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Abstract

Let G be a connected graph of size at least 2 and ¢ : E(G) —
{0,1,...,k — 1} an edge coloring (or labeling) of G using k colors
{where adjacent edges may be assigned the same color). For each
vertex v of G, the color code of v with respect to c is the k-tuple
code(v) = (ag,a1,--- ,ak-1), where a; is the number of edges in-
cident with v that are labeled 7 (0 < ¢ < k — 1). The labeling c is
called a detectable labeling if distinct vertices in G have distinct color
codes. The value val(c) of a detectable labeling c of a graph G is the
sum of the colors assigned to the edges in G. The total detection
number td(G) of G is defined by td(G) = min{val(c)}, where the
minimum is taken over all detectable labelings ¢ of G. Thus if G is
a connected graph of size m > 2, then 1 < td(G) < (7). We present
characterizations of all connected graphs G of size m > 2 for which
td(G) € {1,(%)}. The total detection numbers of complete graphs
and cycles are also investigated.

Keywords: vertex-distinguishing coloring, detectable labeling, detec-
tion number, total detection number.

AMS subject classification: 05C15, 05C78.

1 Introduction

We refer to the book [6] for graph-theoretical notation and terminology not
described in this paper.
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Let G be a connected graph of size at least 2and ¢ : E(G) — {0,1,...,k-
1} an edge coloring (or labeling) of G for some integer k > 2 (where ad-
jacent edges may be assigned the same color). If c uses k colors, then c is
a k-labeling. The color code of a vertex v of G (with respect to c) is the
ordered k-tuple

code.(v) = (ap, a1, +* ,ax—1) (or simply code.(v) = apa; - -+ akr—_1),

where a; is the number of edges incident with v that are labeled i for

0<i< k-—1. Thus,
k-1

> a; =deggv. (1)

i=0

If the labeling c is clear, we use code(v) to denote the color code of a vertex
v. The labeling c is called a detectable labeling of G if distinct vertices
of G have distinct color codes; that is, for every two vertices of G, there
exists a color such that the numbers of incident edges assigned that color
are different for these two vertices. Thus, a detectable labeling is a vertex-
distinguishing edge labeling. The detection number det(G) of G is the
minimum positive integer k for which G has a detectable k-labeling. A
detectable labeling of a graph G using det(G) colors is called a minimum
detectable labeling of G. Since there is no nontrivial irregular graph (a graph
in which no two distinct vertices have the same degree), every detectable
labeling of & graph must use at least two colors by (1). Thus, det(G) > 2
for every connected graph G of size at least 2. Detectable labelings have
been studied in [1, 2, 3, 4, 5|, sometimes with different terminology and
notation.

For a detectable labeling c : E(G) — {0,1,...,k — 1} of a graph G,
define the value val(c) of c by

valle) = 3 ele).

e€E(G)

The total detection number td(G) of G is then defined by
td(G) = min{val(c)},

where the minimum is taken over all detectable labelings ¢ of G. Thus in
the case of the detection number det(G) of G, we minimize the number
of colors used in a detectable labeling of G; while in the case of the total
detection number td(G) of G, we minimize the sum of colors of the edges of
G used in a detectable labeling of G (which may or may not be a minimum
detectable labeling).
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2 Examples and some observations

To illustrate the concept described in Section 1, let us first determine the
total detection number of a 5-cycle Cs. Figure 1(a) shows a 3-edge labeling

Figure 1: Detectable labelings of Cs

of Cs using the three colors 0, 1, and 2, where each vertex is labeled by its
color code. Since no two vertices have the same code, this is an example of
a detectable labeling of Cs. In fact, this is a minimum detectable labeling
of Cs since an arbitrary 2-edge labeling of Cs induces at most three distinct
codes, namely 20, 11, and 02, and so it cannot be a detectable labeling of
Cs. That is, det(Cs) > 3 and the labeling in Figure 1(a) confirms that
det(Cs) = 3. The detection numbers of cycles in general are presented in

[5]-
Theorem 2.1 [5] Let n > 3 be an integer and p = [\/n/2]. Then

20-1 if2(p—12<n<p2p-1)

det(Cn) = { % if p(2p—1) < n < 2p°.

The labeling in Figure 1(b) is another minimum detectable labeling of
Cs, which is obtained from the labeling in Figure 1(a) by interchanging the
colors 0 and 2. The values of these labelings in Figure 1(a) and (b) are 6
and 4, respectively. Thus, td(Cs) < 4. In order to verify that td(Cs) = 4,
assume, to the contrary, that there is a detectable labeling ¢’ whose value is
less than 4. Since ¢’ must use at least three colors by Theorem 2.1, assume
that ¢ : E(Cs) — {0,1,2} and there are three edges that are assigned the
color 0 by ¢’. Then we may further assume that Cs = (v1,v2,...,vs,v1) and
d/(viv2) = ¢/(vav4) = 0. However then, code. (v2) = coder (v3) regardless
of the color of vovs, which contradicts the assumption that ¢’ is a detectable
labeling of C5. Therefore, there is no such ¢’ and we conclude that td(Cs) =
4.



The above discussion gives us a useful observation on detectable label-
ings of cycles and paths.

Observation 2.2 Let G be a cycle or a path. If e}, ez, e3 are three con-
secutive edges in G, then c(e1) # c(e3) for every detectable labeling c of
G.

As another example, let us also look at some detectable labelings of Cs.
By Theorem 2.1, every detectable labeling of Cg uses at least four colors.

Figure 2: Detectable labelings of Cs

Thus, the labeling in Figure 2(a) is a minimum detectable labeling of Cg
while the one in Figure 2(b) is not. On the other hand, the values of these
labelings are 12 and 11, respectively. In fact, td(Cs) = 11 and there is
no detectable 4-labeling of Cs whose value equals 11. In order to see this,
consider an arbitrary detectable labeling ¢ : E(Cs) — {0,1,...,k — 1},
where then k£ > 4. By Observation 2.2, one can verify that at most three
edges in Cg can be assigned the same color by ¢. Therefore, if & > 5,
then val(c) 204+0+0+1+1+2+3+4 = 11. When & = 4, that is,
when c is a minimum detectable labeling of Cs, we further show that no
three edges can be assigned the same color. If there are three edges that
are labeled the same, then let Cg = (vq,v2,...,vs,v1) and we may assume
that c(vyv2) = c(vavs) = c(vsvg) = A € {0,1,2,3} by Observation 2.2.
Then each of the remaining five edges must be assigned one of the colors in
{0,1,2,3} — {A}. However, this implies that at least two of the four vertices
vy, U3, vs, and vg have the same code, which is impossible. Therefore,
val(c) >204+0+1+1+42+2+43+ 3 =12 when c uses only four colors, as
claimed.

The following are simple yet important observations on detectable la-
belings of graphs.
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Observation 2.8 If ¢ is a detectable k-labeling of a graph G, then a k-
labeling obtained from c by permuting some of the k colors is also a de-
tectable labeling of G.

Observation 2.4 If a graph G contains £ end-vertices, then every de-
tectable labeling of G uses at least £ colors.

Let G be a connected graph of order n > 3 and size m. A labeling
assigning 0 to every edge of G is not a detectable labeling of G and so
td(G) > 1. If n = 3, then G € {C3, P3} and it is straightforward to verify
that det(C3) = td(C3) = 3 while det(Ps) =td(P;3) +1=2. For n > 4, let
T be a spanning tree of G with E(T) = {eo, €1, €2,...,en_2}, Where say ep
is a pendant edge. Then a labeling ¢: E(G) — {0,1,...,n — 2} defined by
c(e;) =i for 0 <i<n-2andc(e) =0for each e € E(G) - E(T) is a
detectable labeling of G with val(c) = (*;'). Therefore,

2<det(GY <n—-1<m (2)

and
1<td(G) < ("7) < (D) (3)

if G is of order n > 4. Thus, 1 £ td(G) < 3 if G is of order 3 or 4.
Figure 3 shows all connected graphs G of order 3 and 4 along with detectable
labelings ¢ such that val(c) = td(G). Note that td(G) € {1, 3} for each G.

0 [} 0
(o,
aan P G g P
o0—o0—0
1 0 1
0 0
0
AN P B g X
1 1 1 1

Figure 3: Detectable labelings of connected graphs of order 3 and 4

We make another useful observation.

Observation 2.5 If G is a connected graph of size m > 2, then det(G) =
m if and only if G = C3 or G is a star.

Proof. The result certainly holds for the connected graphs of order 3.
Thus, let G be a connected graph of order at least 4. If G is a star, then
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det(G) = m by Observation 2.4. For the converse, observe first that if
det(G) = m, then G must be a tree by (2). Suppose then that G is a tree
that is not a star. We show that det(G) < m. Let E(G) = {e1,e2,...,em}.
Since diam(G) > 3, there are two adjacent edges, say e,,—; and e, at most
one of which is a pendant edge. Then a labeling ¢ : E(G) — {0,1,...,m—2}
defined by c(e;) = i for 1 < i < m — 2 and c(em-1) = c(em) = O is a
detectable (m — 1)-labeling of G and so det(G) < m — 1. n

Since td(P3) = 1 and td(C3) = 3, it follows that (3) holds for every
connected graph G of size m > 2. In fact, an edge labeling of G that assigns
each edge a distinct color is a detectable labeling of G. If ¢ is a detectable
labeling of G whose value is less than (';‘) , then some edges in G are assigned
the same color by c. Thus, val(c) S0+0+1+2+-++(m~-2) = (";}).
Furthermore, if c is a detectable labeling of G whose value is less than
("), then val(c) SO +0+1+1+2+3+--+(m-3)=("7%) +1. A
double star is a tree whose diameter equals 3.

Proposition 2.6 Let G be a connected graph of size m > 2. Then 1 <
td(G) < (7). Furthermore, each of the following holds.

(a) td(G) = 1 if and only if G contains two adjacent vertices z and y
such that (i) degz # degy and (ii) no two vertices in V(G) — {z,y}
have the same degree.

(b) td(G) = (7) if and only if G=Cj3 or G is a star.
(¢) td(G) = (™7}) if and only if G = C, or G is a double star.
(d) td(G) = (™;?) +1 if and only if G € {Cs, Ps, Ps}.

Proof. The result certainly holds for n = 3,4 and so suppose that n > 5.
We first verify (a). First suppose that td(G) =1 and let c: E(G) — {0,1}
be a detectable labeling of G with val(c) = 1. Let e = zy be the unique
edge labeled 1. For each vertex v in G, observe that code(v) = (degv—1,1)
if v € {z,y} and code(v) = (degv,0) otherwise. Therefore, degx # degy
and no two vertices in V(G) — {z,y} have the same degree since c is a
detectable labeling.

For the converse, suppose that = and y are adjacent vertices having
distinct degrees and no two vertices in V(G) — {z, y} have the same degree
in G. Then the labeling ¢ : E(G) — {0,1} such that c(e) = 1 if and
only if e = zy is a detectable labeling of G whose value equals 1. Thus,
td(G) < val(e¢) = 1, which shows that td(G) = 1.
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For (b)—(d), it is straightforward to verify that td(G) = (%) if G is
a star, td(G) = (™;!) if G is a double star, and td(G) = (";?) +1 if
Ge {Cs,Ps,Ps}.

For the converse, let G be a connected graph of order n > 5 and size
m that is neither a star nor a double star and G ¢ {Cs, Ps, Pg}. Then
one can verify that G contains one of the graphs H shown in Figure 4 as a
subgraph. If, for example, G contains P; as a subgraph, then observe that

o
i

Figure 4: Subgraphs H of G in the proof of Proposition 2.6

m > 6 and a labeling ¢ : E(G) — {0,1,...,m — 3} of G assigning (i) the
colors 0, 1, 2, and 3 to the edges belonging to P; as shown in Figure 4 and
(ii) the colors 4,5,...,m — 3 to the remaining m — 6 edges (if m > 7) is
a detectable labeling of G with val(c) = (™;2). Thus, td(G) < (";?). In
fact, we can similarly verify that there exists a detectable labeling ¢ of G
such that the edges belonging to H are labeled as shown in Figure 4 and
each of the remaining edges in E(G) — E(H) is assigned a distinct color
with val(c) < (™;?). Hence, td(G) < (™;?) in each case. .

Note that Proposition 2.6(a) and (b) show the sharpness of the bounds
in (3). Also, one can verify that the edge labeling ¢ of H in Figure 4 has the
property that val(c) = td(H) for each H. In particular, td(P;) = td(Cg) =
6.

Ifc: E(G) = {0,1,...,k — 1} is a detectable k-labeling of a graph G
of size m, then for each integer 7 with 0 < i < k — 1 there exists an edge
e; such that c(e;) = ¢. Also, let ¢: E(G) — {0,1,...,k — 1} be another
labeling of G such that c(e) + &e) = k — 1 for each e € E(G). Then
€ is also a detectable k-labeling of G by Observation 2.3. Furthermore,
val(c) + val(€) = m(k — 1) and so

td(G) < min{val(c), val(z)} < m(k — 1)/2.



Observation 2.7 Let G be a connected graph of sizem > 2. Ifc: E(G) »
{0,1,...,k — 1} is a detectable k-labeling of G for which val(c) = td(G),
then

(3) < val(e) = td(G) < m(k —1)/2. (4)

In fact,
(449 < td(G) < m(det(G) —1)/2. ()

The bounds in (5) are sharp. For the lower bound, those graphs G with
td(G) = 1 certainly have the desired property. In fact, more can be said;
for each integer d > 2, there is a connected graph whose detection number
and total detection number equal d and (‘;), respectively. In order to see
this, let G be a connected graph of order d and consider its corona, cor(G),
which is the graph obtained from G by adding a pendant edge at each vertex
of G. Then det(cor(G)) > d by Observation 2.4. Furthermore, a labeling
c¢: E(G) = {0,1,...,d — 1} assigning the colors 0,1,...,d — 1 to the d
pendant edges and the color 0 to the remaining edges belonging to G is a
detectable d-labeling of cor(G) with val(c) = (§). Hence, det(cor(G)) = d
and td(cor(G)) = (5), as claimed.

Observe also that the upper bound equals the lower bound if det(G) =
m. Therefore, Cs and stars are graphs whose total detection numbers
attain the upper bound (and the lower bound) in (5). On the other hand,
det(P;) = det(Cg) = 3 while td(P;) = td(Cg) = 6. Therefore, the condition
that det(G) = m is sufficient but not necessary in order to have td(G) =
m(det(G) —1)/2 for a graph G.

3 The total detection numbers of complete
graphs

In this section we study the total detection numbers of complete graphs.
Since we have already seen that td(K3) = td(K4) = 3, we consider complete
graphs of order at least 5. It has been proven that every complete graph of
order at least 3 has detection number 3.

Theorem 3.1 [5] For every integer n > 3, det(K,) = 3.
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3.1 The total detection numbers of complete graphs of
order at most 6
Figure 5 shows detectable 3-labelings of K, for n = 5,6, where a dark solid

edge and a dashed edge represent edges labeled 1 and 2, respectively, while
the rest of the edges are labeled 0. Therefore, the labelings in Figure 5 show

Figure 5: Detectable 3-labelings of Kg and K¢

that td(Ks) < 4 and td(Kg) < 6. In order to determine the total detection
numbers of K, for n = 5, 6, we first consider an arbitrary detectable labeling
c: E(K,) — {0,1,...,k—1} of K, using k colors (k > 3) and the resulting
color classes Eg, E,. .., Ex—1. Let G be the subgraph induced by E(K,)—
Ep and observe that

(a) the order of G. is either n or n —1,

(b) every component in G. contains at least three vertices, and

(¢) G. contains at most k£ — 1 end-vertices.
Let m be the size of G.. If G, is connected, then m > n — 2 by (a) and so

valle)= Y cle) 2(1+2+-+(k-1)+1-(m—(k-1))
c€B(Ge) (6)
2l+m2n-1.

By (b), G. must be connected for n = 5. Therefore, td(K3) > 4 by (6),
which in turn implies that td(K3) = 4.

We next show that td(Kg) > 6. Assume, to the contrary, that there ex-
ists a detectable k-labeling ¢’ : E(Ks) — {0,1,..., k—1} whose value is less
than 6. Then val(¢’) 20+14..-4 (k—1) and so k = 3. Thus, each edge
in G is labeled either 1 or 2. If G is disconnected, then G contains
a component isomorphic to K3 by (b) and (c), say C = (v1,vs,v3,v1)
is a triangle in G». Then we may assume, without loss of generality,
that ¢/(vive) = ¢'(vovs). However then, codec(v1) = coder(vs), which
contradicts the fact that ¢’ is a detectable labeling of K. Hence, G
must be connected and val(¢’) > 5 by (6), that is, val(¢’) = 5. This in
turn implies that G must be a tree of order 5 containing three edges la-
beled 1 and one edge labeled 2. Furthermore, G is a path by (c), say
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Go = Py = (v1,v2,v3,v4,v5). Without loss of generality, we may further
assume that ¢/(vyv2) = ¢/(vav3) = 1. However then, either coden(v;) =
code (vs) = (4,1,0) or code.s (v2) = codey (v3) = (3,2,0), neither of which
is possible. Therefore, there is no such ¢’ and val(c) > 6 for every detectable
labeling c of Kg. We conclude that td(Ks) > 6, that is, td(Ks) = 6. We
therefore have td(K3) = td(K,) = 3, td(Ks) = 4, and td(Ks) = 6. What
can we say about td(Ky,) for n > 7 then?

3.2 An upper bound for td(K,)

In this subsection we present an upper bound for td(Ky,), where n > 7, by
constructing a detectable 3-labeling of K, and finding its value.
For each positive integer £, we construct a connected graph H; of order
2¢ with
V(He) = {ul,ug, . ,'u,g} U {wl,wg,. .. ,'we}

such that degu; =degw; =ifor 1 <i< £ For£=1,2,let H; = (u;,w;)
and Hp = (uy,u2, ws,w;) be paths of order 2 and 4, respectively. For £ > 3,
let

P = (u1,us, uq,...,us Uy, Wo, We, We—1,. .., W3, W)

be a path of order 2¢. Then for each pair i, j of integers with 3 < ¢ < ¢ and
¢+ 3 -1 < j</{, adding the i — 2 edges u;w; to P results in Hy. Observe
that the size of He is (‘3Y).

Proposition 3.2 For each integer n > 7,

3(n? +15) if n is odd
td(Kn) < ¢ 2(n?-2n+32) ifn=0 (mod 4)
3(n? —2n+40) ifn=2 (mod 4).

Proof. We consider four cases, according to the congruence classes mod-
ulo 4 to which n belongs.

Case 1. n =1 (mod 4). Then n = 4£ + 5 for some positive integer
L. Let V(Kn) = UUW U {vg,v1,v2}, where U = {uy,us,...,u2+1} and
W = {wy,ws,...,wae41}. Let ey : E(K,) — {0,1,2} be a 3-labeling of K,
with the color classes Ey, Ey, and E; such that (i) the subgraph induced by
E) equals Hj¢y) whose vertex set is UUW and (ii) Ez = {wyws, wavy, v1v2}
if £ =1 while E; = {wyws, wae4191,v102} U {wiwize—y : 3 < i < £+ 1} if
£ > 2. Then ¢, is a detectable labeling of K,, and val(c)) = (2%*' 2) +2(¢+
2) =262 + 50+ 5 = (n% + 15)/8.
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Case 2. n = 3 (mod 4). Then n = 44 + 3 for some positive integer
L. Let V(K,) = UUW U {v,v1,v2}, where U = {u;,us,...,u2} and
W = {wy,ws,...,wae}. Let ¢y : E(K,) = {0,1,2} be a 3-labeling of K,
with the color classes Ey, Ey, and E; such that (i) the subgraph induced
by E; equals Hy, whose vertex set is U U W with an additional pendant
edge woev; and (ii) E; = {vlvg,vlwl} if £ = 1 while E5 = {vlvg,vlwl} U
{wiwiye—1 : 2 < i < £} if £ > 2. Then c; is a detectable labeling of K, and
val(ez) = (3 +1+2(£+1) = 262 + 3¢+ 3 = (n? +15)/8.

Case 3. n = 0 (mod 4). Then obtain K,, from K,_; constructed as
described in Case 2 by adding a new vertex vs. Observe that c3 : E(K,) —
{0,1,2} such that (i) c3(vavs) = 2 while c3(vsv) = 0 for each v € V(K,,) —
{ve,vs} and (ii) c3(e) = cz(e) for each e € E(K, — v3) is a detectable
3-labeling of K, whose value is ((n — 1)2 + 15)/8 + 2 = (n? — 2n + 32)/8.

Case 4. n = 2 (mod 4). Then obtain K, from K,_; constructed as
described in Case 1 by adding a new vertex v3. Then ¢4 : F(K,) — {0,1,2}
defined by

0 if e=v3v and v # vy, v3
1 if e = woep11n
csle) = .
4(e) 2 if e € {wavy,vous}

ci1(e) otherwise

is a detectable 3-labeling of K, with val(c) = ((n - 1)2+15)/8 +3 =
(n? — 2n + 40)/8. s

3.3 Detectable 3- and 4-labelings of complete graphs
and their values

In this subsection we provide a lower bound for val(c), where ¢ is a de-
tectable k-labeling of K, using the colors 0,1,...,k—1for k € {3,4}. Inor-
der to do this, we introduce some additional notation. For a given connected
graph G of order n > 3, let ¢ : E(G) — {0,1,...,k ~ 1} be a detectable
k-labeling of G, which may or may not be a minimum detectable labeling
of G. Let V(G) = {vy,vq,... ,’Un} and code.(v;) = (ao,i,C1,4,°** »Ak—1,i)
for 1 < i < n. Then define a vertex labeling ¢* : V(G) — N by ¢*(v;) =
2?;(} Jjaji. For example, a detectable 3-labeling ¢ of Ko and the induced
vertex labeling ¢* are shown in Figure 6. (Again, a dark solid edge and a
dashed edge represent edges labeled 1 and 2, respectively, while the rest of
the edges are labled 0.)
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Figure 6: A detectable 3-labeling of Ko

Observe that .
val(c) = 3 ) c* (). (M
i=1

Furthermore,

n

m; = -% Za,-,i

i=1
is the number of edges in G that are assigned the color j for 0 < j < k—1.
Therefore, Y ;-., a;; must be a nonnegative even integer for each j.

Now suppose that ¢ : E(K,) — {0,1,2} is a detectable 3-labeling of the
complete graph of order n > 3. Then for each vertex v € V(Ky,),

c'(v) =0 ifandonlyif code.(v)=(n-1,0,0)
c’(v)=1 ifandonlyif codec(v)=(n—2,1,0)
¢'(v)=2 ifand onlyif codec(v) € {(n-2,0,1),(n—-3,2,0)}.

In general, it is straightforward to verify that there can be at most [3/2] +1
vertices v for which ¢*(v) = i.

Proposition 3.3 Let ¢ : E(K,) — {0,1,2} be a detectable 3-labeling of
K,, wheren > 5. Let p=[\/n]. Then

2(n(2p-3) - 3p(p—1)(4p-5)) f(P-1)*<n<p(p-1)
3(n(2p—2) - dplp-1)(4p+1)) fp(p—1) <n<p
Proof. Since p = [/n], it follows that (p — 1)2 < n < p®. We consider

the following two cases.
Case 1. (p—-1)2 <n < p(p—1). Then n = (p — 1)2 + q, where

val(c) > {
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1 < g < p—-1. Observe then that

Y () 20+14+2+42+3+3+4+4+445+5+5+--+
v Kn
eV (2p—6)+ - +(2p—6)+(2p—5)+ -+ (2p—5) +
p:2 p:2
@Cp-4)+--+2p—-4)+(2p—-3)+---+(2p-3)

v

p—1 q

p-2
=) i4i-3)+(p-1)2p-4) +(n- (p-1)*)(2p-3)

i=1

=n(2p—3) — ip(p - 1)(4p - 5).

Then the result follows by (7).
Case 2. p(p—1) < n < p?. Thenn =p(p—1) +¢q, where 1 < ¢ < p.
Using the result obtained in Case 1, observe that
3 ()= (plp— 1)(2p - 3) - §p(p— 1)(4p - 5)) +q(2p - 2)
VIR n(2p-2) - Lp(p - 1)(dp + 1).

Then the result follows again by (7). [
The following are consequences of Propositions 3.2 and 3.3:

o There exists a detectable 3-labeling of K7 whose value equals 8 while
there is no detectable 3-labeling of K7 whose value is less than 8.

o There exists a detectable 3-labeling of Kg whose value equals 10 while
there is no detectable 3-labeling of K5 whose value is less than 10.

Note that Proposition 3.3 does not necessarily give us a lower bound for
td(Ky,). It turns out that td(K7) = 8 while td(Ks) = 9. The detectable
4-labelings of K, for 8 < n < 10 in Figure 7(a), where edges labeled 0 are
omitted, show that td(K3g) < 9, td(Ky) < 11, and td(K19) < 13. In fact,
more can be said:

e If c is a detectable k-labeling of K7 such that val(c) = td(K7), then
ke {3,4}.

e For 8 < n < 10, if ¢ is a detectable k-labeling of K, such that
val(c) = td(Kp,), then k = 4.

To see these, let us suppose that ¢ : E(K,) — {0,1,...,k—1}is a detectable
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Figure 7: Detectable labelings of K, (7 < n < 10)

k-labeling of K, where k£ > 4. Then for each v € V(K,,),

c’'(v)=0 ifandonly if code.(v)=(n-1,0,0,0,--)

¢*(v)=1 ifandonlyif codec(v)=(n-2,1,0,0,--+)

c'(v)=2 ifandonlyif code(v)€ {(n-2,0,1,0,---),(n-3,2,0,0,--.)}
(n_2)010y1:"'):(“—311)1:0»'")’}

c*(v) =3 ifand only if code.(v)€ {(n_4 3,0,0,---)

where the entries in “-.-” are all zeros if k > 5. Also, if ¢(zy) = k-1,
then we may assume that ¢*(z) > k — 1 and ¢*(y) > k. Therefore, if ¢ is a
detectable k-labeling of K7 with k > 4, then

S W) 20+1+4+2+2+43+(k—1)+k=2k+7
veEV(K7)

and so val(c) > k + 4 by (7). Thus, val(c) > 8 and val(c) = 8 only if
k € {3,4}. Figure 7(b) shows detectable 3- and 4-labelings of K7 whose
values are both 8. Thus, td(K7) = 8. Also, for K3,

> W) 20+1+2+2+3+3+(k—1)+k=2k+10
vEV(Ks)

and so val(c) 2 k+5 > 9 and val(c) = 9 only if k = 4. One can similarly

verify that

12 ifk=3
>
val(e) 2 { k+7 ifk>4
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for every detectable k-labeling ¢ of Ko and

14 ifk=3
"al(c)z{kw k>4

for every detectable k-labeling ¢ of K19. Hence, td(K7) = 8, td(Ks) = 9,
td(Kg) =11, and td(Klo) =13.

Let us next consider the values of detectable 4-labelings of complete
graphs in general. For a fixed integer n > 3, let ¢ : E(X,) — {0,1,2,3}
be a detectable 4-labeling of K,. Then there are at most |i(¢ + 6)/12] +1
vertices v for which ¢*(v) = i. Consider a function f : R — R defined by
f(z) = (z +1)(122% + 9z + 2)/2. Since f(0) = 1 and f'(z) > 0 on [0, c0),
there exists a unique positive integer p such that f(p—1) <n < f(p). The
following is a result parallel to Proposition 3.3, providing us with a lower
bound for val(c), where ¢ is now a detectable 4-labeling of K, using the
four colors 0, 1, 2, and 3. The proof is omitted since it is done in the same
manner as in the proof of Proposition 3.3.

Proposition 3.4 Let c: E(K,) = {0,1,2,3} be a detectable 4-labeling of
K,, where n > 5. Let p be the integer such that f(p—1) < n < f(p). Then

[ 3(n(6p - 5) — p*(3p — 2)%)
if 1p(12p% — 15p+ 5) < n < ip(12p® — 9p +1)

3 (n(6p— 4) — 3p(3p — 1)(6p* — 2p - 1))
if 4p(12p° - 9p+ 1) <n < 1p(12p° —3p—-1)

3(n(6p — 3) — p*(9° - 2))
if 1p(12p* - 3p—1) <n < §p(12p% + 3p— 1)

1(n(6p - 2) - 3p(3p + 1)(69° + 2p — 1)
if 3p(120° + 3p— 1) < n < 3p(12p* + 9p +1)

(n(6p— 1) — p*(3p+ 2)%)
if $p(12p% + 9p+ 1) < n < }p(12p° + 15p + 5)

1 (n(6p) — 3p(p + 1)(18p* + 18p + 5))
if 3p(12p% + 15p + 5) <n < L(p+ 1)(129° + 9p + 2).

val(c) > ¢

\

Table 1 shows the total detection numbers of complete graphs of small
order. Note that for each n € {11,12,...,15}, there is a detectable 5-
labeling of K, whose value equals td(K,). Furthermore, for n = 14, it
turns out that ¢ : E(K14) = {0,1,...,k — 1} is a detectable k-labeling of
K14 with val(c) = td(K14) = 22 only if k = 5.
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5 6 7 8 9 10 11 12 13 14 15
tdKn) [3 3 4 6 8 9 11 13 16 18 20 22 25

Table 1: td(K,) for 3<n <15

Problem 3.5 Let n > 3 be an integer. For a fized integer k > 3, let
c: B(K,) = {0,1,...,k—1} be a detectable k-labeling of K,,. Find a lower
bound for val(c) in terms of k and n.

4 The total detection numbers of cycles

In this section we study the total detection numbers of cycles in general.
First we state an observation.

Observation 4.1 If G is a connected graph of order at least 3 containing
a connected regular spanning subgraph H, then td(G) < td(H).

Proof. Let c be a detectable labeling of H such that val(c) = td(H).
Define a labeling ¢’ of G by /(e) = c(e) if e € E(H) and ¢/(e) = 0 other-
wise. Then ¢’ is a detectable labeling of G and val(c¢’) = val(c) = td(H).
Therefore, td(G) < val(¢’) = td(H). [

By Observation 4.1, it follows that td(G) < td(C,,) if G is a Hamiltonian
graph of order n > 3. In particular, td(K,) < td(C,) for each n > 3.
Furthermore, we already know that a strict inequality is possible since
td(Ks) = 9 while td(Cg) = 11.

4.1 The total detection numbers of cycles of order at
most 8

We have already seen in Section 2 that td(C3) = td(Cy) = 3, td(Cs) =
4, td(Cg) = 6, and td(Cs) = 11. The labelings shown in Figure 8 are
detectable labelings of C,, (3 < n < 8) and so td(C7) < 9. We show
that equality holds. Let ¢ : E(C7) — {0,1,...,k — 1} be a detectable k-
labeling of C7 such that val(c) = td(C7), where then k > det(C;) = 4 (by
Theorem 2.1). First observe that k£ = 4 by (4) since val(c) = td(C7) < 9.
We show that ¢ cannot assign the same color to three edges in C;. Let
C7 = (v1,v2,...,V7,v1) and assume, to the contrary, that there are three
edges that are assigned the same color by ¢. By Observation 2.2 we may
assume that ¢(v1v2) = ¢(vauvg) = c(vsvg) = A. Since vs is incident with two
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Figure 8: Detectable labelings of C, (3 <n < 8)

edges labeled A, no other edge can be assigned the color A. However then,
this implies that at least two of the four vertices v;, vs, vs, and vg have the
same code, which contradicts the assumption that ¢ is a detectable labeling
of C7. Therefore, as claimed, c assigns the same color to at most two edges
and so val(¢) > 0+0+1+1+2+2+43 =09, that is, td(C7) > 9. We
therefore have td(C3) = td(Cy) = 3, td(Cs) = 4, td(Cg) = 6, td(C7) = 9,
td(Cg) = 11.

4.2 An upper bound for td(C,)

In this subsection we present an upper bound for td(C,), where n > 9.
Figure 9 shows that td(Co) < 12.

Figure 9: A detectable labeling of Cy

In order to present an upper bound for the total detection numbers of
cycles of order greater than 9, we introduce the following terminology. For
an arbitrary labeling ¢ of a cycle C, = (v1,v2,...,vn,v;) of order n > 3,
define the label sequence as

e(v1v2), e(vavs), . . ., (Vp—1Un), c(Vpvy).
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Proposition 4.2 For each integer n > 10,

([ L(2n24+9n-18) ifn=0 (mod 6)
5(2n? +5n+11) ifn=1 (mod 6)
%(@n®* +T—-22) ifn=2 (mod 6)
%(2n? +9n —45) ifn=3 (mod 6)
%(2n? +5n+2)  ifn=4 (mod 6)
%(2n? + 7 —13) ifn=5 (mod 6).

td(Cr) < ¢

\

Proof. We first define some sequences of nonnegative integers. For each
positive integer £, let s(£) be the sequence of length 6¢ given by

o0 001122 ife=1
"1 0,0,1,1,2,2,0,3,3,1,4,4,...,0,2 — 1,2 — 1,1,2¢,2¢ if £ > 2.

Furthermore, let s1(€), s2(¢),.. ., s5(¢) be the following sequences:

s1(€): 0,2¢—-1,1,2£,2,2¢—1,2¢
s2(€): 0,26—1,20-1,1,20,2,2¢—-1,2¢
s3(€): 2,26—-1,2¢

s4(€): 0,20+1,1,2¢+2

ss(€): 0,20+1,2041,1,20+ 2.

Now let p = [n/6] and consider the following three cases.

Case 1. n =0 (mod 6). Then observe that ¢ : E(C,) — {0,1,...,2p}
whose label sequence equals s(p) is a detectable (2p+1)-labeling of C,, with
val(c) = 4p% + 3p — 1 = (2n? + 9n — 18)/18. Thus, td(C,) < (2n2 + 9n —
18)/18.

Case 2. n =i (mod 6), where i € {1,2}. If n =1 (mod 6), then the
sequence s(p — 1) followed by s;(p) induces a detectable (2p+ 1)-labeling of
Cn whose value equals 4p®+3p+1 = (2n2+5n+11)/18. For n = 2 (mod 6),
similarly, consider the sequence s(p — 1) followed by s2(p).

Case 3. n =i (mod 6), where i € {3,4,5}. Considering the sequence
s(p) followed by s;(p), we obtain the desired result. ]

4.3 A lower bound for td(C,)

In this subsection we use a technique similar to that used in Subsection 3.3
to present a lower bound for td(Cy) by considering a lower bound for val(c),
where k > det(C,) and c is a detectable k-labeling of C,, using the colors
0,1,...,k—1.
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Suppose that ¢ : E(C,) — {0,1,...,k — 1} is a detectable k-labeling of
Cn (n > 3). Then 0 < ¢*(v) £ 2(k — 1) for each v € V(Cy). Furthermore,

e if 0 < i < k— 1, then there are at most |i/2] + 1 vertices v with
c*(v) =1

e if k£ < i < 2(k — 1), then there are at most k — [i/2] vertices v with
c*(v) =1

e there are two vertices z and y with ¢*(z) > k—1 and c*(y) > k.

Therefore, we obtain the following, whose proof will be similar to that of
Proposition 3.3 and therefore is omitted.

Proposition 4.3 For a fized integer n 2> 3, let c: E(C,) — {0,1,...,k—
1} be a detectable k-labeling of C,,.
Ifn < [k/2] ([k/2] + 1), then let p = [/n —2]. Then
k+3(n(2p—3) - 5(4p—5)(»* - p+6))
flp-1)2<n-2<p(p-1)

k+3(n(2p=2) ~ §(p~ D(ap® +p+24) - 1)
ifp(p-1) <n-2<p"

val(c) 2

If [k/2] (lk/2) +1) < n < k(k + 1)/2, then let n' = k(k +1)/2 —n. If
n' #0, then let p = [v/n']. Then

( -12-(11(216 -2p+1)- %k(k +1)(k-2p+2) - éj‘-p(p —1)(4p— 5))

if(p-1°<n’ <plp-1)

val(e) > ¢ 1(n(2k—2p) - Lk(k+1)(k—2p+1) - ip(p-1)(4p+1)) (8)
ifp(p—1) <n'<p’

gnlk—1) ifn' =0,

.

For n > 5, we see from Proposition 4.3 that td(Cy) is bounded below
by the expression in (8) with k being the largest positive integer such that
[k/2] ([k/2] +1) < n. We therefore obtain the following result, which
gives us a lower bound of the total detection numbers of cycles of order
n>5.
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Theorem 4.4 For each integer n > 5, let p = [/n]. Then

3(n(2p - 3) — 3p(p - 1)(4p — 5)) ifp-12<n<pp-1)-2
i(n(p-2) - 3(4° -3p> ~p—6)) ifne{plp-1)-1pp-1)}
3(n(2p—2) - gp(p - 1)(4p+ 1)) fplp—1) <n<p*-2
$(n(2p-1)- Lp—-1)4p* + 70 +6)) ifne {p*—1,p%}.

td(Cn) =

By Theorems 4.2 and 4.4, we now see that td(Cy) = 12, td(Cyo) = 14,
and td(Cn) = 17.

Table 2 shows the detection numbers and total detection numbers of
cycles of small order. For n € {8,15,16}, note that there is no minimum
detectable labeling ¢ for which val(c) = td(C,).

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
det(Cn) [3 3 3 3 4 4 5 6§ 5 5 5 5 5§ 6
tdiCn) |3 3 4 6 9 11 12 14 17 21 23 26 29 33

Table 2: det(Cy) and td(C,) for 3<n <16

5 Other related concepts and open problems

In [5] (and in (2)), it is shown that if G is a connected graph of order n > 4,
then 2 < det(G) < n — 1. Furthermore, the following realization result is
presented.

Theorem 5.1 [5] A pair n,k of positive integers is realizable as the order
and detection number of some nontrivial connected graph if and only if (i)
n=k=3or(iiy)n>3and2<k<n-1.

We have seen in Section 2 that if G is a connected graph of order 3,
then td(G) € {1,3}. Furthermore, if G is a connected graph of order
n > 4, then it is stated in (3) that 1 < td(G) < (*;'). This gives rise
to the following realization problem. We say that a pair (n, k) of positive
integers is realizable if there exists a nontrivial connected graph G of order
n with td(G) = k. Therefore, if (n, k) is a realizable pair, then either (i)
(n,k) € {(3,1),(3,3)} or (ii) n > 4 and 1 < k < (*;'). We have already
seen in Figure 3 that

each of (3, k) and (4, k) is realizable if and only if 1 < k < 3 and k # 2.
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Figure 10: Detectable labelings of connected graphs of order 5
Figure 10 shows all connected graphs G of order 5 and detectable labelings
¢ with val(c) = td(G), where the unlabeled edges are assinged 0. Therefore,

(5, k) is realizable if and only if 1 < k£ <6 and k # 5.

Similarly, by inspecting all connected graphs of order 6 (see [7] pp.218-224),
we see that

(6, k) is realizable if and only if 1 < k < 10 and & ¢ {7,8,9}.
What can we say if n > 7 then?

Problem 5.2 Which pair (n,k) of positive integers withn > 7 and 1 <
k < (";') is realizable?

There is another interesting concept. In Sections 2 and 4, we considered
the total detection numbers of cycles Cy, of small order (3 < n < 16). For
n = 8, recall that det(Cs) = 4 while there is no detectable 4-labeling ¢ of
Cs whose value equals td(Cg) = 11. We further showed that ¢ : E(Cs) —
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{0,1,...,k—1} is a detectable k-labeling of Cg with val(c) = 11 only when
k = 5. Similarly, it turns out that there is a detectable k-labeling of Cg
whose value equals td(Cie) = 33 only if ¥ = 7 = det(Cy6) +1. Furthermore,
there is a detectable 7-labeling of Cy5 such that val(c) = td(Ci5) = 29 while
there is no detectable labeling ¢ of C;5 with val(c) = 29 if ¢ uses less than
7 colors, although det(Cs) = 5.

This gives rise to the following graphical parameter and problem. For
a connected graph G of size at least 2, let f(G) be the smallest integer k
such that there exists a detectable k-labeling ¢ : E(G) — {0,1,...,k— 1}
with val(c) = td(G). Therefore, det(G) < f(G). We have seen some graphs
G for which det(G) = f(G) and some graphs H for which det(H) < f(H).
For 3 < n < 16, for example,

det(Cn) +1 ifne {8,16}
f(Cn) ={ det(Cpr)+2 ifn=15
det(C,) otherwise.

Problem 5.3 Study f(G) for some well-known classes G of graphs.

Problem 5.4 For each positive integer ¢, is there a connected graph G
such that f(G) = det(G) + £7
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