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Abstract

Let G be a simple graph with vertex set V(G) and edge set E(G),
and let Z; = {0,1}. A labeling f : V(G) — Z; induces a partial edge
labeling f* : E(G) — Z» defined by f*(uv) = f(u) if and only if
f(u) = f(v). For i € Zy, let v4(3) = |{v € V(G) : f(v) = i}| and
er(i) = |{e € E(G) : f*(e) = i}{. A labeling f is called a friendly
labeling if |vf(0) — v#(1)] € 1. The BI(G), the balance index set of
G, is defined as {|e;(0) — es(1)| : the vertex labeling f is friendly.}.
This paper focuses on the balance index sets of generalized book and
ear expansion graphs.
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1 Introduction

In (8], Lee, Liu and Tan considered a labeling problem in graph theory.
Let G be a graph with a vertex set V(G) and an edge set E(G). A vertex
labeling of a graph G is a mapping f from V(G) into {0,1}. For each vertex
labeling f of G, we can define a partial edge labeling f* of G as follows:
for each edge uv in E, define

w0 i f(u) =F(v) =0,

f*(w) = {1 if f(u) = f(v) = 1.
Note that if f(u) # f(v), then the edge uv is not labeled by f*. We shall
refer f* as the induced partial function of f. For i = 0,1, let vg(3)
denote the number of vertices of G that are labeled by 7 under the mapping

f. Similarly, let es(¢) denote the numbers of edges of G that are labeled by
i under the induced partial function f*. In other words, for i =0, 1,

{u€ V(G): f(u) =1}|, and,
|[{uv € E(G) : f*(uv) =i}|.

vs (1)
es (i)

Definition 1. A vertex labeling f of a graph G is said to be friendly
if [vg(0) — vy(1)] < 1, and balanced if both |vs(0) — vs(1)] < 1 and
les(0) —es ()| < 1.

It is clear that not all the friendly labelings are balanced.
In (6], A.N.T. Lee, Lee and Ng introduced the following notion as an
extension of their study of the balanced graphs.

Definition 2. The balance index set of a graph G is defined as

BI(G) = {|es(0) — es(1)| : the vertex labeling f is friendly}.

Example 1. Figure 1 shows a graph G with BI(G) = {0, 1, 2}. m]

In [12], Lee, Wang and Wen found the balance index set of cycles.

k
Proposition 1.1. Let U C,",', be a finite disjoint union of k cycles, where
i=1

C}, is the cycle of order n; for all 1 < i < k. The balance index set is

{{0} if _n; is even, and,

k
BI(L;J Cn.) = {1}  if X n; is odd.

i=1
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[e(0) —e(1)| =0 le(0) —e(1)[ =1 |e(0) - e(1)| = 2
Figure 1: The friendly labelings of a graph G with BI(G) = {0, 1, 2}.

We note here that not every graph has a balance index set consisting of
an arithmetic progression.

Example 2. The graph &(1,3,1,1) is composed of C4(3) with a pendant
edge appended to each of z;, 23 and z4, and three pendant edges appended
to z3. Figure 2 shows that BI(®(1,3,1,1)) = {0,1,2,3,4,6}. Note that 5
is missing from the balance index set.

le(0) —e(1)| =3 e(0) — e(1)] = 4 le(0) —e(1) =6

Figure 2: The six friendly labelings of $(1, 3,1, 1).

Some balanced graphs are considered in [1, 2, 5, 8, 13]. In general, it
is difficult to determine the balance index set of a given graph. Most of



existing research on this problem have focused on some special families of
graphs with simple structures, see [3, 4, 6, 9, 10, 12].

The balance index sets of the graph which are formed by the amalga-
mation of complete graphs, stars, and generalized theta graphs are studied
in [3, 4]. In this paper, we complete the study of the balance index sets of
generalized book and generalized ear expansion graphs.

2 General Theory of the balanced index sets

For a graph with a vertex labeling f, we denote es(x) to be the number of
the unlabeled edges.

For brevity, when the context is clear, we will simply write v(0), v(1),
e(0), e(1) and e(x) without any subscript.

In [14], an algebraic approach to solving balance index sets was dis-
covered. In [11], this approach was adapted into the following powerful
equalities:

Proposition 2.1. For any vertex labeling f, let V(0) and V(1) be the
subsets of V(G) which contain the vertezes labeled 0 and 1, respectively.
We have the following equalities:

1. 2e(0) + e(x) = Z degv;

veV(0)
2. 2e(1) +e(x) = Z degv;
veV(l)
3. 2|E(G)|= Z degv = Z degv + Z degv.
veV(G) veV(0) vev(1)

Proposition 2.2. For any friendly vertez labeling f, the balance indez is

e(0) —e(1) =% ( Z degv — z degv) .

veV(0) veV(1)

Note here that Proposition 2.2 gives the balance index for a given
friendly labeling before applying the absolute value function.

Lemma 2.3. Let G be a graph with 2n vertices and H be a graph with
2n + 1 vertices, where n is a positive integer. Let their degree sequences be



2<91<92<---Sgn59n+13---592n Gnd?ShlsthShnS
Pnt1 < btz < ... < hony1, respectively. If

gi=h;=2 fori=12,...,n

and

gi=hiq1, fori=n+1,n+2,...,2n
with hnyy = 2, then, for a vertez labeling f, a balance index of H can be
found by adding one or subtracting one from a balance index of G.

Proof. For any friendly labeling, by Proposition 2.2, its balance index is

%(z degv— 3 degv).

vev(0) vEu(l)

Since all the degrees are the same except H has one extra order 2 in the
middle of the degree sequence, obviously, the difference between two bal-
ance indexes is &1 depends on the label of the vertex whose degree is A, ;.
m]

This lemma leads us to focus on the balance index sets of the even-
number-of-vertices graphs first. Then, the balance index sets of the odd-
number-of-vertices graphs just follows as:

Corollary 2.4. Let G be a graph with 2n vertices and H be a graph with
2n + 1 vertices, where n is a positive integer. Let their degree sequences be
2<91<925..SgnSgn1<...<gmand2<h <hy<...<h, <
hni1 € haye <. < hopy, respectively. If

gi=hi=2 fori=1,2,...,n

and
gi=hiy, fori=n+1ln+2,...,2n

with hpyy = 2, then,
BI(H) = BI(G) +1,
where BI(G) £ 1 is defined as

BI is a balance indez, ef(0) — ef(1), of G }

{|BI +1| ‘ before applying absolute value function.



3 On Balance Index Sets of Generalized Book
Graphs

A generalized book graph has two inner vertices which form the ”spine” of
the book. Note that in this paper, these vertices will be called v, and vs.
The ”pages” are cycles which are attached to these inner vertices.

For k > 1, the notation GB(k;n3,n2,...,n,) refers to a graph with
k cycles with vertices ni,ns,...,ns respectively. However, we note here
that the position of the cycles is irrelevant to the balance index set. We
also note that the total vertex count of a generalized book graph G is
V@)|=nm+ne+..+n—2(k-1).

Figure 3: GB(4; 3,4,4,5)

Theorem 3.1. For GB(k;ny,na,...,nk), where the total number of ver-
tices is even, the balance inder set is

BI(GB(k;ny,ma,...,ng)) = {0,k — 1}.

Proof. Let G be a generalized book graph, GB(k;n;,ne,...,nt), with
even total vertex count |V(G)] = ny +ng + ... + e — 2(k — 1) = 2M.
Therefore, for a friendly labeling, there are M 0-vertices and M 1-vertices.

Our inner vertices v, and vy have degree k + 1 while all other vertices
in the graph have degree 2. We consider the case where both inner vertices
are labeled 0. By Proposition 2.2, it follows that

e(0) —e(l) = -;— ( Z degv — Z degv)
vEwv(0) vev(l)
= 200+ 1) +2(M —2) - 2M)
= k-1



By similar computations, we get the following table covering all possible
cases of inner vertex labelings.

f(v1) | f(ve) | Balance Index
0 0 F—1

0 1 0

1 1 Py

Therefore, the set of balance indices is {0, k—1} for graphs with an even
number of vertices with k > 1. (m]

By Lemma 2.3, we can easily extend the result to the generalized book
graphs with odd number of vertices.

Corollary 3.2. For GB(k;ny,ng,...,nk), where the total number of ver-
tices is odd, the balance index set is

{1,]k —2|,k}.

4 On Balance Index Sets of Generalized Ear
Expansion Graphs

A generalized ear expansion graph has an inner cycle, C,, with n vertices
and edges. We will refer to these vertices as v1,vs,...,v, and edges as
e1,€z,...,e, with the convention that e; is located between v; and vy, etc.
Outer cycles may be attached to any of the edges of the inner cycle. An
outer cycle should share no edges with another cycle besides the one edge
it shares with the inner cycle.

Figure 4: GE(Cs; [3; 3’6], [31 4]1 [3]: [4’ 5]) [4’4])

We use GE(Ch; [p1,p3,- - -+ Pk, [P1, 03, - - o0, ), -, [P2, 05, ..., PR ]) to
denote an ear expansion graph with inner cycle C,, where k; > 1 for all
i=1,2,...,n and p] > 3 for all 4,j. Each set of brackets contains the



cycles which are attached to a particular edge. In general, [p},p},...,p},]
refers to the collection of vertices of k; cycles which share the edge e; in the
inner cycle. Note that the order of the bracketed collections may effect the
balance index set of the graph. We also note that the total vertex count of
a generalized ear expansion graph G is

V(G)| = pl+ph+...+pk, +P2+. . . +p}, +.. . +DF, —2(k1+ka+. .. +kn) +n

Note here that, for convenience, all the subscripts of v and e are modulo
n. Therefore, vn4+1 = v1, €nt2 = €2, and so on.

Let G be a generalized ear expansion graph GE(Ch;[pl,p},...,p},],

3.0%,...,0%,),- -, [P2,P8,..., PR ]) with even number of vertices. For a

friendly labeling, we have M vertices labeled 0 and M vertices labeled 1.

For any inner vertex v; of the inner cycle, the degree is the sum of the
edges of the inner cycle adjacent to v; (which is always 2) with the number
of cycles attached to each inner cycle edge adjacent to v;. In particular,

degv; =2+ ki1 + k;

Also, every vertex which is not in the inner cycle has degree of exactly
2. If there are g inner O-vertices, then there are M — g outer O-vertices.
We also have n — ¢ inner 1-vertices and M — (n — q) outer 1-vertices. By
Proposition 2.2, some of the 0 and 1 outer vertices will cancel each other’s
degree contribution to the balance index. Without loss of generality, we
have 2(M — q) — 2(M — (n — q)) = 2(n — q) — 2q as the degree contribution
leftover from the outer vertices. The ¢ inner O-vertices provide a degree
of at least 2 and the n — ¢ inner 1-vertices subtract a degree of at least 2.
Therefore, two degrees of each inner vertex can be used to effectively cancel
out any contribution from outer vertices. This leaves us with remaining
contributions from inner vertices only. In particular, any inner vertex v;
could contribute k;_; + k; to the balance index before dividing by two.

If the vertex v; is labeled 0, then, according to Proposition 2.2 and the
above discussion, it contributes %(lc.-_l + k;) to the balance index. Simi-
larly, if the vertex v; is labeled 1, then it contributes ———;- (ki1 + k3).

For any value k; associated to the edge e;, only two adjacent vertices v;
and v;4; can contribute it into the balance index. When both v; and v;4;
are labeled 0, we can see the contribution is k;—; + 2k; + k;4;. Thus, the
value k; survives in the balance index. Similarly, the balance index contains

“ the following term:

1. k; if v; and v;4; are both labeled 0.
2. —k; if v; and v;4; are both labeled 1.

3. no k; if v; and v;4 are differently.

10



Example 3. For an ear expansion graph GE(Cs; [3, 3, 6], [3, 4], [3], [4, 5], [4, 4])
with totally 24 vertices, if you label vi, v3, vz by 0 and v4, vs by 1, then
the balance index is

1
-2- ((k5 + kl) + (kl + kz) -+ (k2 + ka) — (ka + k4) - (kq + ks))
= ky+ky—ky
(m]

We can permute the labels of the inner cycle vertices. It can generates
other balance indexes in the same pattern. See the following example.

Example 4. From the previous example, we have a labeling with the bal-
ance index k; + k3 — k4. If we permute the labels, for example, we label v,
v3, v4 by 0 and v, vy by 1, then we have a new labeling with the balance
index ks + k3 — ks. The balance index permutes too. m]

Example 5. Here we completely list all combinations in a generalized ear
expansion graph with inner cycle C3 and even number of vertices.

Balance Index
k1 + ko + k3
ki
k3
ks

ks

™
™

[ — k1 ~ ko — ks3]

Thus, the balance index set is {ky, k2, k3, ky + k2 + k3}. ]

o e L R B K= E=1 =]
= o m|o|=|olofS
ol = ool —|ol$

We note that by changing any single vertex’s labeling in the inner cycle,
the resulting change in the number of k terms in the corresponding balance
index is reduced by 0 or 2. Also, if n is even or odd, we can get a balance
index of k; + k3 + ... + k, by labeling all inner vertices 0. Therefore, if n
is even, each labeling of the inner vertices will return an even number of k&
terms for its balance index and if n is odd, an odd number of terms.

Now, we can write down an algorithm to produce the balance index set
of a generalized ear expansion graph.

Theorem 4.1. Let n > 3 be a positive integer. Consider a generalized ear
ezpansion graph, GE(Cy; [p], P}, . Pk, ), [P1, P}, - PR,)s ooy [P, B3, .- PR ]) with

11



even number of vertices. The following algorithm can produce its balance
inder set.

n
1. The mazimal balance indez is Zk.-.

i=1
2. Label inner vertices by 0 and 1 where vy is labeled 1 and v,, is labeled
0 with the number of 0’s is greater or equal to the number of 1.
3. Determine if k; shows up in the pattern by pattern contains

(a) ki if v; and v;4+1 are both labeled 0.
(b) —k; if vi and vy, are both labeled 1.
(c) no k; if v; and vi41 are differently.

4. Rotate the pattern to get all balance indexes which look alike.

5. Repeat steps 2-4 until we run through all possible combinations of the
inner vertices labeling.

6. Collect balance indexes generated by step 2-5 to the balance index set.

Proof. When every inner vertex is labeled 0, every k; shows up. Thus,
n
according to the previous discussion, the maximal balance index is Z k;.

=

Step 2 restricts v; to be labeled 1 and v, to be labeled 0 to afvoid
redundancy. Obviously, by step 3, rotating covers all possible labeling of
the inner vertices.

By the symmetry of 0 and 1 in the definition of the balance index set,
after taking absolute value, labeling the inner vertices with more 1’s than
0 only gives redundant balance indexes.

Since we run through all combinations of the inner vertices labeling, the
collection is the balance index set we are looking for. a

Example 6. For an ear expansion graph GE(Cy; (3,3, 6], (3,4],[3], [4,4]),
we have k; = 3, ks = 2, k3 = 1 and k4 = 2 with 18 vertices , there are four
patterns for the balance indexes: {kj + k2 + ka + k4}, {k2 + k3}, {kz — K1},
{0}. After permutation, the balance index set is

Bl = {ky+ko+ks+kako+ks ks+ka ks+ ki, k1 + ko,
|k — k1l, |ka — kal, k1 — k3], k2 — k3|, 0}.

12



Example 7. For an ear expansion graph GE(Cs; (3,3, 6], [3,4], (3], [4, 5],
(4,4]), we have k; =3, ko =2, k3 = 1, kg = 2 and ks = 2 with 24 vertices,
there are five patterns for the balance indexes: {k; + k2 + k3 + k4 + ks},
{k2+ks+kse}, {ka+kys—k;}, kg, ka. After permutation, the balance index
set is

BI = {kl +k2+k3+k4+k5,k2+k3+k4,k3+k4+k5,k4+k5+k1,
ks + k1 + ko, k1 + k2 + k3, |ka + kg — k|, | ks + ks — k2,
lks + k1 — k3|, [k1 + ko — kaf, k2 + k3 — ks|, k1, k2, k3, kg, ks }.

0

For any generalized ear expansion graph G with odd number of vertices,
we can turn it into a generalized ear expansion graph H with even number
of vertices by removing an outer order 2 vertex with one of its adjacent
edge. This means that we can compare G to a similar graph H with 2M
vertices with one less vertex in one of its outer cycles. (Note that this does
not affect any k; values). We can find the balance index set of a graph with
2M vertices by the algorithm in Theorem 4.1. Then, by Corollary 2.4, we
have BI(H) = BI(G) £ 1.

Example 8. For an ear expansion graph GE(Cy; [3, 3, 6], (3, 5), (3], [4,4]),
we have k; = 3, k; =2, k3 = 1 and k4 = 2 with 19 vertices, after removing
an outer order 2 vertex with one of its adjacent edge, it becomes an ear
expansion graph GE(Cy; (3,3, 6],(3,4], (3], [4,4]). Thus, the balance index
set is

Bl = {kl+k2+k3+k4:|:1,k2+k3:|:1,k3+k4:i:1,k4+k1:i:1,
k1+k2:l:1,|k3—kl+1|,|k4—k2+1|,|k1—k3+1|,|k2—k3+1|,
ks — k1 — 1|, |kg — k2 — 1|, |k1 — k3 — 1, |kz — k3 — 1], 1}.

Example 9. For an ear expansion graph GE(Cs; (3,3, 6], (3, 4], (3], [4, 6],
[4,4]), we have k; =3, ko = 2, k3 = 1, k4 = 2 and kg = 2 with 25 vertices,
after removing an outer order 2 vertex with one of its adjacent edge, it be-
comes an ear expansion graph GE(Cs; (3,3, 6}, [3,4], 3], [4, 5], (4,4]). Thus,

13



the balance index set is

Bl = {kitko+ks+ksthkstlkot+ka+hkstl,kzg+ks+kstl,
ky+ks+kixlks+ky+hotl, by +ka+kstl,
lks + kg — k1 + 1|, [ka + ks — k2 + 1|, |ks + k1 — k3 + 1],
|k1+k2—k4+1|,|k2+k3—k5+1|,|k3+k4—k1—1|,
|ka + ks — k2 — 1|, |ks + k1 — k3 — 1|, |ky + k2 — kg — 1],
lko + k3 — ks —1|,ky £1,ka+ 1, ks £1,kg £ 1,ks £1}.
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