,

g2(z) = -z -4z -32°+ 222 41,

g3(z) = =z°+ 4z 4+ 7% 4 322,

qa(z) = 4z +52°+ 22, (3.1)
gs(z) = x84 82° +12z% 4 42®,

gs(z) = z"+8z%+162% 492 + 23,

gm(z) = zh(G,), ifm>T.

It is obvious that ky (P, )|h(¢2,) if and only if hy(P,)|gm(z). Letm = (n +
1)k + 14, where 0 < ¢ < n. From Lemma 2.5, it follows that hy (Py)|gm (z) if and
only if h;(Pn)|gi(z), where 0 < i < n. We distinguish the following two cases:

Caseln > 7.

If 0 < i < 6, from (3.1), it is not difficult to verify that hy(P,) t gi(z). If
1> 17, from ¢ < n, Lemma 2.4 and Theorem 3.1, we have that

8(hu(Pu)) = L] and 8(ha(c}) = [51. (32)

The following cases are taken into account:

Subcase 1.1¢ = n,

It follows from (3.2) that 8(hq(¢})) = 8(h1(Pn)) + 1. Assume that k1 (P,)|
h1(¢}), it follows that hy(¢}) = (z + a)hi(Ps). Note that Ry(¢}) = —3 and
Ry(P,) = 1. So Ry(x + a) = —4, which brings about a = E—%@. This
contradicts that a is an integer number. Hence h1(P,) 1 h1(¢}), together with
(h1(Pr),z%@)) = 1, we have h1(Pn) { A(C}).

Subcase12i=n—1.

It follows from (3.2) that 8(h1(¢})) = 8(hi(Pn)) = % if n is even and
O(h1(¢})) = B(ha(Pn)) + 1 = 2L if n'is odd.

Subcase 1.2.1 8(h1(¢})) = 8(h1(P,)).

Suppose that hy(Pn)|h1(¢}), we have hy(P,) = hi(¢}), which implies
Ry (P,) = Ri(¢}). By Lemma 2.6, we know it is impossible. Hence h;(Py) {
h1(Ch), together with (hy(Py), z2¢)) = 1, we have hy(Pyn) 1 h(¢}).

Subcase 1.2.2 8(h1(¢})) = O(h1(Pn)) + 1.

We can turn to Subcase 1.1 for the same contradiction.

Subcase 1.3{ < n —2.

It follows by (3.2) that 3(h1(¢})) < 8(h1(Py)). Assume that by (P, )|h1(¢}),
we have that 8(h1(¢})) = 8(h1(Py)) and h1(¢}) = hi(Pr). So we can turn to
Subcase 1.2.1 for the same contradiction.




Case22<n<6.

From (1) of Lemma 2.4 and (3.1) , we can verify that hy (P,) = ¢:(z) if and
onlyifn =2andi=1,0orn=4andi=2for0 <7< n <7 FromLemma
2.5, we have that hy (P,)|h(¢2,) ifand only if n = 2and m = 3k + 1,orn = 4
and m = 5k + 2. From p(P,) = 1, p(P;) = 2 and p(¢L) > 2 form > 7, we
obtain that the result holds. O

Theorem 3.3. For m > 7, h%(P;) { h(¢L), h%(Py) { h(CL).

Proof. Suppose that h2(P;) | h(¢},), from Theorem 3.2, we have that m = 3k +
1, where k > 2. Let gm(z) = h(¢L,) for m > 7. By (3) of Theorem 3.1, (1) of
Lemma 2.5, it follows that

gm(z) = h(P2)gm—2(z) + z’gm-a(z)

h2(Py)gm-a(z) + 22°R(P2)gm—5(2) + 24 gm—s(z)

= h2(P2)(gm-4(T) + 22%gm—7(z)) + 32*h(Ps)gm—s(z) + 28gm—9(z)

= h3(P)(gm-a(z) + 28°gm—7(2) + 3z*gm—10())
+42%h(P2)gm-11(z) + 28 gm-12(2)

k—2
= h(Py) ng—ss—l(x) + (k — 1)z~ *h(Py)gm+1-306-1) (T)

8=1

+2%%=21( Py) gm—3(k~1) ().

According to the assumption and m = 3k + 1, we arrive at, by (3.1), that

RA(Py) | ((k — 1)z~ *h(Py)gs(z) + 2 ~2g4(z))
that is

h(Py) | ((k — 1)2®*~4gs(z) + 224z + 1))

By direct calculation, we obtain that & = —2, which contradicts to k > 2,
Using the similar method, we can also prove h%(P;) { h(¢L). O

Definition 3.1. Let G be a graph with q edges. The fifth character of a graph G
is defined as follow:

Rs5(G) = Ry(G) — Ry(G) +p—gq.

From Lemmas 2.1 and 2.2, we obtain the following two theorems:
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Theorem 3.4. Let G be a graph with components Gy, Ga, - - , Gy. Then

k
Rs(G) = Y Rs(Gw).

i=1

It is obvious that R5(G) is an invariant of graphs. So, for any two graphs G
and H, we have R5(G) = Rs(H) if h(G) = h(H) or hi(G) = hy(H).

Theorem 3.5. (1) R5(C) =0forn > 4; R5(C3) = —3; Rs(K1) = 1.
(2) Rs(Br1,1) =4forr > 1; Rs(By1,t) =5 forr,t > 1.
(3) Rs(Fs) =5; Rs(Fn) =4 forn 2 7; Rs(K;) =3
(4) R5(D4) =0; Rs(Dn) = lforn > 5,‘ RS(TI,I,I) =0.
(5) Rs(T1,1,15) = 1; Rs(T,15,05) = 20 Rs(Thy 1505) =3 forla 21 > 1 >

(6) Rs(Cr(P,)) = 4 forr > 4; Rs(Cy(Ps)) = Rs(Q1,2) = 5.
(7) Rs(P2) = =1, Rs(Pp) = ~2forn 2 3.
(8) Rs(K4) =T7; Rs(c,ll) =12 forn > 7.

Lemma 3.2. Ifa graph G € ¢, then 9 < R5(G) < 14.

Proof. According to Lemma 2.2, we calculate the fourth coefficients of adjoint
polynomials of Family . Then
bs(pl(r,s)) = b3(Dn1) —2(n+ 1) +¢, where 10 < ¢t < 11.
ba(p2 (7, 8,t)) = b3(Dn+1) — 2(n+ 1) +¢, where 10 < ¢ < 12.
bs(p3(r,s,t)) = b3(Dnt1) — 2(n + 1) + ¢, where 10 < t < 12.
ba(pi(r,s,t,p)) = b3(Dp41) —2(n+1) +t, where9 <t < 12,
ba(@3 (7, 8,t,P,q)) = b3(Dn1) —2(n+1) +¢t, where 9 < ¢ < 14.
ba(8(r,s,t)) = b3(Dn+1) —2(n + 1) +¢t, where 9 < t < 11.
ba(pl(r,s,t,u)) = b3(Dn+1) —2(n+1) + ¢, where 10 < t < 13.

@n wn |en(r24)| on on | en(s24)|on(u=4)

Figure 3 Family of ©
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From Definition 2.1, it follows that 7 < R(G) < 12. Together with Defini-

tion 3.1 and Lemma 2.6, we know that the result holds.
O

Lemma 3.3. [12] Let graph G € §\{Fn,Ur s,t,a,6, K }. Then
(1) Rs(G) = 4ifand only if G € {Cn-1(P2)|n > 5}U{Q1,1}U{Bn-5,11|n >
7}.
(2) Rs(G) = 5 ifand only if G € {Cr(P,)|r > 4,8 2 3} U {Q1,n-4|n 2>
6} U {Br1,, B11,1|r,t 2 2}.
(3) Rs(G) = 6 ifand only if G € {Qrs|rys 2 2} U {B1,1,¢) Bros,slry s, >
2}.
(4) Rs(G) = T ifand only if G € {By,s,ts,t 2 2}.

Corollary 3.1. Ifa graph G € E\{Fn,Urs,t,0,6, K; }, then R5(G) 2 4.

Lemma 3.4. [12] Ifa graph G € v, then

(1) Rs(G) = 8 ifand only if G € {$2} U {¥2} U {42(r,8)lr > 4,5 >
2} U {94 (n —6,1)|n > 8} U {¥5(1, s,t)|s,t > 2}.

(2) Rs(G) = 9 if and only if G € {Y2} U {$3(n — 3,1)jn > 6} U
{W(r,5)lr,s > 2} U {($4(1L, 1} U {65(1,1,6), 45 (r, 5, Dlr, 5, > 2} U {wS).

(3) Rs(G) = 10 ifand only if G € {$A(1,n—6)|n > S}U{¥E(r, 1, t)Ir,t >
2} U {%§(1,1,1)}.

(4) Rs(G) = 11 ifand only if G € {$3(n —7,1,1)|n > 9}.

Corollary 3.2. Ifa graph G € 1, then R5(G) 2 8.

Lemma 3.5. [12] Let graph G € (, then

(1) Rs(G) = 12 ifand only if G € {Cl|n > 8} U {¢3(r,s)|r,s > 2} U
{¢3(r, s,t)|r,s,t > 2}.

(2) Rs(G) = 13 if and only if G € {¢}} U {¢2(L,n = 8)ln > 10} U
{G3(1,5,)[s,t > 2}.

(3) Rs(G) = 14 ifand only if G € {¢3(1, 1)} U{¢3(1,1,n — 9)[n > 11}

(4) R5(G) = 15 ifand only if G € {¢3(1,1,1)|n > 9}.

Corollary 3.3. Ifa graph G € (, then R5(G) > 12.
Lemma 3.6. [13] If a graph G € 6, then 16 < R5(G) < 22.
Lemma 3.7. [12]Ifagraph G € ¢, then 12 < R5(G) < 17.
Lemma 3.8. Ifa graph G € 1, then R5(G) > 17.

Proof. As a matter of fact, 7(G) in [10] is actually equal to R;(G). Moreover,
Du [10] gave a recursive method to construct the family 7; consisting of graphs
with R, (G) = —1, which is stated as follows:

Suppose that #_;,mg, 71, - - - , Wi—1 have been determined. For each graph
G € m (-1 <t <i-— 1), together with Definition 2.2, we find all the edges e
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satisfying e ¢ E(G) and dge(e) = i + 1 — ¢ to construct the new graph G + e
(add vertices where necessary). Such graphs are collected in #}. Then we proceed
to add all possible edges e with d(e) = 1 to each graph in 7. In this way, we
obtain the graphs in ;.

Using the above method, we can construct the graphs in Family 7. If R (G) =
—5and g(G) = p(G) + 3, theni =5, -1 <t < 4 and dg4.(e) = 6 — t. By
Lemmas 2.6 and 2.7 we can do as follows: add the edges e with d(e) = 5 to
each graph with R)(G) = -1 and ¢(G) = p(G) + 1, and then add the edges e
with d(e) = 1. These resulting graphs constitutes the family %1 ; add the edges
e with d(e) = 4 to the graph with R;(G) = -2 and ¢(G) = p(G) + 1, and
then add the edges e with d(e) = 1. These resulting graphs constitutes the fam-
ily %; add the edges e with d(e) = 3 to the graph with R;(G) = -3 and
g(G) = p(G) + 2, and then add the edges e with d(e¢) = 1. These resulting
graphs constitutes the family 5%3; add the edges e with d(e) = 2 to the graph with
Ry(G) = —4 and ¢(G) = p(G) + 2, and then add the edges e with d(e) = 1.
These resulting graphs constitutes the family J%. Clearly, 7 = U}, 5% and
min{Rs(G)|G € 7} = min{Rs(H)|H € #4}. Let G€ fand H € 4 C 1.
From Lemma 2.11, it follows that Ro(G) < Ra(H). By Definition 2.1 and 3.1,
we know that Rs(G) + 1 < Rg(H), which implies 17 = min{Rs(G)|G €
0} +1 < min{Rs(H)|H € 54} = min{Rs(H)|H € 7}.

This completes the lemma. ]

3.2 The smallest real roots of adjoint polynomials of graphs

An internal x; 2 —path of a graph G is path 12223 - - - zr(possibly 1 = zx)
of G such that d(z;) and d(zx) are at least 3 and d(z3) = d(z3) = --- =
d(zk—1) = 2 (unless k = 2).

Lemma 3.9. [20] Let T be a tree. If uv is an internal path of T and T 2
U(1,1,¢,1,1) for t > 1, then B(T) < B(Tzy), where B(Tyy) is the graph ob-
tained from T by inserting a new vertex on the edge xy of T

Lemma 3.10. [15, 16, 17] (1) Forn 2 4, m > 6, 8(Ky4) < B(Fnm) < B(D,) <
B(Cn) < B(Pn).

(2) ﬁmin(Br,s,t) < ﬂmin(Q(r; 3)) < ﬁmin(Cr(Ps)) < Bmin (Tn)forn > 6.

(3) :Bmin(wrsz(rv s,t)) < ﬂmin("/):(rs 3)) < ﬂmin(wg(n S)) < ﬂmin('w’z;) <
ﬁmin(d’};)for n>8

(4) ﬂmin(Br.s,t) = ﬁ(Bl.l,n-S)f ﬁmin(Q(Ta s)) = ﬁ(Q(lv n-— 4))

(5) ﬂmin(cg) < Bmin(cg) S ﬁmin((rlu)'

(6) Bmin (¥3(r,5)) = B3 (n — 3,1)); Bmin(¥ (7, 5)) = B(¥a(1,n - 6));
Bmin(¥5(ry 5,1)) = B(¥n(n = 7,1,1)).

(7) Bmin (G2 (r, 8)) = B(CA(1,n—8)); Bmin(¢3 (7, 5,8)) = B((3(1,1,n-9)).

(8) ﬁmtn('wrla) < /9(11’5’;(1, 3, t))'



Lemma 3.11. (1) Forn > 7, B(¢}) < B(¢ 1)

(2) Forn 27,7 >5,m > 6, B(¢) < B(Q1a): B(G) < BIKT): B(GL) <
B(Cr(P2)); B(Gh) < B(Bm-s,1,1); B(Gh) < B(Frm).

(3) Forn 27, m > 6, B(¢a) < B(K4) = B(¥2); B(G) < B(Biim-s) <
B(Cr(Fs)).

(4) Forn 27, m > 6, B(¢1) < B(Q1m-4)-

Proof. (1) Using Software Mathematica, we have that

For ny > 20, B(¢}) = —5 < B(¢}) = —4.86906 < B(¢}) = —4.80535 <
B(Clo) = —4.77448 < B(¢Yy) = —4.75999 < B(Cly) = —4.7534 < B(¢ly) =
—4.75047 < B({1,) = —4.74981 < B((l5) = —4.74862 < B({ls) = —4.74838 <
B(Cly) = —4.74828 < B(Cls) = —4.74823 < B(Ch) = —4.74821 < B(¢L,) <
B(G, 1) < —4.7482.

(2) From Lemmas 2.9, 2.10 and Corollary 2.1, it is easy to see that the result
holds.

(3) It is obvious that 12 is a subgraph of (1. By Lemma 2.8, we obtain
that 8(¢}) < B(¥2) = B(K,); From (2) and (4) of Lemma 3.10, we know
that B(By,1,m-5) < B(Cr(P,)). From this together with Lemma 2.8, we have
B(¢L) < B(¥E) = —4.65109. From ny > 8, my > 14, B(¢}) = -5 < B(¢L) <
B(B1,1,m,-5) < B(By,1,15) = —4.51729 < B(B1,1,14) = —4.51728 < B(By,1,13) =
—4.51726 < ﬁ(Bl,l,m) = —4.51721 < [3(31’1,11) = —451713 < ﬂ(Bl,l,lo) =
—-4.51695 < 5(31,1_9) = —4.51658 < ,B(Bl,l,g) = —4.51584 < ﬂ(.Bl.l,-{) =
—4.51432 < ﬁ(Bl,l,e) = —4.51119 < 5(31'1,5) = —4.50469 < ,3(31'1‘4) =
—4.48086 < ﬁ(Bl,l,S) = —4.4605 < B(Bl,1,2) = —4.39026 < ﬂ(Bl,l,l) =
-4.21432.

(4) Forny 2 8, my > 16, B(¢7) = -5 < B(Gh,) < B(Qim-a) <
B(Q1,11) = —4.38249 < B(Q1,10) = —4.38207 < B(Qh,9) = —4.38131 <
B(Q1s) = —4.37988 < B(Q1,7) = —4.3772 < B(Q16) = —4.37213 <
B(Qrs) = —4.36232 < B(Q1,4) = —4.334292 < B(Q13) = —4.30278 <
B(Q1,2) = —4.21342. a

Lemma 3.12. (1) Forn >7,m > 5, B(¢}) < B(wL) < B(E(1, s,t)).

(2) Forn > 7, m > 5, B(C}) < B(¥2,).

(3) Forn 27, m 2 7, B(¢R) = B(¥r(m - 3,1)) ifand only if n = 13 and
m=09.

(4) Forn > 10, m > 10, B(¥5(1,m — 6)) < B(CL); B(CE) < B(¥i(m —
6,1)).

(5) Forn > 7, m > 8, B(¥3(m — 7,1,1)) < B(¢L).

(6) Forn 2 7, B(¢) < B(¥S).

Proof. (1) Forny > 8,my > 6, B(¢7) = =5 < B(CL) < B(¥h,) < B(vls) =
—4.61347 < B(¥1;) = —4.61346 < B(Plg) = —4.61345 < B(this) = —4.61342 <
B(¥ly) = —4.61337 < B(ih];) = —4.61325 < B(¥1;) = —4.613 < B(¥},) =
—4.61246 < B(v]y) = —4.61128 < B(¥§) = —4.60873 < B(¥3) = —4.60212 <
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B(}) = —4.59056 < B(y}) = —4.56155 < B(i) = —4.49086. From (8) of
Lemma 3.8, the result holds.

(2) Forn, > 8,m; > 18, B(¢7) = =5 < B(G,) < ﬂ(¢m;) < B(¥},) =
—4.74819 < B(y2;) = —4.74818 < B(¥¥s) = —4.74815 < B(y?,) = —4.7481 <
B(v}s) = —4.74796 < B(¥f,) = —4.74766 < B(y3,) = —4.74694 < B(vfo) =
—4.74528 < B(yE) = —4.74137 < B(¥2) < B(¥2) = —4.70928 < B(¥3) =
—4.65109 < B(E) = —4.49086.

(3) For ny > 14, m; > 17, combining with (1) of Lemma 3.11, it fol-
lows that B(C7) = ~5 < B(¢z) < B(¢) < /3((10) < B, (m1 —3,1)) <
B(¥i7(14,1)) = —4.76349 < B(¢) < B(¥ie(13,1)) = —4.76347 < B(pi;
(12,1)) = —4.76343 < B(¥3,(11,1)) = —4.76332 < B(33;(10,1)) = —4.76308
< B(¥3(9,1)) = —4.76251 < B(Y3(8,1)) = —4.76118 < B(W3(7,1)) =
~4.75802 < B(¢y) < Blgs) = B(WE(E 1) = —4.75047 < () <
B(#3(5,1)) = —4.73205 < B(3(4,1)) = —4.68554.

(4)Forny 210, my > 17,mg > 12, ﬂ((,) =-5<B() < ,3(1.11,,,1(1 my—
6)) < B(¥is(L, 10)) = —4.85505 < B(v1s(1, 9)) = —4.85498 < B(114(1,8)) =
—4.85482 < B(¥%(1,7)) = —4.85443 < B(iy(1,6)) = —4.85347 < B(¥4,
(1, 5)) —4.85109 < B(¥ip(1,4)) = —4.84517 < ﬂ(¢9(1 3)) = —4.83021 <
B(G3) < B(¥5(1,2)) = —4.79129 < ﬂ(Cn ) < B(¥3(4,1)) = B(¥3(1,1)) =
—4.68554; B(¢3) = —5 < B(¢L,)) < B(WE(2,1)) = —4.56155 < ﬂ(¢9(3 1) =
—4.49086 < B(vfo(4,1)) = —4.4887 < B(¢4,(5,1)) = —4.4217 < B(¢2, (mo—
6,1))

(5) For ny > 8, my > 18, B(¥5, (ma — 7,1,1)) < B(¥§;(10,1,1)) =
—5.00091 < B(#55(9,1,1)) = —5.00086 < B(wi5(8,1,1)) = —5.00973 <
B(¥8(7,1,1)) = —5.0094 < B(153(6,1,1)) = —5.00852 < B(v5(5,1,1)) =
—5.0062 < A(¥%,(4,1,1)) = —5 < B(1e(3,1,1)) = —4.98311 < B(¥§(2,1,1))
= —4.93543 < B(¥§(L,1,1)) = —4.79129 < B(¢}) = -5 < B(¢,) <
B(8) = —4.79129.

(6) For ny > 8, B(3€) = —6.17508 < B(¢}) = —5 < B(CL,)- ]

Lemma 3.13. (1) Forn > 10, m > 9, B(¢4(1,m — 8)) < B(¢L).
(2) Forn > 7, m > 10, B(¢3,(1,1,m - 9)) < B(¢L).

Proof. Using Software Mathematica, we have that

(1) For ny > 11, my > 19, B(¢3(1,1)) = —5.04892 < B(¢}) = -5 <
B(¢3(1,2)) = —4.9418 < B(¢3(1,3)) = —4.89307 < B(¢%,(1,4)) = —4.8713
< B(¢h) = —4.86906 < B(¢%(1,5)) = —4.86118 < B(¢Z,(1,6)) = —4.8579 <
6((125(1, 7)) = —4.85625 < B((75(1,8)) = —4.8557 < B(¢Pr(1,7)) = —4.85529
< B(¢Fs(1,8)) = —4.85517 < B(¢3, (1,m1 — 8)) < B(¢lp) = —4.80535 <
B(¢r,)-

(2) For n; > 8, m; > 20, 8(¢3)(1,1,1)) = —5.23607 < 8(¢3,(1,1,2)) =
—-5.10552 < B(¢3(1,1,3)) = —5.04892 < B(¢35(1,1,4)) = —5.0254 <
B(¢3(1,1,5)) = —5.01594 < B(¢$5(1,1,6)) = —5.01224 < B(¢H(1,1,7)) =



~5.01082 < B(¢%(1,1,8)) = —5.01027 < B(¢%(1,1,9)) = —5.01006 <
ﬂ((?s(l,l,lo)) = -5.00998 < B(¢3,(1,1,m; - 9) < B(¢}) = -5 <
B(Ca,)- O

4 The chromaticity of graph Z,Tz
Lemma 4.1. [18] For n > 4, D,, is adjointly unique if and only if n # 4, 8.

Lemma 4.2. Let G be a graph such that G ~" ), where n > 7. Then
(1) If n # 13, then G does not contain K as one of its components.
(2) G does not contain K4 as one of its components.

Proof. (1) Suppose that k(K )|h(¢L). From Lemma 2.3, we know that h(¢}) =
h(K7 )h(Dn—4)+zh(K3)h(Dn—5). Combining this with (h(K'), h(K3)) =1,
we have that h(K )|h(Dn—s), which implies 3(Dn-s) < B(Ky). If n # 13,
then we have from Lemma 2.9 and 2.10, that 8(D,_5) < B(K; ) forn < 13;
B(K7) < B(Dn-s) forn > 13. Hence B(D;) < B(Kg)fora < i < 7. It
contradicts to (2) of Lemma 2.9.

(2) Suppose that h(K,)|h(¢}). From Lemma 2.3, we arrive at h(¢l) =
h(¥2)A(Dn-s) + h(K; )h(Das) = h(K)h(Dn—s) + zh(Ky)h(Dncs).
Together with (h(K,), h(K;)) = 1, we have that h(K4)|h(Dp-6), which im-
plies 8(Dn-s) < B(K4). By Lemma 2.10 and Corollary 2.1, we obtain that
B(K4) < B(Dn—s)- This is obviously a contradiction. O

Theorem 4.1. Let G be a graph such that G ~" (), where n > 7. Then G
contains at most two components whose first characters are 1, furthermore, one
of both is P, and the other is Py or one of both is Py and the other is Cs.

Proof. Let G, be one of the components of G such that R;(G;) = 1. From
Lemma 2.6, it follows, from Theorem 3.2, that A{(G;)|h(¢2) if and only if G; =
Pyandn =3k +1,0r G; & Py and n = 5k + 2. According to (1) of Lemma
2.5, we obtain the following equality:

h(¢isk+7) = B(Pis)h(lsg—-1y+7) + ZR(Pra)R(Cisk—1)+6) (4.1)

Noting that {n|n = 3k + 1,k > 1} N{n|n = 5k + 2,k > 1} = {njn =
15k + 7,k > 0}, we have that

h(Pa)h(Pa) | h(Clsqe-1y+7) (4.2)

By Lemma 3.1, we get h(P2) | h(P14) and h(Py) | h(P14), together with
(h(Py), h(Py)) = 1, which leads to

K(PR(Ps) | h(Pia) (4.3)
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From (4.1) to (4.3), we obtain h(Pp)h(Ps) | h(¢lsx,7). Noting h(P;) =
h(K1 U C3), we also have h(P2)h(C3) | h(¢lsx.7), together with Theorem 3.3,
so the theorem holds. O

Theorem 4.2. Let G be a graph such that G ~" (L, where n > 9.
(1) If n = 13, then [G]n = {¢15, K5 U¥§(6,1)}.
(2) Ifn # 13, then [G]r = {¢L}.

Proof. (1) When n = 13, let graph G satisfy h(G) = h(¢1;). From Lemmas 2.1,
2.2 and 2.6, we obtain that ¢(G) — p(G) = 2 and R;(G) = —3. We distinguish
the following cases:

Case 1 G is a connected graph.

By R5(G) = Rs(¢1;) = 12 and (1) of Lemma 3.5, we have that G € 4 =
(h}U{Ch(ro)lr+s=61<rs <5 U{Chnst)lr+s+t="61<
r,8,t < 4}. By calculation, we have that {3 € [G]j.

Case 2 G is not a connected graph.

By calculation, we have h(G) = h(¢l;) = z8(z + 1)(z + 4)(z® + 10z* +
3323 4 4222 4 18z + 2). Let h(G) = h((}s) = z8f1(x) f2(z) fa(z), where
filz) = z+1, fa(z) = z + 4 and fa(z) = 25 + 10z* + 3323 + 4222 +
18z + 2. Noting that Ri(fi(z)) = 1 and b,(fi(z)) = 1, from Lemma 2.6,
we obtain that fy(z) = hy(P,) if fi(z) is a factor of adjoint polynomial of
some graph. If P, is a component of G, then let G = P, U G;, we arrive at
hi(f2(z) fa(z)) = =& + 1425 + 78z* + 1742% + 18622 + 74z + 8, which im-
plies R1(G1) = Ry(f2(z)f3(z)) = —4 and ¢(G1) — p(G1) = 3. From (3)
of Lemma 2.7, we know that it is impossible. Noting that R;(f2(z)) = 1 and
b] (fz(:r)) = 4, from Lemma 2.6, we obtain that fz(z‘) = h1(T1,1'1'1) if _fg(.’l:)
is a factor of adjoint polynomial of some graph. Let G = T};,,,; U G}, then
we arrive at h; (f1(z)f3(z)) = 2z + 1125 + 43¢ + 7523 + 6022 + 20z + 2,
which implies RI(G1) = R1(f1(.’13)f3(:l:)) = —1land q(Gl) —p(Gl) =2 Itis
impossible by Lemma 2.7. According to R, (f1(z)f2(z)) = -1, bi(f2(z)) =5
and (3) of Lemma 2.6, we obtain that fi(z) = hi(Ky) if fi(z) is a factor of
adjoint polynomial of some graph.

Subcase 2.1 K is not a component of G.

Since G is not connected, then the expression of G is G = a K U G;, where
e 2 1 and G4 is connected. It is not difficult to obtain that ¢(G:) — p(G1) = 3.
We conclude, from Lemma 2.7, that ¢(G,) — p(G1) < 2. Thus this brings about
a contradiction.

Subcase 2.2 K is a component of G.

Let G = K; UGy, where hy(G1) = z° + 10z% + 3322 + 4222 + 18z + 2.
The following cases are taken into account:

Subcase 2.2.1 G is a connected graph.

Noting that B;{G;) = -2 and ¢(G,) = p(G1) + 1 = 10, we have from
Lemma 2.6, that G; € 1. Then we consider that G; € {%}, %3, ¥3(6,1),¥3(5,2),



¥3(4,3),v4(3,1),¥§(2,2), ¥4(1,3),¥3(1, 1, 2),%§(2,1,1)}. By calculation, K
U¢3(6» 1) € [G]h-

Subcase 2.2.2 G is not a connected graph.

It follows that G = K; UaK1 UG}, wherea > 1and hy(G) = 2°+10z% +
3323 +422%+18z+2. Itis not difficult to get that g(G1)—p(G1) > 2. Remarking
that R;(G,) = —2, we obtain from Lemma 2.7 that ¢(G1) — p(G1) < 2, which
results in g(G1)—p(G1) = 2. Thus we conclude, from Lemma 2.6, that G = K},
a=1. By calculation, G = K; U K1 U K € [G]a.

(2) Whenn > 7,n # 13,1et G = |J;.., Gi. From Lemma 2.1, we have that

KG) = [T MG = h(¢), (4.4)

i=1

which results in 3(G) = B(¢}) € (—o0,—2 — V/5) by Corollary 2.1. Let s;
denote the number of components G; such that R(G;) = —i, where i > —1.
From Theorem 4.2, Lemmas 2.1 and 2.2, it follows that 0 < s_; < 2 and

Ry(G) =) Ry(G:) = —3and q(G) = p(G) + 2, (4.5)
i=1

which implies

-5 <R(Gi)L1,

S_1 = 81 + 289 + 3s3 + 4384 + 585 — 3, (4.6)
> (a(G)—p(G) =s-1.
—5<R,(G)<0

Let Ure7s Ti a0 = (Ureri T1,105) YU (UrerThta0s) U (Urers Ty ta 00 )
Ti = {Tanlls 2 2} T2 = Tl 282 22} T = {Th el >
lp 21 22}, To=ThiUT2UTs, the tree Ty, 4, 1, is denoted by T for short,
A= {i|i > 4} and B = {j]j > 5}.

We distinguish the following cases by 0 < s_; < 2:

Casels_; =0.

It follows, from (4.6), that

s5 = 84 = 0 and s, + 255 + 3s3 = 3. 4.7

We distinguish the following cases by (4.7):
Subase 1.1 s3 =1and s; =s; =0.
From Lemmas 2.1 and 2.6, we set

G = G1U(UseaCi)U(UjepD;)U fD4Ua K U 1 ) U(UreTs Tiy 1505), (4.8)
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where R, (G;) = -3.

Recalling that ¢(G) = p(G) + 2, we obtain that ¢(G1) — p(G1) > 2. By (2)
of Lemma 2.7, it follows that ¢(G1) — p(G1) < 2. Then ¢(G1) — p(G1) = 2,
which implies a = b = |T;| = |T2] = |T3| = 0 and G; € (. Hence G =
G1 U (UieaCi) U (UjepDj) U fDy. From Theorems 3.4 and 3.5, we arrive at
R5(G) = Rs(¢}) = 12 = R5(G1) + | B|, which leads to | B| = 0 and Rs(G,) =
12 by Corollary 3.3. Then G = G U (U;e 4C;) U £ Dy. In terms of (1) of Lemma
3.10 and (3) of Lemma 3.11, we obtain that 3(G) = B(G1) = B(¢}), which
results in Gy 2 ¢2, by (5) of Lemma 3.10. By (1) of Lemma 3.11, we know that
m=nand|A|=f=0.S0G ¢}

Subase 1.2 s3 =0 and 83 = 5; =1,

From Lemma 2.6 and (4.5), let

G = G1UG2U(UicaCi)U(UjeBD;)U fDsUa Ky UbTY 1,1 U (Urets Tiy i 05)-
(4.9)
where R1(G1) = -1, R1(G2) = 2.
By Theorems 3.4 and 3.5, we arrive at

Rs(G) = Rs(¢L) = 12 = Rs(G1) + Rs(G2) + Bl + o + |Ti| + 2|Ta] + 3[Tsl.
(4.10)

From (2) of Lemma 4.2, we obtain that G, % K. Together with Lemma 2.6
and (4.5), we have that ¢(G1) — p(G1) = 1, ¢(G2) —p(G2) = landa = b =
|Ti| = |T2| = |T3|] = 0, which implies Gy € {Fmm, K}, G2 € ¥. By (1) of
Lemma 4.2 and (4.10), G; = F,, and R5(G2) = 8 — | B|, which leads to |B| = 0
and R5(G2) = 8 by Corollary 3.2. Together with (4.9) and Lemma 3.4, we obtain
that G = F,;, UG U (UseaC;) U f Dy, where Go € {91} U {$2} U {93(r,8)}U
{¥a(n—6,1)YU{¥5(1, s, t)}. According to (1) of Lemma 3.10 and (2) of Lemma
3.11, we know that 8(G) = B(G2). By Lemma 3.12, B(G) = B(¢}) = B(G,) if
and only if n = 13and m = 9. Then G = F,,, U9§(6,1) U (U;caC;) U fD,,
which contradicts to p(G) = 13.

Subcase 1.3 s3 = s, =0 and s; = 3.

Without loss of generality, let

3
G = (|J G:)U(UieaCi)U(UjeBD;)U fDaUaKy UbTy 1,1 U(Urers Ty ta ts )

i=1
(4.11)
where Rl(Gl) = R1(G2) = Rl(Gs) =-1.
From Theorems 3.4 and 3.5, we have that

3
Rs(G) = Rs(¢y) =12=)_ R5(G:) +|B|+a+|Ti| +2Ta| + 3| Tal. (4.12)

i=1

Recalling that g(G) = p(G) + 2, we distinguish the following subcases:
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Subcase 1.3.1 ¢(G;) — p(G;) = 1( = 1,2, 3).

From Lemma 2.6, (4.5), (4.11) and (1) of Lemma 4.2, we arrive at G; =
Fn(i =2,3,4) anda + b + |T1| + 2|T2| + 3|Tz| = 1. If b = 0, then we have,
from (4.12), that 12 = 3R5(F,) + |B| + 1, which contradicts to Rs(Fy,) = 4.
If b = 1, then we obtain, from (4.12), that 12 = 3Rg(F,,) + |B|, which leads
toG = Fm U Fm u Fm U (U,;eAC-,’) U f.D4 U T]_'l,]. From (1) of Lemma 3.10,
Lemma 2.9 and Corollary 2.1, 8(¢%) = B(G) = B(F.), which contradict to
B(C) = B(CL) < B(Fm) by (2) of Lemma 3.11.

Subcase 1.3.2 ¢(G;) — p(G;) = 1(i = 1,2), q¢(G3) = p(Gs).

Using Lemma 2.6, (4.5), (4.11) and (1) of Lemma 4.2, we obtain that G; =
Fn(i =1,2),G3 € £anda = b = |T1] = |T3| = |T3} = 0. By (4.12),
we have R5(G3) = 12 — 2R5(F,,) — |B| = 4 — |B|, which implies that G =
Frn U Fn UG3 U (Ui sCi) U fDy, Rs(G3) = 4. From (1) of Lemma 3.3, it
follows that G3 € {Cn_l(Pz)} U {Ql'l} ) {Bn_5‘1,1}.

As stated above, we have, from Lemma 2.10 and Corollary 2.1, that 3(G) =
B(G3). From (2) of Lemma 3.11, we arrive at 8(¢}) = B(G) < B(G3). This is
also a contradiction.

Case2s_; =1.

It follows, from (4.6), that s = 0 and s; + 233 + 3s3 + 434 = 4, which
brings about the following subcases:

Subcase2.1s4, = 1,83 =8, =85, =0,

Without loss of generality, let

G=G,UGU (UieACi) U (UjeBDj) UfD4UaK U bT1,1'1 U (UTe'];JTzlizz,ls),
4.13)
where G; € {P,, P4, C3}, Ri(Gz) = —4.
From Theorems 3.4 and 3.5, we obtain that

2
Rs(G) = Rs(¢n) =12 =) _ Rs(Gi) +|B|+a+|Th| +2ITa| +3|Ts|. (4.14)
i=1

We distinguish the following subcases:

Subcase 2.1.1 Gy = Por G, & Py.

Recalling that ¢(G) = p(G) + 2, we obtain that ¢(G3) — p(G2) > 3. From
Lemma 2.7 and (4.13), it follows that ¢(G2) — p(G2) < 3. It is a contradiction.

Subcase 2.1.2 G; = Cs.

It is obvious that ¢(G2) — p(G2) > 2 by (4.5) and (4.13). By Lemma 2.7,
it follows that g(G2) — p(G2) < 3. ThenG; € #anda = b = |T1| = |T2] =
| 73| = 0, which implies that R5(G3) = 15 — | B| < 15. It contradicts to G €
by Lemma 3.6.

Subcase 2.2 sy = s =0,53 =51 = 1.
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Without loss of generality, we set

3

G = (|J G:)U(UicaCi) U(UjeBD;)U f Dy UaKy UbTi,1,1U(Ures Ty ta ts):

t=1

where Gy € {P, P4,C3}, R1(G1) = -1, Ri(G2) = -3.
Using Theorems 3.4 and 3.5, it follows that

(4.15)

3
Rs(G) = Rs(¢r) =12 =) Rs(Gi) + Bl +a+I|Ti| + 2Tl +3Ts| (4.16)

i=1
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Figure 4 Family of 6

Subcase 2.2.1 G; = P, or Gy & P;.

Recalling that ¢(G) = p(G) + 2, we arrive at Gy = F,, Gg € ( and
a =b=|T1| = |Tz| = |Ts| = 0 by Lemmas 2.6, 4.2 and (4.15). Combining these
with (4.16), we have if G; = Py, then R5(G3) = 9 — |B| £ 9, which contradicts
to G € ¢ by Corollary 3.3. If G; 2 P, then R3(G3) = 10 — | B| < 10, which
also contradicts to G'3 € ¢ by Corollary 3.3.

Subcase 2.2.2 G, = Cs.

In terms of (4.5), we have the following three subcases to consider:

Subcase 2.2.2.1 ¢(G2) — p(G2) = 1, ¢(G3) — p(G3) = 2.

From Lemmas 2.6, 4.2, (4.5) and (4.15), a + b+ |T1| + 2|72| + 3|T3| = 1,
Gy = F,, and G3 € (. By (4.16), we have

if b = 0, then R5(Gs) = 14 — Rs(Fp) — |B] < 10 — |B| < 10, which
contradict to G € ¢ by Corollary 3.3.

if b = 1, then R5(G3) = 15 — Rs(F) — |B| < 11 — |B| < 11, which
contradicts to G3 € ¢ by Corollary 3.3.

Subcase 2.2.2.2 ¢(G2) = p(G2), ¢(G3) — p(G3) = 2.

Itisaobviousthat G, € §,Gs € {anda =b = |T| = |T2] = |T3| =0
by Lemmas 2.6 and (4.15). Using Corollary 3.1 and (4.16), we have R5(G3) =
15 — R5(G32) — |B| < 11 — | B| £ 11, which contradicts to G5 € ¢.

Subcase 2.2.2.3 ¢(G2) — p(G3) =1, ¢(G3) — p(G3) = 1.

Applying Lemmas 2.6, 4.2 and (4.15), we have that G & F,,,, G3 € ¢ and
a=b=|Ti| =|T2| = |T3] = 0. Then 12 = -3 + R5(F,,) + Rs(Gs) + |B|,
that is R5(G3) = 11 — | B| < 11, which contradicts to G3 € ¢ by Lemma 3.7.

Subcase 2.3 s4 = s3 =5; =0, 8, =2.

Without loss of generality, let

3
G = (|J G:)U(UieaCi)U(UjepD;)U fDsUaK1 UbTy 1,1 U (Ve Ty 1o 0s)»

i=1
(4.17)
where G € {P,, P4, Cs}, R1(G2) = Ry(Gs) = 2.
In terms of Theorems 3.4 and 3.5, we arrive at

3
Rs(G) = Rs(¢h) =12=_ Rs(Gi) +|B|+a+|Ti| +2|T2| + 3Ts| (4.18)
i=1
Subcase 2.3.1G;, = P,or Gy &£ Py.
It is obvious that 323 ,(q(G;) — p(G:)) > 3 by (4.5) and (4.17). From
Lemmas 2.6 and 4.2, it follows that Z?=2(q(G,-) —p(G;)) < 2. This is obviously

a contradiction.
Subcase 2.3.2 G, = Cs.
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Using Lemmas 2.1, 2.6, 4.2 and (4.17), it is not difficult to see that ¢(G;) —
p(Gi) = 1(i = 2,3), which implies G2,G3 € Y anda = b = |T1| = |T2| =
|73] = 0. Then 12 = —3 + R5(G2) + R5(Gs) + |B|. Hence R5(G3) =
15— R5(G2) — |B| < 7—|B| < 7, which contradicts to G3 € 9 by Corollary 3.2.

Subcase 24 s, =383 =0,80=1,8; =2.
Without loss of generality, we set

4
G = (J G:)U(UieaCi) U(UsenD;)U f Dy UaK1 UbT1,1,1 U (Urers Ty ta,is)s

i=1

where Gl (S {Pg, P4, C3}, Rl(Gz) = R1 (G3) =-1, Rl(G4) = -2,
From Theorems 3.4 and 3.5, we obtain the following equality:

(4.19)

4
Rs(G) = Rs(¢a) =12= ) Rs(Gi) + |B| +a+|Ta| +2|T2| + 3|Ta| (4.20)

i=]

Subcase24.1Gy = Por G, = Py.

From Lemmas 2.6, 4.2 and (4.5), we obtain that ¢(G;) — p(G:) = 1(z =
2,3,4), which implies G; & Fi,(1 = 2,3),Gs € Yanda =b = |T1| = |T2
|73] = 0. If Gy & P,, then R5(G4) = 13 — 2R5(Fmm) — |B| < 5 - |B| < 5,
which contradicts to G4 € ¥ by Corollary 3.2. If G; = P,, then R5(G4) =
14 — 2R5(F») — |B| < 6 — |B| < 6, which also contradicts to G4 € 9 by
Corollary 3.2.

Subcase 24.2 G; = C;.

By (4.5), the following three subcases will be discussed:

Subcase 2.4.2.1 ¢(G;) — p(G;) = 1(¢ = 2, 3,4).

Itiseasy toseethat G; = F,,(: = 2,3), Gy € Yanda + b+ |T1| + 2|T2| +
3|73] = 1 by Lemmas 2.6, 4.2 and (4.19), which implies |73| = |72| = 0 and
0 <b < 1. If b =0, then we obtain, from (4.20), that 12 = —3 + 2Rs(Fy,) +
R5(G4)+|B|+1. Therefore R5(G4) = 6—|B| < 6, which contradicts to G4 € 9
by Corollary 3.2. We can get the same contradiction for the case of b = 1.

Subcase 2.4.2.2 q(G2) = p(G2), ¢(G;) — p(G;) = 1(i = 3,4).

Itis obvious that G2 € §,G3 = F,, Gy € panda =b = |T1| = |T2| =
|73] = 0 by Lemmas 2.6, 4.2 and (4.19). From these together with (4.20), we
have 12 = -3 + R5(G2) + Rs(Fm) + Rs(G4) + |B|, that is R5(G4) =11-
Rs(G2) — |B| £ 7 — |B| < 7, which contradicts to G4 € 3 by Corollary 3.2.

Subcase 2.4.2.3 ¢(G;) — p(G;) = 1(i = 2, 3), ¢(G4) = p(G4).

By Lemmas 2.6, 4.2 and (4.19), we have G; = Fj,(i = 2,3), G4 € ¢
anda = b = |Ti| = |T2| = |T3| = 0. Combining these with (4.20), we have
12 = =3 + 2R5(Fy) + R5(Gy4) + |B|, thatis Rs(G4) = 7 — |B| < 7, which
contradicts to G4 € by Lemma 3.2.
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Subcase 2.5 s4 = s3 =35 =0, 51 = 4.
Without loss of generality, let

5
G = (|J Gi)U(UieaCi) U(UjenDs)U FDyUaKy UbT,1 1 U(Urer Ty 1y 05)
i=1
(4.21)
where Gy € {P,, P4,C3}, R(G;) = —1(i = 2,3,4,5).
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From Theorems 3.4 and 3.5, we arrive at

5 -
R5(G) =12=)_ Rs(G:) +|B|+a+|Ti| +2|Ta| + 3|Ta|. (4.22)
i=1

Subcase 251G, =X P or G, = P,.

Recalling that ¢(G) = p(G) + 2, we have the following two cases to be
considered:

Subcase 2.5.1.1 ¢(G;) — p(G;) = 1(i = 2, 3,4,5).

From Lemmas 2.6, 4.2 and (4.21), we get that G; = F,,,(i = 2,.--,5) and
a+ b+ |T1| + 2|T2| + 3|73| = 1. From these together with (4.22), if b = 0, then
12 = R5(G1) + 4Rs(Fn) + |B| + 1. Hence Rs(G;) = —5 — |B| < =5, which
contradicts to R5(P,) = —1 and Rg(P,) = —2. We can get the same contradition
by the same reason for the case of b = 1.

Subcase 2.5.1.2 ¢(G;) — p(G;) = 1(i = 2, 3,4), ¢(Gs) = p(Gs).

It is easy to see that G; = Fi,(i = 2,3,4),Gs € {anda = b = |T;| =
[T2| = |T3| = 0 by Lemmas 2.6, 4.2 and (4.21). From (4.22), it follows that
12 = Rs(Gl)+3R5(Fm)+R5(G5)+|B|, which implies Rs(Gl) = —-Rs(Gs) -
|B| < —8 by Corollary 3.2. It contradicts to Rs(P;) = —1 and Rs(P;) = —2.

Subcase 2.5.2 G; = Cj.

We distinguish the following three cases by (4.5).

Subcase 2.5.2.1 ¢(G;) — p(G;) = 1(i = 2, 3,4, 5).

From Lemmas 2.6, 4.2 and (4.21), we obtain that G; = F,(i = 2,---,5)
and a 4 b + |T1| + 2| 72| + 3|73| = 2, which implies that |73) =0and 0 < b < 2.
We only consider the case of b = 2, other cases can be similarly discussed. If
b =2, then 12 = —3 + 4R;5(Fy,) + | B|, which contradicts to Rs(F,) = 4.

Subcase 2.5.2.2 ¢(G;) — p(G;) = 1(i = 2, 3,4), ¢(Gs) = p(Gs).

It is obvious that G; = F,(i = 2,3,4),Gs € {anda + b+ |T1| + 2| T3] +
3|73| = 1 by Lemmas 2.6, 4.2 and (4.21). If b = 1, then we obtain, from (4.22),
that 12 = —3+43R5(F},) + R5(Gs) +|B|, which implies R5(Gs) < 3—|B| < 3.
It contradicts to G5 € £. We can get the same contradition for the case of b = 0.

Subcase 2.5.2.3 ¢(G;) — p(G;) = 1(i = 2,3), q¢(G:) = p(G:)(i = 4,5).

From Lemmas 2.6, 4.2 and (4.21), we obtain that G; & F,(i = 2,3),
G4,Gs € £and e = b = |Ti| = |T2| = |Ts| = 0. In the light of Corollary
3.1, R5(G4) > 4. From these together with (4.22), R5(Gs) = 15 — 2Rs(Fy,) —
Rs5(G4) — | B| < 3 — | B|, which contradicts to G5 € £ by Corollary 3.1.

Case3s_1 =2.

It follows, from (4.6), that s; + 2s2 + 3s3 + 4s4 + 585 = 5, which brings
about the following cases:

Subcase 3.1s55 =1, 54 =83 = 35 = 87 = 0.

Without loss of generality, we set

G = PzUGlUGzU(UieACi)U(UjeBDj)UfD4UaK1UbT1,1,1U(UTE7;,T1,'(2'ls),
(4.23)
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where G; € {P4,C3}, Rl(Gz) = -5.
Applying Theorems 3.4 and 3.5, it follows that

2
Rs(G) = Rs(¢) =12=—~1+)_ Rs(G:) +|B| + a+|Ti| + 2| Tz| + 3| Ta|

i=1
(4.24)

Subcase 3.1.1 G, = P,.

Recalling that ¢(G) = p(G) + 2, we have that g(G2) — p(G2) = 4. By (3) of
Lemma 2.7, we arrive at ¢(G2) — p(G2) < 4. Thus this products a contradiction.

Subcase 3.1.2 G; = Cs.

It is obvious that g(G2) — p(G2) = 3 by (4.5) and (4.23). By (3) of Lemma
2.7, we arrive at ¢(G2) — p(G2) < 4. Then ¢(G2) — p(G2) = 3, which implies
G € 7 by Lemma 2.6. From (4.24), it follows that R5(G,) = 16 — |B| < 16,
which contradicts to Lemma 3.8.

Subcase 3.2 85 =53 =8, =0,84 =81 = 1.

Without loss of generality, let

3
G = Pu(| Gi)U(Uie aCi)U(Uje 8 D;)Uf DsUaK1UBT 1,1U(Urets Tty o s )

i=1
(4.25)
where Gy € {P4,Ca}, Rl(Gz) =-1, Rl(Ga) = —4.
From Theorems 3.4 and 3.5, we arrive at

3
Rs(G) = Rs(¢) =12= —1+ 3 Rs(G:) +|B| +a + |Ti| + 2\T| + 3(T;|

i=1
(4.26)
Subcase 3.2.1 G; = P;.
By (4.5) and (4.25), we have that 3o, (g(G:) —p(G:)) > 4. From Lemmas
2.6 and 2.7, it follows that Ei?:z(q(G,-) — p(G;)) < 3. Thus this brings about a
contradiction.
Subcase 3.2.2 G, = Cj.
From Lemmas 2.6, 4.2, (4.5) and (4.25), we can obtain that

G=PRUC3UG,UG3U (U,-e,qC.-) U (UjeBDj) U fDy,

where G3 € 0, Gy = F,,. From (4.26), we arrive at 12 = —1 — 3 + Ry (F,,,) +
R5(G3) + |B|, which leads to R5(G3) = 12 — |B| < 12, which contradicts to
G3 € 6 by Lemma 3.6.

Subcase3.3s5 =5, =38; =0,83 =82 =1.

Without loss of generality, we set

3
G = PU(| G:)U(Uie aC:)U(Vje 8 D;)Uf DaUaK1UbTy,11U(UTeTs T ta ts )
t=1
(4.27)
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where G; € {P4, 03}, Rl(Gg) =-2,R; (Ga) = -3.
Using Theorems 3.4 and 3.5, we obtain the following equality:

3
Rs(G) = Rs(¢h) =12=—1+)_ Rs(G:) +|B| +a+|Ti| + 2|Tz| + 3|Ts|.

i=1
(4.28)

Subcase 3.3.1 G; = Py,

Recalling that g(G) = p(G) + 2, we have that "o _,(q(G:) — p(G:)) = 4.
From Lemmas 2.6, 2.7 and 4.2, Z?=2(q(G,-) - p(G;)) < 3. Thus this brings
about a contradiction.

Subcase 3.3.2 G; = Cs.

From (4.5) and (4.27), we obtain that Z?=2(q(G,~)—p(G;)) > 3. Combining
with Lemma 2.7, we have that Z?=2(q(Gi) —p(G;)) = 3, which implies G, € ¥,
Gz € ¢anda = b = |Th| = |Tz| = |T5| = 0. In terms of (4.28), we have that
12 = -1 - 3+ R5(G2) + Rs(G3) + | B|. By Corollary 3.2, Rs(G2) > 8. Hence
R5(G3) < 8 —|B| < 8, which contradicts to G3 € ¢ by Corollary 3.3.

Subcase34 55 =54 =82=0,8; =2,53 =1.

Without loss of generality, let

4
G= PQU(U Gi)U(UieAC,')U(UjeBDj)UfD.;UaKlUbT1,1,1U(UTe73T[1,12_13),

i=1
(4.29)
where Gy € {P4,C3}, Ri(G2) = R1(G3) = -1, R(Gy) = -3.
From Theorems 3.4 and 3.5, we arrive at

4
Rs(G) = Rs(¢}) =12=—1+Y_ Rs(Gi) + |B| + a +|Ti| + 2 Ta| + 3|Ts|.

i=1
(4.30)

Subcase 3.4.1 G, = P,.

Using Lemma 2.6, 4.2, (4.5) and (4.29), we have that G; & Fi,(i = 2,3),
G4 € (anda = b = |T1| = |T2| = | T3] = 0. From these together with (4.30), we
obtain that 12 = —1-2+|B|+2Rs(F )+ R5(G4). Then R5(G4) = 7—-|B| < 7,
which contradicts to G4 € ¢ by Corollary 3.3.

Subcase 3.4.2 G; = Cs.

Recalling that ¢(G) = p(G) + 2, we have the following three subcases to
consider:

Subcase 3.4.2.1 ¢(G;) — p(G;) = 1(i = 2, 3) and ¢(G4) — p(G4) = 2.

It is easy to see that G2, G3 & Fy,, G4 € (and a+b+|T1|4+2|72|+3|T3| = 1.
If b = 0, then we obtain, from (4.30), that 12 = —1 — 3+ 2R5(F),) + Rs(G4) +
|B| + 1. Thus R5(G4) < 7 — |B| < 7, which contradicts to G4 € (. If b = 1,
then we have, from (4.30), that 12 = -1 — 3+ 2R5(F,,) + R5(G4) +|B|. Hence
Rg(G,4) < 8 — |B| < 8, which also contradicts to G4 € ¢.
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Subcase 3.4.2.2 q(G;) — p(G;) = 1(i = 2,3, 4).

It is obvious that G; & F,(i = 2,3), G4 € panda = b = |Th| = |T2| =
|73| = 0 by (4.5), (4.29), Lemmas 2.6 and 4.2. Combining with (4.30), we have
12 = =1 — 3+ 2R5(F),) + Rs(G4) + | B|. Then R5(G4) = 8 — |B| < 8, which
contradicts to G4 € ¢ by Lemma 3.7.

Subcase 3.4.2.3 ¢(G;)—p(G2) = 1, ¢(G3) = p(G3) and g(G4)—p(G4) = 2.

Applying Lemmas 2.6, 4.2 and (4.29), we have G2 = F,,, G3 € §, G4 € ¢
and a = b = |T1| = |T2] = |T3| = 0. From these together with (4.30), 12 =
—1 -3+ |B| + Rs(F.) + Rs(G3) + Rs(G4). By Corollary 3.1, Rs(G3) > 4.
Hence R5(G4) = 12— R5(G3)—|B| < 8—|B| < 8, which contradicts to G4 € ¢
by Corollary 3.3. :

Subcase 3.5 S =84 =83 = 0,s2=2,8=1.

Without loss of generality, we set

4
G = PU(| Gi)U(UieaCi)U(Uje BD;)Uf DyUa K1UBT 1,1U(Ure s Ty o s ),

=1
(4.31)
where G; € {P4,Cs}, R1(G2) = —1, R1(G3) = R1(Gyq) = —2.
Applying Theorems 3.4 and 3.5, it follows that

4
Rs(G) = Rs(C}) =12=-1+Y_Rs(Gi) +|B| +a+|Ti| +2|T2| + 3|Tal.

i=1
(4.32)

Subcase 3.5.1 G; & P,.

Recalling that g(G) = p(G) + 2, we know that 37 _,(¢(G:) — p(G:))) > 4.
From Lemmas 2.6 and 4.2, it follows that E;z(q(Gi) —p(Gy) <3 Itisa
contradiction.

Subcase 3.5.2 G; = Cs.

Applying (4.5), we have that Z;z(q(Gi) - p(G;)) =2 3. From Lemmas
2.6 and 4.2, it follows that 3°F_,(g(G:) — p(G:)) < 3. Then Yi,(a(G:) —
p(G;)) = 3, which leads to G3 & Fp,, G; € Y¥(i = 3,4)anda = b = |T| =
|72] = |T3] = 0. Combining these with (4.32), we arrive at 12 = —1 — 3 +
Rs(Fm) + Rs(G3) + R5(G4) + |B|. By Corollary 3.2, R5(G3) = 8. Then
R5(G4) = 12 — R5(G3) — |B| < 4 — |B| < 4, which contradicts to G4 € 9.

Subcase 3.6 s; = s34 =83 =0,520=1,8;, =3.

Without loss of generality, let

5
G= P2U(U Gi)U(Uie aCi)U(Uje g Dj)Uf DyUa Ky UBT 3,1 U(Urers Ty 1a,05)

i=1
(4.33)
where Gy € {P4, 03}, RI(GQ) = Rl(Gs) = Rl(G4) = -1, R1(Gs) = -2,
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From Theorems 3.2 and 3.3, we arrive at

5
Rs(G) = Rs(¢) =12=—1+_ R5(G:) +|B| +a+|Ti| +2|Tz| + 3|Ta|.

=1
(4.34)

Subcase 3.6.1 G, = P,

From (4.5), we know that 3"¢_,(¢(G:) —p(G:)) = 4. From Lemmas 2.6 and
4.2, it follows that 3";_,(¢(G:) — p(G:) < 4. Then S o(q(Gi) - p(G)) =4,
which implies G; = Fi (i = 2,3,4),Gs € yanda = b = |T| = |Tz] =
|73] = 0. In the light of (4.34), we obtain that R5(Gs) = 15— 3Rs(F;,) — |B| <
3 — | B] £ 3, which contradicts to G5 € .

Subcase 3.6.2 G, = Cj.

Recalling that g(G) = p(G) + 2, the following three subcases will be dis-
cussed:

Subcase 3.6.2.1 ¢(G;) — p(G;) = 1(: = 2, 3,4, 5).

From Lemmas 2.6, 4.2, (4.5) and (4.33), it follows that G; & F,(i =
2,3,4), Gs € panda+ b+ |T1|+2|T2| + 3|31 = 1. If b = 0, then
we obtain, from (4.34), that 12 = —1 — 3 + 3Rs(Fy,) + Rs(Gs) + |B| + 1.
Hence R5(G4) = 3 — |B| < 3, which contradicts to G5 € ¥. If b = 1, then
we have, from (4.34), that 12 = —1 — 3 + 3Rs(F,,) + R5(Gs) + |B|. Then
R5(G4) = 4 — |B| < 4, which also contradicts to G5 € .

Subcase 3.6.2.2 ¢(G:) — p(G;) = 1(i = 2,3, 5), g(G4) = p(G4).

Itiseasy tosee that G; = Fi,(1 = 2,3),G4 € §,Gs € Ypanda = b =
|71] = |T2] = | T3] = 0 by Lemmas 2.6, 4.2, (4.5) and (4.33). From (4.34), we
obtain that 12 = —1 — 3 + 2R5(F},,) + R5(G4) + Rs(Gs) + | B|, which resuits
in R5(Gs) = 8 — R5(G4) — |B| < 4 — | B| < 4 by Corollary 3.1. It contradicts
to Gs € 9 by Corollary 3.2.

Subcase 3.6.2.3 ¢(G;) — p(G;) = 1(i = 2, 3,4) and ¢(Gs) = p(Gs).

From Lemmas 2.6, 4.2, (4.5) and (4.33), it follows that G; & F,(i =
2,3,4), Gs € panda = b = |T;| = |Tz] = |Ts| = 0. Combining these
with (4.34), we arrive at 12 = —1 — 3 + 3Rs(Fy,) + Rs(Gs) + |B|. Then
R5(Gs) = 4 — |B| < 4, which contradicts to G5 € ¢ by Lemma 3.2.

Subcase3.7s5 = 84 = 83 = 82 =0, 8y =35.

Without loss of generality, let

6
G = PU(| G:)U(Uic aCi)U(Uje B D;)Uf D4UaK1UbTy,1,1U(Urems Ty i ts),

=1
(4.35)
where G, € {P4,C3}, Ri(G;) = -1(i = 2,.--,6).
From Theorems 3.4 and 3.5, we arrive at

6
R5(G)=12= -1+ Rs(G:)+|B|+a+|Ti| +2|T2| +3|Ts|. (4.36)

i=1
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We only consider the case of Gy = Py, the case of G; = C3 can be similarly
discussed.

Subcase 3.7.1 ¢(G;) — p(G;) = 1(1 = 2,3, - ,6)

Itis obvious that G; & Fi,(i = 2,3, - - ,6) and a+b+|T1|+2|T2|+3|T3| = 1
by Lemmas 2.6, 4.2, (4.5) and (4.35). If b = 0, then we obtain, from (4.36), that
12 = —1 — 2 + 5R5(Fy,) + | B| + 1, which contradicts to Rs(Fy,) = 4. We can
get the same contradiction for the case of b = 1.

Subcase 3.7.2 ¢(G;) — p(G;) = 1(i = 2,3, 4,5), ¢(Gs) = p(Gé).

From Lemmas 2.6, 4.2 and (4.35), we arrive at G; = F,(i = 2,3,4,5),
Gg € €anda = b = |T;| = |T2| = | T3] = 0. From these together with (4.36),
12=-1~- 2+4R5(Fm) +R5(Gs) + IBI, which leads to Rs(Gs) =-1- |Bl <
—1. It contradicts to G¢ € £ by Corollary 3.1.

This completes the proof of the theorem. O

Corollary 4.1. Ifn > 7, graph (! is adjoint uniqueness if and only if n # 13.

Corollary 4.2. If n > 7, the chromatic equivalence class of _CZ only contains the
complements of graphs that are in Theorem 4.2.

Corollary 4.3. Ifn > 7, graph an is chromatic uniqueness if and only if n # 13.

Acknowledgement: The authors would like to thank the referee for helpful
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