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Abstract

A Langford-type m-tuple difference set of order ¢ and defect d is
a set of t m-tuples {(di,1,di,2,...,di;m) | i = 1,2,...,t} such that
dig+dig+ - +dim=0for1 <i<tand {|dij| |1 <ig
t,1<j<m}={dd+1,...,d+mt—1}. In this paper, we give
necessary and sufficient conditions on t and d for the existence of a
Langford-type m-tuple difference set of order ¢ and defect d when
m = 0,2 (mod4). In the case that m = 1,3 (mod 4), we provide
sufficient conditions for the existence of a Langford-type m-tuple
difference set of order ¢ and defect d when d is at most about t/2.
Using these results, we obtain cyclic m-cycle systems of the circulant
graph ({d,d+1,...,d + mt — 1}), for all n > 2(d + mt) — 1 with d
and £ satisfying certain conditions.

1 Introduction

For integers a and b, the notation [, b] denotes the set {a,a +1,...,b}. A
Skolem sequence of order t is a sequence S = (sy, 53, ..., sg¢) of 2t integers
satisfying the conditions

(81) for every k € [1,t] there exist exactly two elements s;,s; € S such
that s; = s5; = k;

(S2) if s; = s; =k with i < j, then j —i = k.
A Skolem sequence of order ¢ provides a partition of the set [1,3¢] into ¢

triples (aj, b;, ¢;) such that a; + b; = ¢;; for example, if S = (sy, s2,. .., 52¢)
is a Skolem sequence of order ¢, then {(k,t +i,t+j) |1 <k <t,si=s;=
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k with ¢ < j} is a partition of the set [1, 3t] into ¢ such triples. It is well-
known that a Skolem sequence of order t exists if and only ift = 0,1 (mod 4)
[19].

A Langford sequence of ordert and defect d is a sequence L = (¢4, 45,. ..,
£;) of 2t integers satisfying the conditions

(L1) for every k € [d,d +1t — 1] there exists exactly two elements ¢;,¢; € L
such that ¢; = £{; =k, and

(L2) if £ = £; = k with i < j, then j —i = k.

Clearly, a Langford sequence with defect 1 is a Skolem sequence, and a
Langford sequence of order ¢t and defect d provides a partition of the set
[@,d + 3t — 1] into t triples (ai, bs, c;) such that a; + b; = ¢;. The follow-
ing theorem gives necessary and sufficient conditions for the existence of
Langford sequences.

Theorem 1.1 (Simpson [18]) There ezists a Langford sequence of ordert
and defect d if and only if

(1) t>2d -1, and
(2) t=0,1 (mod4) and d is odd, or t = 0,3 (mod 4) and d is even.

Skolem sequences and their generalizations have been used widely in the
construction of combinatorial designs and a survey on Skolem sequences can
be found in {10]. In the literature, difference triples obtained from Skolem
and Langford sequences are usually written (a, b, ¢) with a+b = ¢. However,
the equivalent representation, with ¢ replaced by —cso that a+b+¢ =0, is
more convenient for the purpose of extending these ideas to m-tuples with
m > 3. As such, the following definition was given in [3].

Definition 1.2 An m-tuple (d;,ds,...,dy) is of Skolem-type if d; + dy +
-~ +dm = 0. A set of t Skolem-type m-tuples {(di,1,d;2,...,dim) | i =
1,2,...,t} such that {|d;;] |1 <i<t1<j<m}=[1,mi]is called a
Skolem-type m-tuple difference set of order t.

Necessary and sufficient conditions for the existence of Skolem-type m-
tuple difference sets of order t were found in (3], where the following theorem
was given.

Theorem 1.3 (Bryant, Gavlas, Ling [3]) Let m and t be integers with
m > 3 andt > 1. There exists a Skolem-type m-tuple difference set of
order t if and only if mt = 0,3 (mod 4).
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In this paper, we are interested in Langford-type m-tuple different sets
and thus we make the following definition.

Definition 1.4 A Langford-type m-tuple difference set of order t and defect
d is a set of t Skolem-type m-tuples {(d;1,diz2,...,dism) | i =1,2,...,t}
such that {|d; ;| | 1<i<t,1<j<m}=[d,d+mt—1].

In Section 2, we show that a Langford-type m-tuple difference set of
order ¢ and defect d exists under the following conditions:

(1) for all positive integers ¢ and d when m = 0 (mod 4);

(2) for all positive integers ¢t and d with ¢ = 0,2 (mod4) when m =
2 (mod 4);

(3) for all positive integers ¢ and d with 2d —1 < ¢ and ¢t = 0,1 (mod4)
if d is odd or t = 0,3 (mod 4) if d is even when m = 3 (mod 4); and

(4) for all positive integers ¢ and d with ¢t = 0,1 (mod4) and d < |£]
if d is even or t = 0,3 (mod4) and d < |452] if d is odd when
m =1 (mod 4).

In Section 3, using the results of Section 2, we find cyclic m-cycle systems
of the circulant graphs ([d,d+mt — 1]), when d and ¢ satisfy the conditions
above and n > 2(d + mt) — 1.

2 Construction of Langford-type m-tuple Dif-
ference Sets

Before proving our main results, we will need the following lemma given in
[3], and used in extending m-tuple difference sets of order ¢ to (m+4)-tuple
difference sets of order t. The proof of this lemma is included as we will
refer to it in the proof of Theorem 3.4 in Section 3.

Lemma 2.1 (Bryant, Gavlas, Ling [3]) Let n,r and t be positive integers.
There ezists a t x 4r matriz Y(r,n,t) = [y ;] such that {|yi;| |1 < i <
t,1 < j < 4r} = [n+ 1,n + 4ri], the sum of the entries in each row of
Y(r,n,t) is zero, and |yi1| < |yi2| < ... < |¥iar| fori=1,2,...,¢t.
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Proof. Let Y'(r,n,t) be the matrix

2t—-1 2t 4t -1 4t 4rt — 1 4art

2t -3 2t—2 4t—3 4t-2 4rt — 3 4rt — 2

: . : . Ve b : + N
3 4 2t 4+3 2t+4 (4r-2)t+3 (4r—2)t+4

1 2 2t +1 2t4+2 (Ar-2)t+1 (r—-2)t+2

where N = [n] is the ¢ x 4r matrix such that every entry is the positive

integer n. Let Y be the matrix obtained from Y’ by multiplying by —1 each
entry in column j for all j = 2,3 (mod4). It is straightforward to verify
that Y has the required properties.

The next lemma provides necessary conditions on the congruence class
of mt modulo 4 for the existence of a Langford-type m-tuple difference set
of order ¢ and defect d.

Lemma 2.2 Let m,d, and t be positive integers with m > 3. If a Langford-
type m-tuple difference set of ordert and defect d exists, then mt = 0,1 (mod 4)
when d is even and mt = 0,3 (mod 4) when d is odd.

Proof. Let m,d and t be positive integers with m > 3, and suppose a
Langford-type m-tuple difference set {(d;1,di2,...,dim) | 1 < i <t} of
order t and defect d exists. Since each m-tuple (di1,di2: - dim) has the
property that d;y +d;2 +--- + d;m =0, it follows that each m-tuple has
an even number of odds and thus the set [d, d 4+ mt — 1] must have an even
number of odds. Hence, the sum d+ (d+ 1) + -+ + (d + mt — 1) must be
even.

Suppose first that d is even. If mt = 2,3 (mod4), then d + (d + 1) +
.+++ (d+mt — 1) is odd and no Langford-type m-tuple difference set of
order ¢ and defect d exists. Thus, mt =0,1 (mod4).

Finally, suppose that d is odd. If mt =1,2 (mod4), then d+ (d +1) +
-+ + (d+ mt — 1) is odd and no Langford-type m-tuple difference set of
order ¢t and defect d exists. Thus, mt =0,3 (mod4). H

‘We now give sufficient conditions for the existence of Langford-type m-
tuple difference sets of order ¢ and defect d when m = 0 (mod 4) with m > 4
and d and t are positive integers.

Lemma 2.3 Let m,d and t be positive integers such that m = 0 (mod 4)
with m > 4. Then there erists a Langford-type m-tuple difference set of
order t and defect d.

Proof. Let m,d and t be positive integers such that m = 0 (mod 4) with
m > 4. Let X =Y(§,d—1,t) = [z;;] be the ¢ x m matrix given by Lemma
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2.1. Clearly, the entries of X in absolute value are d,d +1,...,d+mt —1

m

and for each i =1,2,...,t, we have E:c,-_.,- = 0. Thus the ¢ rows of X give
=1

a Langford-type m-tuple difference set of order ¢ and defect . W

Observe that Lemmas 2.2 and 2.3 provide necessary and sufficient con-
ditions on ¢ and d for the existence of a Langford-type m-tuple difference
set of order t and defect d when m = 0 (mod 4). We now give, in Lemma
2.4, sufficient conditions for the existence of Langford-type m-tuple differ-
ence sets of order ¢t and defect d when m = 2 (mod4) with m > 6 and
t = 0,2 (mod4). Thus Lemmas 2.2 and 2.4 will give necessary and suf-
ficient conditions on ¢t and d for the existence of a Langford-type m-tuple
difference set of order ¢ and defect d when m = 2 (mod4).

Lemma 2.4 Let m,d and t be positive integers such that m = 2 (mod 4)
withm > 6 andt = 0,2 (mod 4). Then there ezists a Langford-type m-tuple
difference set of order t and defect d.

Proof. Let m,d and t be positive integers such that m = 2 (mod4) with
m > 6 and ¢t =0,2 (mod 4). Since t is even, 2t = 0 (mod 4) so that the set
[d + 4t,d + 6t — 1] contains an even number of odds and an even number
of evens. Thus, these 2t integers can be paired into sets {a;,a; + 2} for
t=1,2,...,t

Let X = [z;;] be the ¢t x m matrix

d —(d+1) d+2 ~(d+3) -a1 a1 +2
d+4 —(d+5) d+6 —(d+7)  —a2 @2 +2

B
[}

: : : : : : 14
d+4t—4 —(d+4t—3) d+4t—-2 —(d+4t—1) —ae ar+2

where Y = Y(ﬂ‘4;6,d+ 6t — 1,t) is the t x "‘T‘e matrix given by Lemma
2.1. Note that the entries of X in absolute values are d,d+1,...,d4+mt—1

m
and that for each i = 1,2,...,t, we have Zx,-,- = 0. Thus, the t rows of X
j=1
give a Langford-type m-tuple difference set of order ¢ and defect d. W

We now give sufficient conditions for the existence of Langford-type m-
tuple difference sets of order ¢ and defect d when m = 3 (mod4) withm > 3
and 2d — 1 < t with t = 0,1 (mod4) when d is odd, or ¢t = 0,3 (mod4)
when d is even.

Lemma 2.5 Let m,d and t be positive integers such that m = 3 (mod 4)
withm > 3,2d -1 <t andt = 0,1 (mod4) when d is odd, or t =
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0,3 (mod4) when d is even. Then there exists a Langford-type m-tuple
difference set of order t and defect d.

Proof. Let m,d and t be positive integers such that m = 3 (mod 4) with
m2>3,2d-1<t and ¢t =0,1 (mod4) when d is odd, or t = 0,3 (mod 4)
when d is even. By Theorem 1.1, there exists a Langford sequence of order
t and defect d which will give a partition of the set [d,d + 3t — 1] into ¢
triples (a;, bi,¢;) with a; +b; =c¢; fori =1,2,...,%.

Let X = [zi;] be the t X m matrix

a1 -—C1 b1
az —C2 bz

: : Y

[+ 73 —Ct bg
where Y = Y(273,d + 3t — 1,t) is the ¢t x 3 matrix given by Lemma
2.1. Note that the entries of X in absolute values ared,d+1,...,d+mi -1

m

and that foreach i =1,2,...,t, we have Z zij = 0. Thus, the ¢t rows of X
Jj=1

give a Langford-type m-tuple difference set of order ¢ and defect d. W

We now consider the case when m = 1 (mod4) with m > 5. For
m =1 (mod 4), note that a Langford sequence of order ¢ and defect d — 1
provides a Langford type m-tuple difference set of order ¢ and defect d when
2d-1)-1<t,ord< %3 as follows. Let d,t be positive integers such
that d < &3 and let t = 0,1 (mod 4) if d is even, or t = 0,3 (mod 4) if d is
odd. By Theorem 1.1, there exists a partition of [d — 1,d + 3t] into triples
{ai,bi,c;} such that a; + b; = ¢; for t = 1,2,...,t. Let X = [z;;] be the
t X m matrix

a1+1 —(c1+1) bi+1 d+3t+2 —(d+3t+3)
az+1 —(c2+1) ba+1 d+3t+3 —(d+3t+4)

S
]

N : : : : Y
ac+1 —(ce+1) b +1 d+ 5t —(d+5t+1)

where Y = Y("‘—;‘g, d+5t+1,t) is the t x 3‘4;5 matrix given by Lemma 2.1.
Note that the entries of X in absolute values are d,d + 1,...,d+ mt — 1
m

and that for each i = 1,2,...,¢, we have Z:cij = 0. Thus, the ¢t rows
=1

of X give a Langford-type m-tuple difference set of order ¢ and defect d

when d < % However, for this construction, we must know the Langford

sequence to proceed. In the proof below, we provide a direct construction of

this result that does not depend on knowing a specific Langford sequence.
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We begin by considering the case that d is even and show that a Langford-
type m-tuple difference set of order t and defect d exists when t = 0,1 (mod 4)
with d < |£]. Next, we consider the case that d is odd and show that a
Langford—type m-tuple difference set of order ¢ and defect d exists when
t=0,3 (mod4) with d < | 58].

Lemma 2.6 Let m,d and t be positive integers such that m = 1 (mod 4)
withm > 5 and t = 0,1 (mod4) with d < |%| if d is even, ort =
0,3 (mod4) with d < |452] if d is odd. Then there ezists a Langford-type
m-tuple difference set of order t and defect d.

Proof. Let m,d and ¢ be positive integers such that m = 1 (mod 4) with
m > 5, and t = 0,1 (mod 4) with d < | £] if d is even, or t = 0,3 (mod 4)
with d < |58 1f d is odd. The proof splits into two cases depending on
the parity of d. For each case, we construct a ¢ x m matrix X = [z]
whose entries in absolute value are d,d+1,...,d+mt —1 and, for each i =

1,2,...,t, we have Z z;; = 0. Then, the ¢ rows of X will give a Langford-

=1
type m-tuple dlﬁerence set of order ¢t and defect d.

CASE 1 Suppose d is even. Suppose first that ¢ = 0 (mod 4) with d <
|£] = £. Consider the three 1ntervals [d+t+%,d+2t 1], [d+2t+ £,3t 1],
and [4t 4t +d—1] which contain £, £ —d, and d integers respectlvely Since
d < %, it is possible that 3 —d = 0 so that the second interval may be empty.
Since the number of mtegers in each interval is even, these ¢ integers can
be paired into sets {a;,a; + 1} for each i =1,2,..., £.

Let X = [zi;] be the t X m matrix

r d —(d +1) d+ 2t -1 —(d+5t—1)
d+1 —(d+t+1) d+2t+1 4t—-3 —(d+5t-2)
db§—1 —(d+t+$—1) d+2e+4—1 3t+1  —(d+dt+4$)
d+ % —a, a1 +1 -2 —(d+4t+£-~-1) Y
d+ 5 +1 —az a3 +1 -4 ~(d+4t+3—2)
[ d+t-1 —Q¢/2 [2Y7] +1 3t —(d + 4t) J

where Y = Y(253,d + 5t — 1,t) is the ¢ x =2 matrix given by Lemma
2.1. Note that the matrix X contains dlstmct entries since d < £ implies
d+2t+%-1<3t—1

Now suppose that t =1 (mod4) withd < [£] = ‘; Consider the
intervals [d + ¢t + 51, d + 2], [d+ 2t + 5 + 1, 3t- 1), and [4t,4t +d — 1]
which contain —'"— +1, 81 —d -1, and d integers respectively. Again,
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since d < £33, it is possible that the second interval may be empty. Since
the number of integers in each interval is even, these ¢ + 1 integers can be
paired into sets {a;,a; + 1} for i = 1,2,..., 4L

Let X = [z;;] be the t X m matrix

r d —(d+1) d+2t+1 4t-2 —(d+5t~1)
d+1 —(@d+t+1) d+2t+2 4t-4 —(d+5t—2)

d+"“—l —d+t+ i —1) dy2e+ it B+l —(d+4a+ i +)

d+i51 —-ay a1 +1 at—1 —(d+4t+"‘) Y
d+ 5 +1 —az az +1 4t-3 —(d+4t+ -1)

d+t—-1 —Q(t41)/2 a(t41)/2 +1 3t —(d + 4t) i

where Y = Y(278,d + 5t — 1,¢) is the ¢ x 73 matrix given by Lemma
2.1. Again, note that every entry in the matnx X is distinct since d < &5
implies d + 2t + £52 < 3t — 1.

CASE 2: Suppose d is odd. Suppose first that t = 0 (mod 4) with d <
|552] = £-3. Consider the intervals [d+t+2,d+2t+1] [d+2t+£+2, 3t—2],
and [4t— 1,4t +d - 1) wluch contain £ +2, £ —d 3, and d+1 integers
respectively. Since d < £ —3, it is possxble that % —d —3 =0 so that the
second interval may be empty. Since the number of integers in each interval
is even, these ¢ integers can be paired into sets {a;,a;+1} fori =1,2,..., £.

Let X = [zi;] be the t X m matrix

[ d —(d+¢t) d+2t+2 4t -3 ~(d+5t—-1) 1
d+1 —(d+t+1) d+2t+3 4t—-5 —(d+5t—2)
dtg-1 —(@+idg-1) db2er g1 -1 —(d+dt+d)
d+ 3 —a; a; +1 a -2 —(d+4t+?—1) Y
d+%+1 —az a2 +1 4t - 4 —(d+4t+ -2)
L d+é—1 —alc,rz a¢/2‘+1 3t —(d+4t) J

where Y = Y(252,d+5t —1,t) is the t x 23 =5 matrix given by Lemma 2.1.
Note that the matrix X contains distinct entnes since d < — — 3 implies
d+2t+£+1<3t-2

Now suppose that ¢ = 3 (mod4) with d < |%53] = 452, Consider the
intervals [d+t + £, d+2t] [d+2t+514+1,3t— 2] and [4t—1 4t+d—1)
which contain —'g— =1 _d-2, and d + 1 integers respectively. Again,
since d < %52, it is possible that the second interval may be empty. Since
the number of integers in each interval is even, these t — 1 integers can be

paired into sets {a;,a; + 1} for i =1,2,..., .
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Let X = [z;;] be the t x m matrix

( d —(d+1t) d+2t+1 4t-2 —~(d+5t—1)
d+1 —(d+t+1) d+2t+2 4t-4 —(d+5t—2)
d+“ —d+t+ i) d+o+ 8t -1 —(d+4z+‘;‘)
d+‘-;—+1 —ay ay +1 -3 —(d+4at+5-1) Y
d+ 51 +2 —az ez +1 4 -5 -(d+4t+" -2)
[ d4t-1 —a@-1y2 ag-nsz+l 3t (41 ]
whereY =Y '"'5 ,d + 5t — 1,¢) is the ¢ x =2 matrix given by Lemma

2.1. Again, note that every entry in the matnx X is distinct since d < 58
impliesd+2t + ! <3t-2. W

Lemmas 2.2, 2.5, and 2.6 do not provide necessary and sufficient con-
ditions for the existence of Langford-type m-tuples of order ¢ and defect
d in the case that m = 1,3 (mod 4); these lemmas provide Langford-type
m-tuple difference sets of order ¢t and defect d whenever d is at most about
-;-. This condition is not necessary however as the following 3 x 5 array

5 -8 6 9 -12
X = 10 -17 11 15 -19
7 =16 13 14 -18

gives a Langford-type 5-tuple difference set of order 3 and defect 5.

3 Cyclic m-Cycle Systems of Some Specific
Circulant Graphs

Let K, denote the complete graph on n vertices and C,,, denote the m-cycle
(v1,v2,...,vm). An m-cycle system of a graph G is a set C of m-cycles
in G whose edges partition the edge set of G. Several obvious necessary
conditions for an m-cycle system C of a graph G to exist are immediate:
3 < m < |V(G)|, the degrees of the vertices of G must be even, and m
must divide the number of edges in G. A survey on cycle systems is given
in [7], and necessary and sufficient conditions for the existence of an m-cycle
system of G in the cases G = K, and G = K,, — I (the complete graph
of order n with a 1-factor I removed) were given in [1, 17]. Such m-cycle
systems exist if and only if n > m, every vertex of G has even degree, and
m divides the number of edges in G.

Let p denote the permutation (0,1,...,n—1), so (p) = Z,,, the additive
group of integers modulo n. An m-cycle system C of a graph G with vertex
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set Z, is cyclic if for every m-cycle C = (v1,v2,...,9) in C, the m-
cycle p(C) = (p(v1), p(v2),...,p(vm)) is also in C. Finding necessary and
sufficient conditions for cyclic m-cycle systems of a given graph G is an
interesting problem and has attracted much attention (see, for example,
[2, 3, 5, 6,9, 11, 12, 15, 16]). The obvious necessary conditions for a cyclic
m-cycle system of a graph G are the same as for an m-cycle system of G;
that is, 3 < m < |V(G)|, the degree of the vertices of G must be even, and
m must divide the number of edges in G. However, these conditions are
not sufficient. For example, it is not difficult to see that there is no cyclic
15-cycle system of Kj5. Also, if p is an odd prime and « > 2, then there is
no cyclic p*-cycle system of Kpa [6].

The existence question for cyclic m-cycle systems of K,, has been com-
pletely settled in a few small cases, namely m = 3 [14], 5 and 7 [16]. For
even m and n = 1 (mod 2m), cyclic m-cycle systems of K, are constructed
for m = 0 (mod4) in [12] and for m = 2 (mod4) in [15]. Both of these
cases are handled simultaneously in [9] as a consequence of a more general
result. For odd m and n =1 (mod 2m), cyclic m-cycle systems of K,, are
found using different methods in [2, 5, 11]. In (3], as a consequence of a
more general result, cyclic m-cycle systems of K,, for all positive integers
m and n = 1 (mod2m) with n > m > 3 are given. In [6], it is shown
that a cyclic hamiltonian cycle system of K, exists if and only if n # 15
and n ¢ {p* | p is an odd prime and & > 2}. Thus, as a consequence of
a result in (5], cyclic m-cycle systems of Komk4+m exist for all m # 15
and m ¢ {p® | p is an odd prime and o > 2}. In [20], the last remaining
cases for cyclic m-cycle systems of Komi+m are settled, i.e., it is shown
that, for £k > 1, cyclic m-cycle systems of Kogm+m exist if m = 15 or
m € {p® | p is an odd prime and a > 2}. In [21], necessary and sufficient
conditions for the existence of cyclic 2g-cycle and m-cycle systems of the
complete graph are given when ¢ is an odd prime power and 3 < m < 32.
In [4], cycle systems with a sharply vertex-transitive automorphism group
that is not necessarily cyclic are investigated. As a result, it is shown in
[4] that no cyclic k-cycle system of K, exist if k < n < 2k with n odd and
ged(k,n) a prime power.

For z # 0 (modn), the modulo n length of an integer x, denoted |z|n,
is defined to be the smallest positive integer y such that x = y (modn) or
z = —y (mod n). Note that for any integer = Z 0 (modn), it follows that
|z]n € [1,1%]]. If L is a set of modulo n lengths, we define the circulant
graph (L), to be the graph with vertex set Z,, and edge set {{¢,7} | |i—j|» €
L}. Observe that K, 2 ([1,[%]])n. An edge {7,5} in a graph with vertex
set Zy, is called an edge of length |i — j|,. Notice that in order for a graph
G to admit a cyclic m-cycle system, G must be a circulant graph; thus
circulant graphs provide a natural setting in which to construct cyclic m-
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cycle systems.

Let n > 0 be an integer and suppose there exists an ordered m-tuple
(dy,da,...,dy,) satisfying each of the following:

(i) d; is an integer for i = 1,2,...,m;

(ii) |diln # |djln for 1 <i < j <my

(iii) dy +d2 + ...+ dm =0 (mod n); and

(iv) di+de+...+dr Zdy+da+...+ds (modn) for 1 <r <s<m.

Since the ordering of the integers in the m-tuple is so important, we make
the following definitions.

Definition 3.1 An m-tuple satisfying (i)-(iv) is called a modulo n differ-
ence m-tuple, it corresponds to the m-cycle (0,d;,d; +da,...,d1 +ds +
.«.+dm_1), and it uses edges of lengths |d1 |, |d2|n, - - -, |dm|n. The m-cycle
C =(0,dy,d1 +dy,...,d1 +d2+...+dm-1) generates a cyclic m-cycle sys-
tem of ({|d1}, [d2],...,|dm|}}n since {p*(C) | @ =0,1,...,n—1} is a cyclic
m-cycle system of ({|d], |dz|,...,|dm|}}n.

Definition 3.2 A modulo n m-cycle difference set of ordert, or an m-cycle
difference set of order t when the value of n is understood, is a set con-
sisting of ¢ modulo n difference m-tuples that use edges of distinct lengths
2y,8,,...,4ym. Since the m-cycles corresponding to the difference m-tuples
generate a cyclic m-cycle system C of ({¢,£2,...,%:m})n, We say the mod-
ulo n m-cycle difference set of order ¢t generates C. If £y,%,...,4m are
consecutive integers starting with ¢, = d for some positive integer d, then
we have an m-cycle difference set of order t and defect d.

For t = 0,1 (mod 4), a Skolem sequence S = (s1,s2,..., s2:) of order ¢
can be used to construct the 3-cycle difference set

{(kyt+4,—@E+5) | k=1,2,...,¢, si=s; = k,i < j}

which generates a cyclic 3-cycle system of Kg;1. Notice that if (dy,ds, ...,
d) is a modulo n difference m-tuple with d; +da + ...+ d,, = 0, not just
di+dz+...+dm = 0 (mod n), then (dy,ds, ..., d,,) is a modulo w difference
m-tuple for all w > ¥ +1 where M = |dy| + |da| + - + |dm|- All the
difference triples obtained from Skolem sequences are of the form (d;, ds, d3)
with d; + ds + d3 = 0. Thus Skolem sequences can be used to construct
cyclic 3-cycle systems of ([1,3t]), for alln > 6t +1 and t =0,1 (mod 4).
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In a similar manner to which 3-cycle difference sets are constructed
from Skolem sequences, a Langford sequence of order ¢ and defect d can be
used to construct a cyclic 3-cycle difference set that uses edges of lengths
d,d+1,d+2,...,d+3t—1 thereby giving a cyclic 3-cycle system of {[d,d+
3t — 1)), for each n > 2d + 6t + 1 when d and ¢t satisfy the conditions of
Theorem 1.1.

As a consequence of Theorem 1.3, the following result was given in [3]
regarding cyclic m-cycle systems of specific circulant graphs.

Theorem 3.3 (Bryant, Gavlas, Ling {3]) Let t > 1 and m > 3. Then for
mt = 0,3 (mod4) and alln > 2mt+1, there exists a cyclic m-cycle system

of ([1, mt]}n.

Observe that the Langford-type m-tuples of order ¢ and defect d con-
structed in the proofs of Lemmas 2.3, 2.4, 2.5, and 2.6 are not difference
m-tuples since it is the case that dy +ds+...+d, = dy+da+...+d, (modn)
for given values of n, r, and s in every one of the Langford-type m-tuples
(d1,ds, . ..,dn) constructed in these proofs. In fact, it is often the case that
di+do+...+dr=dy +do+...+ds =0 for several values of r and s in
a given m-tuple (d;,ds,...,dn). For example, if m = 0 (mod 4), we have
di+do+...+dar = dy +da+. .. +dyktq = 0 for each positive integer k with
k < Zt. However, as a consequence of these lemmas and after rearranging
the entries in each Langford-type m-tuple, we have the following result re-
garding cyclic m-cycle systems of the circulant graph ([d,d + mt — 1}),, for
all n > 2(d + mt) — 1 with d and t satisfying the conditions below.

Theorem 3.4 Let m,d and t be positive integers with m > 3 such that

(1) t=0,2 (mod 4) when m = 2 (mod 4);

(2) 2d—1<t andt=0,1(mod4) if d is odd, ort = 0,3 (mod4) ifd is
even when m = 3 (mod 4); and

(3) t = 0,1 (mod4) and d < |£] if d is even, ort = 0,3 (mod4) and
d < |%53] if d is odd when m =1 (mod 4).

Then there exists a cyclic m-cycle system of the circulant graph ((d,d +
mt — 1])p for alln > 2(d+mt) — 1.

Proof. Let m,d and t be positive integers with m > 3 such that

(1) t=0,2 (mod 4) when m = 2 (mod 4);
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(2) 2d—-1<tandt=0,1(mod4) if d is odd, or ¢t = 0,3 (mod4) if d is
even when m = 3 (mod 4); and

(8) t = 0,1 (mod4) and d < |£] if d is even, or t = 0,3 (mod4) and
d < |%58] if d is odd when m =1 (mod 4).

By Lemmas 2.3, 2.4, 2.5, and 2.6, there exists a Langford-type m-tuple dif-
ference set of order ¢ and defect d in each of these cases. Let {(i,1, i 2, Zi 3,
Tidy.. ., Tim) | 8 = 1,2,---,t} denote the set of ¢ Langford-type m-tuples
given by the rows of the £ xm matrix X in the proofs of Lemmas 2.3, 2.4, 2.5,
and 2.6 respectively. Let n be a positive integer such that n > 2(d+mt)—1.
Observe that each m-tuple is not a modulo n difference m-tuple since
Tyl + Tig+ ...+ Tiyp = 2y1 + Tig2 + ...+ i, (modn) for (possibly)
several values of r and s. Thus, we must rearrange the entries in each
Langford-type m-tuple to obtain a modulo n difference m-tuple.

Suppose first m = 0 (mod 4). Fori =1,2,...,t, we have |z; 1| < |zi 2| <
«++ < |Tim| and z; ; < 0 only when j = 2,3 (mod 4). Hence the required set
of ¢ difference m-tuples is given by {(:,1, Zi,3, Zi 5, Zi,7) - - .y Ti,m—3) Ti,m—1,
Tim—2; Ti;m—da, Ti;m=6y - + » T,6y Ti 4y Ti,2, :ci,m) | i=12..., t}, giving an
m-cycle difference set of order ¢ and defect d in the case that m = 0 (mod 4).

Next suppose m = 2 (mod 4). Fori =1,2,...,t, we have |z; 1| < |T; 2| <
<+ < |%4,m|, and z;; < O only when j = 2 and when j = 0,1 (mod4)
with § > 4. Hence, the required set of ¢ difference m-tuples is given by
{(zi1, %02, %4 3, Zi5:Zi7- -1 Tim=-31Tim—1,Tim-2, LTim-4, Lim—6;- -+ Ti 6y
Ti4,ZTim) | 1 =1,2,...,t}, giving an m-cycle difference set of order ¢ and
defect d in the case that m = 2 (mod4) and ¢t = 0,2 (mod4).

Now suppose m = 3 (mod 4). Fori=1,2,...,¢, we have |z; ;| < [z;2]| <
|Ti,4| < |zig| < |Tig] <+ < |Tim|, |74,3] < |zis], and z; ; < 0 when 5 > 2
and j = 1,2 (mod4). Hence, the required set of ¢ difference m-tuples is
given by {(z:,1, 4,2, i, Tis6, Ti8, - - - » Ti,m=3, Ti,m—1, Ti;m—2 Ti,m—4, Ti,m—6,
Ce Ti 5y Ti 3, Tim) | 1= 1,2,...,t}, giving an m-cycle difference set of order
t and defect d in the case that m = 3 (mod 4), 2d—1 < tand t = 0,1 (mod 4)
if d is odd, or t = 0,3 (mod 4) if d is even.

Finally, suppose m = 1 (mod4). For ¢ = 1,2,...,t, we have |z;;]| <
|zi2] < lwis] < |zis| < [zi6] < - < |Zim], |2ia] < |zig], and 75 <0
when j = 2, j = 5 and when j = 0,3 (mod4) with j > 5. Hence, the re-
quired set of ¢ difference m-tuples is given by {(z:1,%:2,%: 3, Zi6, Zis,-- -,
Tim—3, Ti;m—1, Ti,m—2, Ti,m—4, Ti,m—6,-- - Ti,5, Lidy Tim) | ¢+ = 1,2,...,t},
giving an m-cycle difference set of order ¢ and defect d in the case that
m=1(mod4),t=0,1(mod4)and d < |£] if dis even, or t = 0,3 (mod 4)
andd< |52 ifdisodd.
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In {8], a similar result is given regarding cyclic m-cycle systems of
complete graphs where it is shown that if m > 3 is odd and d € [1,m)]
with (m,d) € {(3,3),(5,3)}, then there exists a cyclic m-cycle system of
(ld,d + mz — 1])2(44mt)—1 for every positive integer t.
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