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Abstract. In this paper we prove that every planar graph without
5- and 8-cycles and without adjacent triangles is 3-colorable.

1 Introduction

In 1959 Grotsch [9] proved that every planar graph without 3-cycles is
3-colorable. Steinberg [13] conjectured that every planar graph without 4-
and 5-cycles is 3-colorable. In fact, there exist 4-critical planar graphs which -
have only 4-cycles but no 5-cycles or only 5-cycles but no 4-cycles [1]. In
1990, Erdés proposed the following relaxed conjecture: every planar graph
without cycles of size {4, 5, ..k}, k > 5, is 3-colorable. Abbott and Zhou [1]
proved that the above conjecture holds for £ = 11. Borodin (3] improved the
result by showing that the result holds for ¥ = 10. Borodin [2] and Sanders
and Zhao [12] further improved the result showing that k = 9. To date,
the best known result is by Borodin et al [4], where it is shown that any
planar graph without cycles of length in {4, 5, 6, 7} is 3-colorable. Xiaofang,
Chen and Wang [15] showed that a planar graph without cycles of length
4,6,7 and 8 is 3-colorable. Chen, Raspaud and Wang (8] showed that a
planar graph without cycles of length 4,6,7 and 9 is 3-colorable. Zhang
and Wu [17] showed that every planar graph without 4,5,6 and 9-cycles is
3-choosable. Wang and Chen [14] proved that every planar graph without
4, 6, and 8-cycles and without adjacent triangles is 3-colorable. We showed
recently [11] that planar graphs without 4, 5, and 8-cycles are 3-colorable. In
this article, we strengthen the result by showing that planar graphs without
5- and 8-cycles and without adjacent triangles are 3-colorable.

Another problem somewhat related to Steinberg’s conjecture is the
Havel’s conjecture [10]. In 1969, Havel [10] posed the following problem:
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Does there exist a constant d such that every planar graph with the mini-
mum distance between triangles at least d is 3-colorable? Some of the recent
results on Havel’s problems are that every planar graph without 3-cycles
at distance less than d and without 5-cycles is 3-colorable (d = 4 [6] and
d = 3 [5], [16]). Borodin et al [7] proved that a planar graph without adja-
cent triangles and without 5- and 7-cycles is 3-colorable. In this paper, we
intend to prove the following result:

Theorem 1. Every planar graph without 5- and 8-cycles and without ad-
jacent triangles is 3-colorable.

We use G to denote the class of planar graphs without 5- and 8-cycles
and without adjacent triangles. Let C; denote an i-cycle. A 6-cycle is bad if
the interior of the cycle has a partition into 4-cycles. A 9-cycle is bad if the
interior of the cycle has a partition into 6- and 3-cycles or a partition into
4- and 7-cycles. We call a cycle of length {3,4,6,7,9,10} that is not bad
as good cycle. We would prove a stronger version of Theorem 1 as given
below:

Theorem 2. Let G be a planar embedding of a graph in G. Let D be an
arbitrary good cycle of G. Then every proper 3-coloring of D can be extended
to a 3-coloring of the whole graph G.

Assuming that Theorem 2 holds, we can easily establish Theorem 1.
Suppose G € G, namely, G contains no 5- and 8-cycles and adjacent trian-
gles. If G does not contain any 3-cycle, then G is 3-colorable by Grétsch
theorem [9]. Hence, there is a 3-cycle (C3). There cannot be any internal
chord of C3 and it has a proper 3-coloring (¢). By Theorem 2, ¢ can be
extended to both inside and outside of C3 to make a proper 3-coloring of

G.

Only simple graphs are considered in this paper. A plane graph is a
particular drawing of a planar graph in the Euclidean plane. For a plane
graph G, we denote its vertices, edges, faces and maximum degree by V(G),
E(G), F(G), and A(G) respectively. We use k-vertex, k+-vertex, k~-vertex,
> k-vertex, < k-vertex to denote a vertex of degree k, at least k, or at most
k, greater than k, less than k respectively. Similarly, we can define k-face,
kt+-face, k~-face, > k-face, < k-face. We say that two cycles or faces are
adjacent if they share at least one common edge. For f € F(G), we use b(f)
to denote the boundary walk of f. If uj,us,...,u, are the boundary vertices
of f in the clockwise order, we write f = [uju;. .. uy). Given two vertices u
and v in a cycle C, let C[u,v] denote the path of C in the clockwise order
from u to v (including v and v), and let C(u,v) = Clu,v] \ {u,v}. A cycle
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C in a plane graph G is called separating if int(C) # 0 and ext(C) # 0,
where int(C) and ext(C) represent the sets of vertices located inside and
outside C, respectively.

2 Proof of Theorem 2

Assume that G is a minimal (least number of vertices and edges) counterex-
ample to Theorem 2. Without loss of generality, assume that the outside
face fo is of degree 3,4,6,7,9 or 10 such that a proper 3-coloring ¢ of the
boundary vertices of fo cannot be extended to the whole graph G. This
implies that there exists at least one vertex in the interior of b(fp).

We write C as the boundary walk of fo, i.e., C = b(f,). Other facesin G
different from fo are called the internal faces. The vertices in C are called
the outer vertices and other vertices the internal vertices. An internal 3-
vertex incident to a 3-face is called bad. It is easy to note that if v € int(C)
and C is good, then C cannot become bad in G — v.

Claim 1. G does not contain o separating good cycle.

Proof. Suppose that G has such a separating cycle C;. Then we can extend ¢
to G—int(C;) by the minimality of G. Subsequently, we delete the (possible)
chords from C; and extend the 3-coloring of C; induced by ¢ to G —ext(C;)
(this is possible due to the minimality of G). |

Claim 2. G is 2-connected.

Proof. Assume that C contains a cut vertex u. Assume that B is an end
block with a cut vertex u € V(G) \ V(C). Due to minimality of G, we can
extend ¢ to G — (B — u), then 3-color B, and thus obtain an extension of

¢ to G. O

Claim 3. Each 2-vertez in G belongs to C; no 2-vertex in C is incident to
a 3-face.

Proof. Let G contains a 2-vertex v € V(G)\V/(C). Let e be one of the edges
incident on v. Then we have a 3-coloring f of G — e. If the end-vertices of
e receive different colors, adding e does not create any violation. On the
other hand, if the end-vertices of e have the same color, we can give v the
third color (i.e., different from the colors of its neighbors) and add the edge
e. thus we have a valid 3-coloring of G. So G cannot be a counter example.
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If a 2-vertex v in C is incident to a 3-face, we can extend ¢ to G —e (due to
minimality of G) and then recolor v with a color different from the colors
of its neighbors in G. O

Claim 4. No good cycle of length {4,6,7} in G has a non-triangular chord.
In particular, if C is a good cycle and the boundary of the external face, it
has no chord at all.

Proof. If G contains a cycle of length 4 to 7 with a non-triangular chord,
then it is easy to show that G must contain two adjacent triangles or a
5-cycle or C is bad, contradicting the assumption. Suppose that C has a
chord e. If e cuts a 3-cycle C; from C, then C; forms a 3-face by Claim 1,
which contradicts Claim 3. Otherwise, it follows that |C| = 9, or 10 by the
previous argument.

Assume that |C| = 9. Since G contains no 5, 8-cycles, e cuts C into two
cycles C! = C,4 and C? = Cy. In this case, C is a bad cycle, contradicting
the assumption.

Assume that |C| = 10. Since G contains no 5, 8-cycles, e cuts C into two
cycles C! = Cg and C? = Cg. If both int(C') and int(C?) are empty, then
it is straightforward to derive that G is 3-colorable. Otherwise, at least one
of C! and C? is a separating cycle, which contradicts Claim 1. o

Claim 5. No 3-face is adjacent to a k-face for k = 3,4,7.

Proof. Suppose that G contains a 3-face f adjacent to a k-face f’ = [vjvy - - - vg]
for some k € {3,4,7}. Note that k # 3 by assumption. When k = 4, then
either there is a 5-cycle or there are two adjacent triangles.

Assume that k= 7. If f' and f have two common boundary edges, then
G has an internal 2-vertex (contradicting Claim 3) or there is a 5-cycle.
So we may suppose that f = [vjuvs]. If u does not belong to b(f’), then
a 8-cycle uvy - - -vgvyu is present in G, which is impossible. So, u € b(f’).
If u = v3 then G has an internal 2-vertex (contradicting Claim 3) or there
is a 5-cycle. If u = vy, a 5-cycle vv4usvgv7v; is established. If u = vs, a
5-cycle vy vav3v,4v5v is established. We always get a contradiction. We can
give a similar proof for © = vg or u = v;. This proves Claim 5. o

Claim 6. No 4-face can be adjacent to a 6-face.
Proof. If two such faces have two or three common edges, it is easy to show

that there is a 5-cycle or an internal 2-vertex. So, suppose that there are two
such adjacent faces f = [v1vov3vy] and f/ = [vvou ugusuy] With vjv; as a
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common edge. Then there is a 8-cycle if u;,us,u3 and u4 do not coincide
with other vertices of f. If any of these vertices coincides with other vertices
of f, then either there is a contradiction to Claim 1, or there is a 5-cycle or
there is an internal 2-vertex. g

Claim 7. Consider a 3-vertex v. In this case, v cannot be incident with
three 4-faces, provided there is a vertez that does not belong to these faces.

Proof. In these cases, it is easy to establish contradiction to Claim 1. O
Claim 8. There cannot be three consecutive 4-faces adjacent to a face.

Proof. In this case, there is a cycle of length 8, contradicting assumption.
O

Claim 9. Let C be a good cycle. For vy,v; € C and xz € C, if zvy,2v3 €
E(G), then vive € E(C).

Proof. Assume on the contrary that v vz does not belong to E(C). Let ! de-
note the number of edges in sector C[v1, vg] i.e., |C[v1, v2]| =1 < |Clvz, v1]].
Then 2 < I < 5, by |C] < 10. Let C! = C[v},v2) U vozv; and C? =
Clva,v1}Uvizve. Then C! is an (I + 2)-cycle and C? is a (|C| — +2)-cycle.
Since G contains no 5, and 8-cycles, [ # 3.

Assume that ! = 2. Then C! is a 4-cycle and C? is a |C|-cycle. Thus,
|IC| # 5,8. By Claim 1, neither C! nor C? is separating, if it is good.
As d(z) > 3 and there are no two adjacent triangles, C2 must have non-
triangular chords. In that case, by Claim 4, C? is a 9-cycle. If C? is good, the
internal non-triangular chord divides C? into two cycles of length 4 and 7,
and hence C? is bad. This is a contradiction. If C? is bad (cycle partitioned
into 6 and 3-cycles) then as d(z) > 3, C! along with an adjacent 6-cycle
(inside C?) will create an 8-cycle in G. If C? is bad and partitioned into 4
and 7-cycles, C! along with an adjacent 6-cycle (inside C?) will make C a
bad cycle. This is a contradiction to the assumption.

Assume that | = 4. Then C! is a 6-cycle and C? is a (|C| — 2)-cycle.
Thus, |C| # 7,10. By Claim 1, neither C! nor C? is separating. When
|C| = 8, |C?| = 6. It is easy to see that C? cannot have a chord in this case
without violating assumption that there is no cycle in {5,8} and Claim 6.
The same holds true for C!. When |C| = 9, |C?| = 7. It is easy to see
that C? cannot have a chord in this case without violating assumption that
there is no cycle in {5,8}. C? cannot have a non-triangular chord due to
Claim 4. If C? has a triangular chord then there is an 8-cycle, contradicting
assumption.

85



Assume that | = 5. C1 is a 7-cycle and C? is a (|C| — 3)-cycle. Thus,
|C| # 8. By Claim 1, neither C! nor C? is separating if it is good. When
|C| =7, |C?| = 4. We have already seen in earlier paragraphs that there is
a contradiction when |C!| = 4, |C?| = 7. By symmetry, there is a contradic-
tion in the current case too. When |C| = 9, |C?| = 6. We have already seen
in earlier paragraphs that there is a contradiction when |C!| =6, |C?| = 7.
Again, by symmetry, there is a contradiction in the current case too. 0O

Now, we shall make G into smaller graphs by identifying vertices. In
doing so, we should be sure that we do not

i. identify two vertices of C' (because then C is not a cycle anymore),
ii. create an edge between two vertices of C colored the same (for otherwise
our precoloring ¢ of C would be destroyed),
iii. create loops,
iv. create multiple edges,
v. create adjacent triangles,
vi. create cycles of length 5 or 8, and
vii. make C a bad cycle.

Claim 10. G has no 4-cycle other than C.

Proof. By Claim 1, G has no separating 4-cycle. Of course, G has no 4-
cycle with just one edge inside. So suppose f = wzyz is a face inside C.
Identifying = with z within f cannot violate (i). Suppose z, z € C. Clearly,
z and z are not consecutive along C as otherwise, it violates assumption of
no two adjacent triangles. This implies by Claim 9 that none of w and y can
be internal. By Claim 4, no edge of f can be a chord of C. It follows from
Claim 5 that the only obstacle for (i) is the trivial case of G = C = wzyz.

Next suppose (ii) is an obstacle for identifying = with z. Without loss of
generality, z € C, z & C, and there is an edge zv; such that v; € C, where
v; is not adjacent to = along C. If y is on C, by Claim 9, it must be adjacent
to v;. Similarly, if w is on C, by Claim 9, it must be adjacent to v;. This
implies adjacent triangles. Hence, both w and y must be internal. Now
int(C) \ {w,y, 2} is partitioned into the closed interiors of three cycles:
C! = vizyzP!, C? = v;zwzP?, and F = wzyz, where C = P! U P?
and 6 < |C}| < |C?. If |C}| = 6, then |C?| = |C|. We have a 6-cycle
(C') adjacent to a 4-cycle (F'), implying a 8-cycle, a contradiction to the
assumption. If |C!| = 9, and hence |C?| = 6, there is a contradiction by
symmetry to the earlier case. If |C!| = 7, then we have a separating 7-cycle
C' U F\ {y}, contradicting Claim 1.
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The property (iii) follows from the absence of adjacent 3-cycles in G; (iv)
from Claim 5; and (v) due to the absence of 3-cycles adjacent to 4-cycles
in G.

Suppose we have created a 5- or 8-cycle C' = zv; ---vi, where y is
non-strictly inside C’. Hence, k € {4,7}. If k = 4, then y cannot actually
coincide with any one of v;’s because then there is a 5-cycle in G. But then
there is a separating 7-cycle contradicting Claim 1.

If k = 7, y must coincide with one of the v;’s, else there is a separating
cycle (zwzvy - --vx) of length 10. If y coincides with one of the v;’s, then
there is 4-face adjacent to a 6-face contradicting Claim 6.

Finally, suppose collapsing the 4-face f by identifying = with z makes
C bad. This means C is a 6- or 9-cycle. Let S’ be a bad partition of G'. If
T * z is a vertex inside a cell of S’, then S’ is also a bad partition of C in
G, implying C as bad, a contradiction. So suppose z * z is a vertex of S’ in
G'. There can be at most two such cells created, say C, and C,, denoting
a cell of §’ that contains y and w respectively nonstrictly inside. The cell
Cy cannot be 3-cell, as then there is a 5-cycle in G. If y is a vertex of C,
and the cell is a 6-cell, there is a 8-cycle in G.

Similarly, cell C,, cannot be a 3- or 6-cell. Hence, the identification of
vertices cannot make C a bad 9-cycle partitioned into 6- and 3-cycles. So
let us assume that C is a bad 9-cycle (partitioned into 4- and 7-cycles) or
a bad 6-cycle (i.e., partitioned into 4-cycles). In both the cases, it is easy
to see that either there is a bad 6-cycle (three 4-cycles mutually adjacent)
in G before the identification or there is a 8-cycle (three 4-cycles pairwise
adjacent but not mutually adjacent to the other two) in G, contradicting
assumption. Hence Claim 10 is proved. O

Claim 11. Let C be a good cycle. For vi,vy € C, if viz,zy,yve € E(G)
and z,y € int(C), then vyve € E(C).

Proof. Assume on the contrary that v;vz does not belong to E(C). Let I de-
note the number of edges in sector C[v;,v3] i.e., |[Clvy,v2]| = < |Clva, v1]|-
Then 2 < I < 5, by [C] < 10. Let C! = Clvy,vs] U vozyvy and C? =
Clvz,v1) U vayzv;. Then C! is an (I + 3)-cycle and C? is a (|C| - | + 3)-
cycle.

Assume that [ = 2. Then C! is a 5-cycle, contradicting assumption.

Assume that [ = 3. Then C? is a 6-cycle and C? is a |C|-cycle. Let us
assume that C! is good. So it cannot be separating. First assume that C1!
does not have any chord. If C? is good, it cannot be separating by Claim
1. Hence, as d(z),d(y) > 3, there must be at least two chords of C2. If
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|C?| = 6, there is a 5- or 8-cycle (contradicting the assumption) or there is
a 6-cycle adjacent to a 4-cycle, contradicting Claim 6. If |C?| = 7, either
there is a 5-cycle or there is a 6-cycle adjacent to a 4-cycle, contradicting
Claim 6. When |C?| = 9, either there is a 5- or 8-cycle (contradiction to the
assumption) or there is a 6-cycle adjacent to a 4-cycle ( contradicting Claim
6), or C is a bad 9-cycle (contradiction to the assumption of the Claim) or
there is a separating good cycle of length 9. Finally if |C?| = 10, again either
there is a 5- or 8-cycle or there is a 6-cycle adjacent to a 4-cycle. If C? is
bad, then we cannot have d(z) > 3 and d(y) > 3, contradicting Claim 3. So
we assume that C? has an internal chord. The only possible chord divides
it into two 4-faces. Let us assume that C? is good. Hence, as d(z),d(y) > 3,
there must be at least one chord of C? with one end at z or y. If |C?| =6,
there is a 5- or 8-cycle (contradicting the assumption) or C is partitioned
into 4-cycles, making C bad. If |C?| = 7, there is a 5-cycle contradicting
the assumption. When |C?| = 9, either there is a 5- or 8-cycle or there is
a separating good cycle of length 9 or C is a bad 9-cycle (contradiction to
the assumption of the Claim). Finally if {C?| = 10, again either there is a
5- or 8-cycle or there is a 6-cycle adjacent to a 4-cycle, contradicting Claim
6. If C? is bad, then we have 6-cycle adjacent to a 4-cycle, contradicting
Claim 6.

Let us assume that C! is bad. If [C?| = 6, there is a 5- or 8-cycle
(contradicting the assumption) or there is a 6-cycle adjacent to a 4-cycle,
contradicting Claim 6 or C is partitioned into 4-cycles, making C bad. If
|C?| = 7, either there is a 5-cycle or there is a 6-cycle adjacent to a 4-cycle,
contradicting Claim 6. When |C?| = 9, either there is a 5- or 8-cycle or there
is a separating good cycle of length 9 or C is a bad 9-cycle (contradiction
to the assumption of the Claim). Finally if |C2| = 10, again either there is
a 5- or 8-cycle or there is a 6-cycle adjacent to a 4-cycle. If C? is bad, then
we cannot have d(z) > 3 and d(y) > 3, contradicting Claim 3.

When [ = 4, C! is a 7-cycle and C? is a |C| — 1 cycle. By Claim 6,
neither C! nor C? is separating(unless bad). First assume that C! does
not have any chord. If C? is good, it cannot be separating by Claim 1.
Hence, as d(z),d(y) > 3, there must be at least two chords of C2. There
are two possibilities of good C?: a 6-cycle or a 9-cycle. In both the cases,
we can establish that there is a cycle of length in {5,8}. When C? is bad,
there is a contradiction as either d(z) = 2 or d(y) = 2 or there is 8-cycle C
is bad. Next we assume that C! has an internal chord. The only possible
chord divides it into 6- and 3-faces. By Claim 1, C? (when good) cannot be
separating. Let us assume that C? is good. Hence, as d(z),d(y) > 3, there
must be at least one chord of C? with one end at z or y. If |C?| = 6 and is
good, there is a 5- or 8-cycle (contradicting the assumption). If C? is bad,
then we have 6-cycle adjacent to a 4-cycles, hence a 8-cycle contradicting
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assumption. When |C?| = 9 and C? is good, either there is a 5- or 8-cycle.
If C? is bad, then either we have a 6-cycle adjacent to a 4-cycles, hence a
8-cycle (contradicting assumption).

When [ = 5, then C! is a 8-cycle, a contradiction. n]
Claim 12. G has no 6-faces other than C.

Proof. Suppose f = wzyzpq is a face inside C. By Claim 4, f has at least
one internal vertex. Let y be an internal vertex. Identifying = with z within
f cannot violate (i). Suppose z, z € C. Clearly, = and 2 are not consecutive
along C as otherwise, it violates assumption of no 5-cycle. This implies by
Claim 9 that y cannot be internal, a contradiction.

Next suppose (ii) is an obstacle for identifying x with z. W.lo.g., z €
C, z € C, and there is an edge zv; such that v; € C, where v; is not adjacent
to = along C. If w is on C, by Claim 11, it must be adjacent to v;. This
creates a 5-cycle (zpquwv;), contradicting assumption. Similarly p cannot
be on C. If ¢ is on C, by Claim 11, q is adjacent to v;. In this case, f
along with the 4-cycle zpqu; creates a 8-cycle, contradicting assumption.
Hence, all of y, p, ¢ and w must be internal. Now int(C) can be partitioned
into the closed interiors of three cycles: C! = v;zyz P!, C? = v;zpquwz P?,
and F = wzyzpg, where C = P! U P2. Due to Claim 11, either |C!| = 4
or |C?| = 6. For the former case, there is a 6-face adjacent to a 4-face,
contradicting Claim 6. For the latter case, C2U F'\ {w, p, ¢} is a separating
4-cycle, contradicting Claim 1. The property (iii) follows from the absence
of adjacent 5-cycles in G. The property (iv) is true else there is a separating
good cycle of length at most 6 contradicting Claim 1. The property (v) is
true due to the absence of 8-cycles in G. Suppose we have created a 5- or 8-
cycle C! = zv; - - - vk, where y € int(C’) and k € {4, 7}. If k = 4, then there
is a separating 7-cycle if y does not belong b(C”’). However, y cannot actually
coincide with one of v;'s as then there is a 5-cycle in G or f is adjacent to a
4-cycle contradicting Claim 6. If £ = 7 and y does not coincide with on the
of v;’s, there is a separating cycle (zwzv; - - - v) of length 10, contradicting
Claim 1. If y coincides with one of v;’s, then the only possible case without
creating a 5- or 8-cycle is when y coincides with v, or vg. In both the cases
there is a 3-cycle incident at y. Also, due to Claim 11, x and v; are adjacent.
Hence there is a 4-cycle which is adjacent to the 3-cycle incident at y. This
contradicts Claim 5. Finally, suppose collapsing the 6-face f by identifying
z with z makes C bad. This means C is a 6 or 9-cycle. Let S’ be a bad
partition of G'. If z * z is a vertex inside a cell of S’, then S’ is also a bad
partition of C in G, implying C as bad, a contradiction. So suppose z * z
is a vertex of S’ in G'. Cy (Cy) denotes a cell of S’ that contains y(w)
nonstrictly inside. There can be at most two such cells created, Cy and C,,
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as described above. The cell C, cannot be 3-cell, as then there is a 5-cycle
in G. If the cell is a 6-cell, then there is a 8-cycle in G. The cell C,, cannot
be 3-cell, as then there is a 5-cycle in G. If the cell is a 6-cell, then there is
a 8-cycle in G. Hence, the identification of vertices cannot make C a bad
9-cycle partitioned into 6- and 3-cycles. So let us assume that C is a bad
9-cycle (partitioned into 4- and 7-cycles) or a bad 6-cycle (i.e., partitioned
into 4-cycles). In both the cases, it is easy to see that there is a 8-cycle (a
4-cycle adjacent to a 6-cycle) in G, contradicting the assumption. Hence
Claim 12 is proved. a

We use the definition of good path as in [14]. A path P = vjvpv3v4 in
the interior of C is called good if the following properties hold:

a. d(v;) =3Vi=1,2,3,4;

b. ...zPz'... is on the boundary of a face;
c. there is a triangle [uv;v;] with u # z;

d. tus,t'vy € E(G), where t # z’ and ¢’ # z'.

Obviously, when t = t/, a good path is just a tetrad as defined in [4].
Claim 13. G does not contain a tetrad P.

Proof. Suppose on the contrary that such a tetrad P exists in G. Let G’
denote the graph obtained from G by deleting vertices vy, v, v3 and v4 and
identifying = and t. It is easy to see that G’ contains no 5 and 8-faces.
In order to show that G’ € G, we have the following argument. We first
notice that G’ has neither loops nor multiple edges. Indeed, if G’ has a
loop, then z is adjacent to ¢t in G which leads to a 5-cycle ztvzvoviz. If G’
has multiple edges, then both z and ¢ are adjacent to a common vertex y
so that a separating good 6-cycle zytvzvov 7 is established or there are two
adjacent triangles in G.

Next, we claim that G’ does not contain a separating cycle of length 5 or
8. In fact, if C* = zy, 92 ... yxt is a separating cycle in G’, where k € {4, 7},
then C' = zy1y2... yxtvavovyz is a cycle of length 9 or 12 in G. When
|C’| = 9, u does not belong C’ as there will be either a pair of adjacent
cycles or a 5-cycle in G in this case. Thus, C’ separates v4 from » in G,
which contradicts Claim 1 unless C’ is bad. If C’ is bad, there is a 6-cycle
adjacent to two 3-cycles. This implies presence of 8-cycle, contradicting
assumption. If C’ is a 12-cycle, and u belongs to C’, then there is either a
5-cycle, or a 8-cycle or two adjacent 3-faces. Hence, « does not belong to C”.
Again, it is easy to see by enumeration that there is either a 5-cycle, or a
8-cycle or two adjacent 3-faces (establishing contradiction) or a separating
9-cycle. By using logic as before, we can establish a contradiction.



We need to prove that identifying = and ¢ cannot damage the coloring
of C. If this is not true, then we either identify two vertices of C colored
differently, or insert an edge between two vertices of C colored by the same
color. This means that the total distance from z and ¢ to C is at most 1,
that is, at least one of z and t lies on C. Without loss of generality, assume
that ¢ € C and let C = ujuz...u|cj¢1, Where the subscripts increase in
the clockwise order. Suppose that uc| is a vertex of C' nearest to z. Since
|C| € {4,6,7,9,10}, C is split by ujc| and t into two paths, P, and P,
one of which, say P, = yjcju; ... u;t, consists of at most five edges. Thus,
Py and the path tuzupvizu)c| yield a cycle of length at most 10. Since
zv vov3vsz’ is on the boundary of a face, C' = yjcjuruz . . . ujtvzvavITY|C
separates u from vg4, contradicting Claim 1 if the cycle C’ is good. If C’ is
bad, there is a 6-cycle with two adjacent triangles, implying a 8-cycle, or a
4-cycle adjacent to a triangle, implying a 5-cycle, a contradiction.

Suppose the modification makes C bad. Let S’ be a bad partition of G'.
If z+t is a vertex inside a cell of ', then S’ is also a bad partition of C in
G (insertion of vertices and edges into a face preserves the bad structure),
implying C as bad, a contradiction. So suppose z x t is a vertex of S’ in
G'. There can be at most two such cells created, say C, and C,, denoting
a cell of S’ that contains u and v, respectively nonstrictly inside. The cell
C, cannot be a 3-cell or a 4-cell, as then there is a 5 or 8-cycle in G. If u
is a vertex of C, and the cell is a 4 or 6-cell, then either there are adjacent
3-cycles, or there is a 5-cycle in G. Similarly, if u is a vertex of C, and the
cell is a 7-cell, then either there are adjacent 3-cycles, or there is a 5 or
8-cycle in G. Let us assume that C, = zz;--- 2, and u is in int(C,) and
C., does not exist. In this case, there is a neighbor r (different from v, and
vg) of u which is nonstrictly inside the cycle C}, = v vquatz; - - - 2. If |Cy|
is 6 or 7, either there are adjacent 3-cycles, or there is a 5-cycle in G or
C!, is bad. The bad cells of C/, along with triangles uv v, and tvzv, and all
the bad cells of §' except C, will imply that C is bad. Similarly we reach
a contradiction if we assume that v4 is in int(C,,) and C, does not exist.
If u is a vertex of int(C,) and v, is a vertex of int(C,,), we can find a bad
partition of C by using bad cells of C;, and C;,, triangles uv;vs, tvavg and
the bad cells of S’ except those in C,, and C,.

Finally, we prove that any 3-coloring ¢ of G’ can be extended to a 3-
coloring of G in the following way. We first color v4 and vz in succession,
and then properly color v; and vs. Since z and ¢ have the same color, z and
vs must have different colors, therefore the required coloring exists. (n]
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3 Discharging

We use discharging to prove that there is no G satisfying the properties of
the minimal counterexample as established in the previous section. Since
by Euler’s formula |V(G)| — |E(G)| + |F(G)| = 2 and ZUEV(G) d(v) =
Y rer) 4f) = 2|E(G)|,

Y d@)-6)+ > (2d(f) - 6) = -12. (1)
veV(G) fEF(G)
We define a charge function w by w(v) = d(v) — 6 for each vertex

v € V(G), w(f) = 2d(f) — 6 for each internal face f € {F(G) \ fo},
and w(fo) = d(fo) + 3. It follows from identity (1) that the total sum
of charge is equal to —7.5. We intend to design appropriate discharging
rules and redistribute charges so that once the discharging is finished, a
new charge function w’ is produced. The discharging rules maintain that
the total charge is kept fixed in the discharging process. Nevertheless, after
the discharging is complete, the new charge function w’(z) satisfies the
following properties:

1. w'(z) > 0Vz € V(G)U F(G);
2. there exists some z* € V(G) U F(G) such that w'(z*) > 0.

This leads to the following obvious contradiction,

0< Y w@= > u@=-75 (2)

zeV(G)UF(G) z€V(G)UF(G)
Our discharging rules are as follows:

RO. Each 3-face f = xyz receives 3 from each adjacent face.

R1. Every 3-vertex v ¢ C receives from each mc1dent face, unless v is
incident with one 3-face, in whxch case v receives —- from each of the
two > 3-faces.

R2. Every 2-vertex receives § from the external face, and 1 from the other
adjacent (i.e. internal) face.

R3. The external face fo gives 1 to each incident vertex of degree at least
3.

R4. Let v, vz, v3 be consecutive vertices of external face fo with d(vz) > 4.
Then v, gives 1 to each incident face not incident with edges v;v, and
vav3. Furthermore, if the internal face receiving 1 is a 3-face (vozy)
where z and y do not belong to fq, then it passes the 1 to the neigh-
boring internal face.



R5. Each 9%-face f # fo gives ﬂiz,tﬁ to fo.
Claim 14. For allv € V(G), w'(v) 2 0.

Proof. Let us assume that v does not belong to C. If d(v) = 3 and v is not
incident with a 3-face, w'(v) = 3—4+3x 1 = 0.If d(v) = 3 and v is incident
with a 3-face, w'(v) =3 -4 +2x £ =0.If d(v) > 4, w'(v) = w(v) > 0.

Now suppose v € C. If d(v) = 2 then by (R2), w'(v) = 2-4+§+-§- =0.
If d(v) =3, by (R3), w/(v) =3—-4+1=0.Ifd(v) >4, w'(v) =d(v)—4—
1 x (d(v) - 3) =0, by (R3) and (R4). O

Claim 15. For all f € F(G)\C, w'(f) 2 0.

Proof. If d(f) = 3, then w'(f) >3-4+3x 4 =00r3-4+2+2x} =0,
by (RO).

If f appears in (R4), then it may have additional charge, hence w'(f) >
0.

We have already shown that d(f) # 4 and d(f) # 6.

Let us consider the case of d(f) = 7. Let f = v vav3v4v5v6v7. Assume
f does not have any vertex common with C. Due to absence of 8-cycle, f
cannot be adjacent to a 3-face. So, w'(f) > 7—-4 -7 x % > 0. If f has any
vertex or edge common with C, then it is easy to show that w'(f) > 0.

Let us consider the case of d(f) = 9. Due to Claim 10, there cannot
exist any 4-face adjacent to f except for the case of external 4-face. Also
no 7-face can be adjacent to a 3-face. Since there is no tetrad, w'(f) =
9-4-6x3-6x3>00rw(f)=9-4-3x3-6x3>0.

Let us consider the case of d(f) = 10. Due to Claim 10, there cannot
exist any 4-face adjacent to f except for the case of external 4-face. we can
partition the donation of f to the vertices by (R1), (R2) and to the edges
by (RO) into d(f) groups so that the total donation per group is at most
t. This is easy to see. As there is no tetrad, in the worst case we have a
set of five consecutive vertices receiving charges of 0, -21;, -21;, -;-, -21- and the
consecutive edges receiving 1,0, 1, 0 and 1. Hence, total average discharge

per group is 244X} — 2 Hence, w/(f) =d(f) —4-d(f) x § 20. O

Claim 16. w'(fo) > 0.
Proof. If fo is the outer face of G, then d(fo) € {3,4,6,7,9,10,---}. Since

G is different from C, and G is 2-connected, it follows that C has at least
two > 3-vertices.
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Hence total discharge from fo is d(fo)+4—3 x (d(fo)—2)—-2x1-1x1/3 =

% x (7.5 — d(fo))- So w'(fo) > 0 for fo < 7. Since there are no adjacent
trlangles, and no internal 4-cycle, no 5- and 8-cycle, there is an internal non-
triangular face with at least 4 internal vertices. This implies an internal
face of length at least d(fo) — 2 + 6, i.e., d( fo) + 4. This face gives at
least (d(fo) +4-8)x1,ie, (d(fO) - 4) x 3 to fo Hence, w'(fo) =
d(fo)+4— 5 x (d(fo) —2) = 2x 1—1x }+(d(fo) =4) x 3 = & x (18— - o)

For the case, there is no 2-vertex, w'(fo) > d(fo) +4 — 1 x d(fo) — § x
3 x d(fo)) = & x (24 — d(f,)). This implies w'(fo) > 0. u]

4 Conclusion

To date, the best known result towards Steinberg’s conjecture is by [4]
that states that any planar graph without cycles of length in {4,5,6,7} is
3-colorable. In this article, we show that the 3 colorability holds true for
any planar graph without cycles of length in {5,8} and without adjacent
triangles.
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