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Abstract: A new construction of authentication codes with arbi-
tration using singular pseudo-symplectic geometry on finite fields is
given. Some parameters and the probabilities of success for different
types of deceptions are computed.
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1. Introduction and main results

To solve the distrust problem of the transmitter and the re-
ceiver in the communications system, Simmons introduced a model
of authentication codes with arbitration (see [1]), we write simply
(A2%-code) defined as follows:

Let S, Er,ER and M be four non-empty finite sets, f : Sx Er —
M and g : M x Ep — S U {reject} be two maps. The six-tuple
(S, Br, ER, M; f, g) is called an authentication code with arbitration
(A2%-code), if

(1) The maps f and g are surjective;

(2) For any m € M and er € Er, if there is an s € S, satisfying
f(s,er) = m,then

such an s is uniquely determined by the given m and er;

(3) p(er,er) # 0 and f(s,er) = m implies g(m, er) = s, other-
wise, g (ma eR) '

= {reject}.

S, Er,Er and M are called the set of source states, the set of
transmitter’s encoding rules, the set of receiver’s decoding rules and
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the set of messages, respectively; f and g are called the encoding
map and decoding map respectively. The cardinals |S|, |Er|, |Eg|
and |M| are called the size parameters of the code.

In an authentication system that permits arbitration, this model
includes four attendances: the transmitter, the receiver, the oppo-
nent and the arbiter, and includes five attacks:

1) The opponent’s impersonation attack: the largest probability
of an opponent’s successful impersonation attack is P;. Then

| {er € Erler C m} I}
| Er | '

2) The opponent’s substitution attack: the largest probability of
an opponent’s successful substitution attack is Ps. Then

Pr = max {
meM

max |{er € Epler CmanderCm'} |

Pe — max m#m'eM
ST meM | {er € Erler c m} |

3) The transmitter’s impersonation attack: the largest probabil-
ity of a transmitter’s successful impersonation attack is Pr . Then

max_ | {er € Erler C m and p(er, er) # 0} |
PT = max meM,erCm
er€Er | {er € Erlp(er,er) # 0} |

4) The receiver’s impersonation attack: the largest probability of
a receiver’s successful impersonation attack is Pr,. Then

max | {er € Er|er C m and p(er,er) # 0} |
er€ER | {er € Er|p(er,er) # 0} |

5) The receiver’s substitution attack: the largest probability of a
receiver’s successful substitution attack is Pgr,. Then

max | {er € Erler C m,m’ and p(er,er) # 0} |
m €

Pp,= max
R efniﬁf' | {eT € ETIeT C mandp(eg, er) # 0} I



Notes: p(er,er) # 0 implies that any information s encoded by er
can be authenticated by eg.
In this paper, the P denotes the transpose of a matrix P. Some

concepts and notations refer to [2].
Suppose that Fy is a finite field of characteristic 2, n = 2v +4§ +1

and § = 1,2. let
Ss
Ss1 = ( o® )

where S; is the (2v + §) x (2v + 4) non-alternate symmetric matrix:

0 I 0o W
(v)
5'1=(I(") 0 ) Sy = I 0 0
1 1

The singular peseudo-symplectic group of degree (2v +6+1) over Fy
is defined to be the set of matrices

1
1

P, Sov4541,2v+6 (F q) = {9 : QSJ,IQT = S&,l}

denoted by Ps,, 5.1 2.45(Fq)-
Let F§2"+6+1) be (2v + § + l)-dimensional row vector space over
Fy. Ps,, . y.1045(Fy) hes an action on F2 ) defined as follows:

F¢§2V+6+l) X P32v+6+l,2u+5 (FQ) = Fq(2V+6+l)

((xla T2y, x2l/+5+l)7 T) — (mla Z2,' -, -’E2u+6+l)T- (1)

The vector space F¢§2”+5+1) together with this action of the group
Ps;, 45412045 (Fg) is called the singular pseudo -symplectic space of
dimension (2v + § + l) over F;. An m-dimensional subspace P of
Fq(2"+6+l) is said to be of type (m,2s + 7, s,¢), where 7 = 0, lor2
and € = Oorl, if PS5;PTis cogredient to M(m,2s + 7,s). More
properties of geometry of singular pseudo-symplectic groups over fi-
nite fields of characteristic 2 can be found in[2].

Wan Zhexian, Feng Rongquan, You Hong etc.constructed au-
thentication codes without arbitration from geometry space of clas-
sical groups over finite fields *~5/. Ma Wenping, Li Ruihu, Chen
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Shangdi etc. constructed A2%-code from geometry space of non-
singular classical groups over finite fieldsl®~8l. In the present paper,
a new A2-code will be constructed from singular pseudo-symplectic
geometry over finite fields, the parameters and the probabilities of
successful attacks of these codes are also computed.

2. Construction

Suppose that n = 2v+2+1, 2 <r<t<vy, v 25, andl <k <l
Let U be a fixed subspace of type (r + 2,0,0,1,1) and UN E =
(egy+3) in the (2v + 2 + l)-dimensional singular pseudo-symplectic
space ]F,(,2"+2+l), then U+ is a subspace of type (2v —r +1+1,2(v —
r),v — 1,1,1); the set of source states S = {s|s is a subspace of
type (2t —r + 1+ k,2(t —r),t = r,1,k) and U C S C U~t}; the
set of transmitter’s encoding rules Er = {er|er is a subspace of
type (2r + 2,2r,7,1,1) and U C er}; the set of receiver’s decoding
rules Egr = {erl|er is a subspace of type (2r,2(r — 2),r — 2,1,1)
and U C eg}; the set of messages M = {m|m is a subspace of type
(2t+1+k,2t,t,1,k)and U C m, mnN U+ is a subspace of type
2t—r+1+k2(t—-r),t—r1k)}

Define the encoding map:

f:SxEBEr— M, (s,er) o m=s+er
and the decoding map:
g: M x Egp — sU {reject}
(m, eR) — s if eg € m,wheres = mnNU~L.
R {reject} otherwise.

We know the six tuple (S, Et, Er, M, f, g) is an authentication
code with arbitration.
Assuming the transmitter’s encoding rules and the receiver’s decod-
ing rules are chosen according to a uniform probability distribution,
we can assume that

I 0000000
U=(0 0001000)
0 000O0OOCGCTILO
rv—r rv—r 1 1 1 [-1



and

I o0 0 0 00 O
0 I*J 0 0 00 O
Ut = 0 0 0 I¥»" 00 0
0 0 0 0 10 O
0 0 0 0 00 I®
T v—r r v—r 1 1 1!

Lemma 2.1 The above construction of authentication codes is rea-
sonable, that is

(1) s+er=me M, for all s € S and er € Er;

(2) for any m € M, s = mNU? is the uniquely source state
contained in m and there is er € E7, such that m = s + er.

Proof: (1) For s € S, er € Er, from the definition of s, we can
assume that

Im 0o 0 0 000 0 O r
0 R, 0ORRL O0O 0 Ro 2(t—r)
s = 0 0 0 0 100 0 0 1
0 0 0 0 0O01 0 0 1
0 0 0 0 00O I®D ¢ k-1
r v—-r r v—r 1 1 1 k-1 -k
then
0 0 000 r
0 Ry/Ry+R!Ry 0 0 O 2(t—r)
sSgits=] 0 0 000 1
0 0 000 1
0 0 000 k-1
r 2(t—r) 1 1 k-1

since rank (sSg,%s) = 2(¢—r), rank(R4*Ro+ Ro*R4) = 2(t—r). Then
we can assume that

I 0 o0 o0

000 r
er—| O B Ry Ry 000 R~
0 0 0 0 100 O 1
0 0 0 0 o001 O 1
r v—r r v-r 1 1 1 -1
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then

0 A 00 r
R, R.,*R,+RLR, 0 O r
t, . _ 3 Iy iy g Ity
erSorer =| 0 001
0 0 00 1
T T 1 1
and
0 Im 00
e, _ | I™ Ry*R,+RYR, 0 0
0 0 00
0 IM 00
I 0 00
0 0 0O
0 0 0O
Hence we have
I 0 0 0 00 0 O r
0 Ry, 0 RR 00 O O 2t—2r
m=s+er= 0 R, 0 RRL 00 O O T
¢ 0 0 0 10 0 O 1
0 0 0 0 00 I® ¢ k
r v-r r v-r 1 1 k I-k
thus m is a 2t + 1 + k dimensional subspace and
0 0 I 00
0 R4{R,+ RyR, RIRL+RYR, 0 O
mSz,[tm =1 I R4tR'2 + RytRy RfltR'z + R'-ztth 00
0 0 0 00
0 0 0 00
0 0 I 00
0 R4tR'2 +RtRy 0 0 O
~ | IM 0 0 00
0 0 0 0O
0 0 0 0O
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where rank(Rs'R) + Ra!Ry) = 2(t — ). Therefore, rank(mSa'm) =
2t, dim(m N E) = k. so m is a subspace of type(2t+ 1 + k, 2t,¢, 1, k)
containing U,i.e.,m € M.

(2) For m € M, m is a subspace of type (2t + 1 + k,2t,t,1, k)
containing U. So there is subspace V' C m, satisfying

T 0 IM o
(v)su(v) =(z<r> 0 o
0 0 0

Then we can assume that
U
m= vV
P

0o IM ¢ 0
(

U v\T [ 1™ o o 0
V ISyl V] =] 0 o0 0 I¢-7)
( P ) ( P ) 0 0 Itn
0 o

0 0

satisfying

OO OO o

Let s = ( g ), then s is a subspace of type (2t —r + 1 + k,2(t —

r),t —r,1,k) and U C s c UL, i.e., s € S is a source state. For any
veVand v #0, v ¢ s is obvious, i.e, VNUL = {0}. Therefore,

mNU+L = ( g ) =3s. Let e = ( g ), then er is a transmitter’s

encoding rule and satisfying m = s + er.

If s’ is another source state contained in m, then U C s/ c U+,
Therefore, s’ € mNU~L = s, while dims’=dims, so s'=s, i.e., s is the
uniquely source state contained in m.

Lemma 2.2 The number of the source states is
18| = g2t =R N (©2(t —7),2(t —7),t —7),0;2(v —7))N(k— 1,1 - 1).
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Proof: Since U C s C UL | s has the form as follows

I 0 0 0 000 O 0 r
0 Ry 0 R4 00O 0 Rg 2(t—r)

s=| 0 0 0 0 100 O 0 1
0 0 0 0 001 O 0 1
0 0 0 0 0000 I*kY ¢ k-1
r v—r v v—r 1 1 1 k—1 -k

where (Ra, Ry) is a subspace of type (2(t —r),2(t — r),t — r,0) in
the pseudo-symplectic space Ff‘””). Therefore, the number of the
source states is

S| = gXt--RN(2(t—1),2(t—7),t —7),0;2(v — 7)) N(k— 1,1 - 1).

Lemma2.3 The number of the encoding rules of transmitter is
|Er} = N'(r+2,0,0,1,1;2r + 2,2r,7,1,1; 20 + 2 + |, 2v + 2).

Proof: Since er is a subspace of type (2r +2,2r,r,1,1) contain-
ing U.

Lemma 2.4 The number of the decoding rules of receiver is
|Er| = N'(r +2,0,0,1,1;2r,2(r = 2),7 — 2,1, ;20 + 2+ [,2v + 2).

Proof: Since er is a subspace of type (2r,2(r — 2),r — 2,1,1)
containing U.

Lemma 2.5 (1)The number of encoding rules ez and eg con-
tained in m respectively is
a= q2r(t—r)+r(k-1) and b= q2(r—2)(t—r)+(r—2)(k—l)N(,,. -2,7);
(2)The number of the messages is |M| = |S||Er|/a.

Proof: (1) Let m be a message, from the definition of m, we
may take m as follows

I 0 0 o0 0 000 O O r
0 I¢m o o0 0 000 O 0| tr
mel| @ 0 0I” 0 000 0 0] -
I 0 0 0 I 000 0 0] tr
0 0 0 O 0 010 0 O 1
0 0 0 0 0 000 I® o k

r t—r v—t r t-r v=-t 1 1 k -k
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If er C m, then we can assume that

Im 0 0 0 0 0000 O O\ -
ep=| O B2 0 I Rs 0000 Ry 0]~
0 0 0 0 0 0100 O 0]
0 0 0 0 0 0O0O0O1 O 0/ 1
r ter wv—=t r t=r v—t 1 1 1 k-1 I-k

where Rj, Rs, Ryo arbitrarily. Therefore, the number of er contain-
ing Uis a = ¢ (¢-")+r(k=1)_ Like that if e C m, then we can assume

that

I 0 0 0 0 0000 O O r
or = 0 R, 0O R, RY 0000 Ry 0| r2
B=1 o 0 0 0 0 0100 0 O 1

0 0 0 0 O O0O0O1 0 O 1

r t—=r wv—t r t—-r v—-t 1 1 1 k-1 I-k

where R} is a r — 2 dimensional subspace of r dimensjonal subspace
and Rj, Ri, R}, arbitrarily. Therefore, the number of eg containing
Uisb= q2(r—2)(t—r)+(r—2)(k—1)N(,,. -2, 'I‘).

(2) We know that a message contains only one source state and
the number of the transmitter’s encoding rules contained in a mes-
sage is a = ¢2"(¢=7)+7(k=1)_ Therefore we have |M| = |S||Er|/a.

Lemma 2.6 (1) For any er € E7, the number of eg which is
incidence with er is ¢ = N(r — 2,7).

(2) For any er € ER, the number of er which is incidence with ep
isd= q4(u—r)+2(l—l).

Proof. (1) Assume that ey € Er, er is a subspace of type
(2r + 2,2r,7,1,1) containing U, we may take er as follows

Im 0o 0 0000
ep=| 0 01D 000
0 0 0 010
0

0
0
0
0 0 0 00O 0

= O O

If e C er and eg is a subspace of type (2r,2(r — 2),r — 2,1,1)
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containing U, then we can assume

I 0 0 00000 r
en = 0 0 Ra 0000 0| r2
0 0 0 01000 1
0 0 0 00OT10 1

where R3 is a » — 2 dimensional vector subspace of r dimensional
vector space. Therefore the number of ep which is incidence with ep
isc=N(r-2,7).

(2)Ver € Ep, from the definition of er, we can assume that

I 0 0 000O0O0CO r
en=| 0 0 I 00000 0| ro2
0 0 0 001000 1
0 0 0 00O0OT1O0 1
r v—=r =2 2 v-r 1 1 1 I-1
If er D egr then
™ 9 0 0 0 000 O r
0o o0 I™2 0 0 000 O r—2
er=| 0 R, 0 I® Ry 00 0 Ry 2
0 0 0 0 0 100 O 1
0 0 0 0 0 001 o 1
r y—r r—2 2 v=r 1 1 1 -1

where Ry, Rs, Ry arbitrarily, so the number of ez which is incidence
with eg is d = g4(v—")+2(-1)

Lemma 2.7 For any m € M and eg C m, the number of er
contained in m and containing ep is g#(t=")+2(k=1),

Proof. The matrix of m is similar to lemma 2.5, then for any
er C m, assume that

I 0 0 0 0 0000 O O ”
ep = 0 R2 0 R4 R5 0 00O RlO 0 r—2
R=1 o o000 00100 0 O 1
0 0 0 0 0 0O0OO1 O O 1
r t—-r v—t r t—=r v—t 1 1 1 k-1 -k
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where R4 is a r — 2 dimensional vector subspace of r dimensional
vector subspace. If er C m and er D eg, therefore

Im o0 0 0 0 0000 O O r
0 R2 0 R4 Rs 0 00O RlO 0 r—2
er=| 0 R, 0 R, R,k 0000 Rjg 0] 2
0 0 0 0 0 0100 0 O 1
0 0 0 0 O OOOT1T O O 1
r t—r v—t v t-r v—t 1 1 1 k-1 I-k
where ( IIT’Z ) is nonsingular, and Ry, Rf, R}, arbitrarily, then the

number of er contained in m and containing ep is g¥¢—")+2(k-1),

Lemma 2.8 Suppose that m; and mq are two distinct messages
which commonly contain a transmitter’s encoding rule e7.. s; and sp
contained in m; and mgy are two source states, respectively. Assume
that sg = 81 N sy, dim sg = k3, then r+2 < k) <2t —r + k, and

(1) The number of er contained in mj; Nmy is
N(r -2, r)q(f—2)(k1—r—2);

(2) Yer C my N'ma, the number of er contained in m; N'my and
containing ep is g2(k1—7-2),

Proof. Since m; = s1 + e, ma = 83 + e and m; # my, then
81 # s2. Because of U C sy, 89, therefore, r +2 < k) <2t —r + k.

(1) Assume that s} is the complementary subspace of sg in the
si, then s; = so+ s} (i =1,2). From m; = s; + e} = s+ s; + e and
si=m;NUL (i =1,2), wehave sop = (myNUL)N (mgﬂU-'-)
m ﬂmgﬂUJ- =s1Nmy =s;Nmy and m; Nmg = (s +eT)ﬂm2 =
(so + 31 + eT) Nmg = ((so + eT) + 31) N my . Because sg + eT C
mg ,miNmg = (so+eT)+(slnm2) While s; Nmy C s1Nmg = sp,
m Nmg = 8o + eT Therefore dim (m; N mg) = k; + r. From
eT C m1 N'my we can assume that

I. 0 0 000O0O
o = 0 0I” 00000
T™1 0 o0 0 01000
0 0 0 00010
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and from the definition of the message, we may take m; as follows,

I o0 0 0 000 O r
0 0 I 0 000 O r

my = 0 A, 0 Ay 0 0 0 Ag | 2¢-n
0 0 0 0 100 O 1
0 0 0 0 001 O 1
0 0 0 0 00 0 4 k-1
T v—r r v—=r 1 1 1 [-1

because the type of ms is the same as m;, therefore

I 0 0 0 000 O r
0 0 I 0 000 O r
0 Co 0 C4 000 Cs | 20-7

mOme={ 45 o0 0 0 100 0 1
0 0 0 0 001 O 1
0 0 0 0 00O Cj k-1
r v—=r r wv-r 1 1 1 I[I-1

since dim(m1 N ’m2) =ki+r.

di (00200400

o

0 0 0 0 00O

o
Qg
N—”’
Il
e

E
|
!
|
[\

If for any ep C m; N mg, then

I 0 0 0 000 O r
en = 0 Ry R; R4, 0 0 0 Rg r—2
0 0 0 0 100 O 1
0 0 0 0 001 O 1

where the number of R3 is N(r—2,7) and every row of (0 R20 R4 000
0 C, 0C4 000 Cg
0 0 0 0 00O Cj )
So it is easy to know that the number of e contained in m; N'mgy is
N(r — 2,r)q(r-Dk1=r-2),
(2) Suppose that m; N mg has the form of (1), then for any
er C my N'mg, we can assume that if er C m; N'my and eg C e,

Rg) is the linear combination of
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then er has the form as follows

I 0o 0 0 000 O r
0 R; Rz R4 0 0 0 Rs r=2
er=| 0 R, R, R, 00 0 R, 2
0 0 0 0 100 O 1
0 0 0 0 001 O 1

where ( g? ) is nonsingular, every row of (0 R, 0 R, 000 Rg) is
3
. . 0 Co,b 0 C, 000 Cs
the linear combination of ( 0 000000 C, ) Then

the number of er contained in m;Mmy and containing ep is g2*k1—7-2),

Theorem 2.1 The parameters of constructed authentication codes
with arbitration are
S| = ¢RI N(2(t —7),2(t —T),t —7),0;2(v—7))N(k— 1,1 - 1);
|Er]| = N'(r +2,0,0,1,1;2r + 2,2r,7,1,1;2v + 2 + [, 2v + 2);
|Eg| = N'(r +2,0,0,1,1;2r,2(r — 2),7 - 2,1,1;2v + 2+ |, 2v + 2);
|M| = |S||Ex|/a.

Theorem 2.2 In the A2 authentication codes, if the transmitter’s
encoding rules and the receiver’s decoding rules are chosen accord-
ing to a uniform probability distribution, the largest probabilities of
success for different types of deceptions:

1 1 -1
Pr= gD —2t+-k+T) Ps = g2’ Pr= -1

1 1
PRo = m; PRI = -q—z.

Proof. (1) The number of the transmitter’s encoding rules
contained in a message is b, then

- |{er€ Erlercm}|] _ b _ 1
P = "nlle%{ TEn ] =TEr| " D@3k

(2) Assume that opponent gets m; which is from transmitter
and sends mgy instead of m;, when s; contained in m; is different
from s9 contained in mg, the opponent’s substitution attack can




success. Because egr C er C my, thus the opponent select e'T C my,
satisfying mp = s2 + ep and dim(s; () s2) =k, then

max |{er€ EgrlerCcmandegr Cm'} |

Ps = max mem €M
ST meM [ {er € Erler C m} |

N(’I‘ -2, r)q(r-—2)(k1—r—2)
= b ’
where ky =2t —r + k, Py == ;(,L_g)- is the largest.

(3) Let er be a transmitter’s secret encoding rule, s be a source
state and m; a the message corresponding to the source state s
encoded by epr. Then the number of the receiver’s decoding rules
contained in m, is eg. Assume that mg is a distinct message cor-
responding to s, but mo cannot be encoded by er. Then mj Nmgy
contains N(r — 2,r — 1) receiver’s decoding rules at most.

We can assume that er = U Qw, dim(w) = 2r+2—7r—2 =r and
m=U®N, dm(Q) =2t -1+ k —r;since U C eg C eg N'm, then
er = erNer = UB(epNw) = epNm = Ud(erNN) = UB(erNwNS)
where dim(epNwNN) =r -2, egNwN is a r — 2 dimensional
subspace of w N, and er ¢ m, then dim(wN ) < r -1 when
dim(w N Q) =r — 1, we can assume

I 0 0 000000 r

U 0 0 0 001000 1
eT=(wﬂQ)= 0 0 0 00O0O0OT10 1,
eytr 0 0 ID 00000O0O0]| ra1

0 0 0 100000 1

U
whereeTﬂm=(an)andwﬂQ=(00I("1)000000)

since er C e,

I 0 0 000O0O0O r
e_( U )_ 0 0 RR 000O0O O] r2
E=\ egnwn@ /- | 0 0 0 001000 1
0 00 000O0T10 1

whereeRr‘lwﬂQ=(0 0 Rz 00 0 00O 0),theneRnwﬁ
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Q is a r — 2 dimensional subspace of w N {2, the number of R3 is
N(r—-2,r—1), so the largest number of the e is N(r—2,7—1), the
number of eg which is incidence with er is ¢ = N(r—2,r). Therefore
the probability of transmitter’s successful impersonation attack is

max | {er € Epler CmnNer} |

meM,ergm
= max
Pr= max [{cr € Erler C e1} |

_N(r-2,r-1) -1
- NE-2,r) g -1
(4) Let ep be a the receiver’s decoding rule, we have known
that the number of transmitter’s encoding rules containing eg is
d = g*v-n+20-1) and s message containing ep has g(t—T)+2(k-1)
transmitter’s encoding rules. Hence the probability of receiver’s suc-
cessful impersonation attack is

max | {er € Erler Cm and eg C er} |
meM

er€ER | {er € Erler Cer} |

gAe=r)+2(k=1) 1
gA—n¥20-1) = Q-0+ 2=k’

(5) Assume that the receiver declares to receive a message ma
instead of m;, when s; contained in m; is different from s; con-
tained in mo, the receiver’s substitution attack can be successful.
Since eg C er C my, the receiver is superior to select eﬁ_,-, satisfy-
ing egp C e:_,- C my, thus mg = so + e'T and dim(s; N sg) = k; as
large as possible. Therefore, the probability of a receiver’s successful
substitution attack is

max | {er € Erler C m,m’ and eg C er} |
m'eM

Pp, = max
= peEpmeM [{er € Erjer C er C m} |

q2(k1 -r—2)
= 2CE-T)+R=1)’

where k1 =2t —r 4+ k, Pg, = alz' is the largest.
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