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Abstract

A mutation of a vertex-magic total labeling of a graph G is a swap
of some set of edges incident on one vertex of G with some a set of
edges incident with another vertex where the labels on the two sets
have the same sum. Mutation has previously been seen to be a useful
method for producing new labelings from old. In this paper we study
mutations which mutate labelings of regular graphs into labelings of
other regular graphs. We present results of extensive computations
which confirm how prolific this procedure is. These computations
add weight to MacDougall’s conjecture that all non-trivial regular
graphs are vertex-magic.

In memory of Jean Kimberley, 27th May 1921 - 20th March 2011.

1 Introduction

A vertez-magic total labeling (VMTL) on a graph with v vertices and e
edges is a one-to-one mapping from the vertices and edges onto the integers
1,2,--- ,v + e so that the sum of the label on a vertex and the labels of
its incident edges is constant, independent of the choice of vertex. The
2nd author has conjectured [5] that, with the exception of K> and 2K3, all
regular graphs have at least one VMTL.

In [2] Gray and MacDougall developed the method of mutation for con-
verting a VMTL of one graph into a different VMTL for the same graph,
or a VMTL for a different graph of the same order and size. This process
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exchanges a set of s edges incident with one vertex for a set of ¢ edges inci-
dent with another vertex and having the same sum. The vertex labels are
unchanged and the new labeling has the same magic constant. If we begin
with a VMTL of some regular graph and exchange equal numbers of edges
(s = t), then our mutation produces a VMTL for the same graph or some
other regular graph. Readers are referred to [2] for further definitions and
details. In that paper we showed that mutation is an fruitful method for
generating VMTLs for regular graphs, for example, generating VMTLs for
all order 8 cubic graphs by mutation from a single starter VMTL. In this
paper we present the results of some more extensive computational work
which illustrates dramatically just how powerful a method mutation is.

After mutation, of course, the graph is still regular, and the labeling is
subject to being mutated into yet another labeling for the same graph or a
different graph. The process can be continued as long as one wants. The
holy grail of mutating labelings would be to find a positive answer to the
following question:

Problem. For the set of regular graphs of given order v, size e and each
feasible magic constant k, does there exist a VMTL of one of the graphs
which after repeated mutation yields VMTLs for all of the others?

If so, the proof of the conjecture would reduce to finding an appropriate
labeling for just one graph for each constant. We will see very quickly
that the answer is negative even for v = 6, the simplest non-trivial case.
However, we have found the answer to be “yes” for many other cases. We
point out that graphs with different sets of vertex labels may have the same
magic constant but, of course, cannot mutate into each other.

VMTLs were introduced in (6], where it is shown that the range of
feasible values for the magic constant & for any labeling A of an r-regular
graph G(V, E) is determined by

v +2w+1)(r+1) < 4k < vr2 420w +1)(r +1) + 2vr

and the labeling is strong when the v largest labels are on the vertices, in
which case £ = 4(vr? + 2(v + 1)(r + 1)). Strong labelings are of special
importance because of Gray’s constructions: in [3] and [4], it is shown how
to begin with a strong VMTL on a graph and adjoin an arbitrary 2-factor to
produce another strong VMTL for a graph of larger size. This is a powerful
method of creating a myriad of VMTLs for regular graphs. Readers are
referred to those papers for details. Another reason that strong labelings
are of interest is that for this magic constant, they all share the same set of
vertex labels. Thus it is conceivable they might all mutate into each other.
We note that strong labelings can not exist for odd-regular graphs of order
congruent to 2 (mod 4).
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It was shown in [6] that VMTLs for regular graphs come in dual pairs:
if Ais a VMTL for G, then N’ = e+v+1— \is also a VMTL for G. It is
easy to check that mutation respects this duality in the following sense:

Lemma 1. Any (n, n)-mutation of a labeling of a regular graph corresponds
to a (n, n)-mutation of the dual labeling.

Suppose G is a 2-regular graph. There are two edges meeting each
vertex, and since the vertex labels are all distinct, the sum of the labels
on the pair of edges meeting one vertex will be different from the sum
of the labels meeting any other vertex. Thus no (2, 2)-mutation will ever
be possible. So the first meaningful graphs to examine are the 3-regular
graphs. Similar reasoning to the above shows that for cubic graphs we can
not have (3, 3)-mutations, only potentially (2, 2)-mutations. More generally,
for r-regular graphs (7, 7)-mutations cannot exist.

2 Mutation Classes and the Metagraph

As mentioned above, a VMTL A of some graph of order v can only mutate
into labelings for graphs having the same vertex label set. If we then begin
with a particular labeling, the set of all labelings obtainable from it by any
sequence of (n,n)-mutations (for some fixed n) will be called the (n,n)-
mutation class of the labeling. For a different value of n, this would be a
different set of labelings. The set of all labelings reachable from A by any
sequence of mutations as n varies will be called the mutation class of .
For some quartic graphs, for example it may be that a labeling A\; mutates
into a labeling A; by a sequence of both (2, 2)- and (3, 3)-mutations but not
just by (2, 2)-mutations alone or (3, 3)-mutations alone.

For a each vertex set V' (of r-regular graphs with order v) it is helpful to
visualise a metagraph whose vertices are all the labelings (of all the graphs)
for that vertex set, where two labelings A; and ), are adjacent if and only
if there is an (n,n)-mutation between A; and A for some n. Thus each
mutation class of labelings is a connected component of the metagraph of V.
Typically we find many mutation classes for any given V, so the metagraph
has many components.

In view of the above we can rephrase the Problem stated in the Introduc-
tion as follows: “For each feasible magic constant, is there a corresponding
vertex set whose metagraph contains at least one connected component
containing a labeling for each regular graph of that order?”
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3 Cubic Graphs of Orders 4 and 6

As mentioned above, we are considering only (2, 2)-mutations. The cubic
graph of smallest order is K4 and it is easy to find all possible VMTLs.
These are counted in Table 1, where #V is the number of different vertex
sets corresponding to the given magic constant, and #£ is the number of
labelings. Many of these vertex sets admit no VMTLs and more interest-
ingly, three of the feasible values of the magic constant are not achieved
by any VMTL. This is one of the few known graphs where VMTLs do not
exist for some feasible magic constant. The duality mentioned above ex-
plains the symmetry of the table. Pictured in Table 2 are the 7 VMTLs for
k = 20 and 21; the other 7 are the duals of these.

Table 1: The number of VMTLs of K,

k| #V | #£
19 1 0
20 5 2
211 13 5
22 ] 18 0
23] 13 5
24 5 2
25 1 0

| 56| 14

Our first observation is a negative one. An examination of each of these
labelings finds all the vertex sets distinct. Thus there are no candidates
for mutation among the labelings of K4 (and so each metagraph is a single
vertex).

The 2 cubic graphs of order 6 are the prism and the complete bipartite
graph, K3 3. These are designated respectively as C2 and C3 in Read &
Wilson’s An Atlas of Graphs 7], and we will refer to them and to other
graphs by their numbers in the Atlas. We have enumerated the vertex sets
and labelings for each magic constant for each graph and the counts are
shown in Table 3.

What about mutations of C2 and C3? Again we have a somewhat
negative result; namely, that any (2,2)-mutation of a labeling on K33 can
yield only another labeling of K3 3. This is a special case of a more general
result that follows. Readers are encouraged to look at the definition of
mautation in (2].
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Table 2: The VMTLs of K4 with k£ = 20 and 21

1A A
A A
A

Theorem 2. Every (r — 1,7 —1)-mutation of a VMTL of K, is a VMTL
of K, .

Proof. We let U be the set of neighbours of ug and W the set of neighbours
of wg. Now the pair of mutation vertices ug, wp are either adjacent or not.

Firstly, suppose they are adjacent (left diagram below). Now, since
wo ¢ U and ug ¢ W, the edge {uo,wo} is not a mutation edge. Hence the
mutation just swaps the labels of 1o and wg.

Secondly, suppose ug, wp are not adjacent (right diagram below). From
the definition of mutation, the only vertex adjacent to ug that is not in U
is also not in W. So U = W and hence the mutation swaps the labels of
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up and wp and swaps the labels of edges {uo,y} and {wo,y}.

Uy =w

U=w

Corollary 3. There are no mutations between C2 and C3.

Even though C2 and C3 only mutate into themselves, we would like to
know the number and sizes of the mutation classes for each graph. Table
3 shows the number of mutation classes for each magic constant. As noted
above, strong labelings will not exist. Here #M is the number of mutation
classes and X is the total.

Table 3: Counts of VMTLs of the order 6 cubic graphs.

ZL FM

E#V| €2 C3 %[ C2 C3 %
®| 3| 9 35 134 5 10 6
29| 26| 242 70 312| 183 43 226
30| 91| 507 477 1074 | 391 115 506
31182 | 81 250 1101 | 624 143 767
32| 227 | 999 882 1881 | 669 198 867
33| 182 | 851 250 1101 | 624 143 767
34| 91| 597 477 1074 | 391 115 506
35| 26| 242 70 312] 183 43 226
36| 3| 9 35 134| 5 10 65
T | 831 | 4577 2546 7123 | 3175 820 3995

For k = 28 we find there are 3 possible vertex sets, each having its
own collection of mutation classes. Surprisingly almost all these classes are
small. For C2, the 12 singleton classes for the vertex set {7,11,12,13, 14,15}
are shown in Table 16 in the Appendix - these labelings cannot be mutated
at all. The remaining 34 VMTLs of C2 with that vertex set fall into 8
mutation classes.
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4 Cubic Graphs of Order 8

In the previous section, we appeared to be off to a disappointing start in
our quest. However, these negative results seem to be just a case of the
“law of small numbers” and things get much better as the order increases.
There are six order 8 cubic graphs, five of them connected. Each one has
large numbers of VMTLs for every feasible magic constant, and the counts
are shown in Table 4.

Table 4: Counts of VMTLs of order 8 cubic graphs

#L
K #V 2C1 C4 C5 C6 C7 C8 2
36 1 34 23364 8108 5399 6524 3048 46477
37 22 203 70041 24606 16249 19795 6997 137891

38 179 904 247360 77241 64232 56159 30788 476684
39 738 1807 511157 175042 127277 133496 50765 999644
40 1870 3394 1046242 353620 256993 260525 117101 2037875
41 3184 4305 1326810 456243 320644 343855 132358 2684215
42 3788 7678 1717020 511830 488847 350886 258575 3334836
43 3184 4305 1326810 456243 320644 343855 132358 2584215
44 1870 3394 1046242 353620 256993 260525 117101 2037875
45 738 1807 511167 175042 127277 133486 50765 998644
46 179 904 247360 77241 64232 56159 30788 476684
47 22 203 70041 24606 16249 19795 6997 137891
48 1 34 23364 8108 5399 6524 3048 46477

L | 15776 | 29172 8166968 2701560 2070435 1991594 940689 | 16900408

In [2], it was shown that one strong labeling (i.e. k = 36), which was
called the seed, could be repeatedly mutated to yield at least one strong
labeling for each of the other graphs. We wondered whether this seed
would mutate into all the strong labelings for all the graphs. The answer
is almost ‘yes’. Remarkably, of the 46477 strong labelings, all but 33 are in
the same mutation class. Of the remaining 33 labelings, 31 are immutable
singletons, and there is one pair. The classes are tabulated in Table 5,
where for example the 4th row indicates there are 14 singleton mutation
classes which all occur in the graph C5. Some of these are illustrated in
Table 6 and Table 7.

We were interested to discover how many generations of mutations were
necessary for that particular seed to generate all 46444 mutations in its
class. Table 8 shows the number of new labelings produced at each gener-
ation.

What if we ask the same question for any one of the other magic con-

stants - can we find a seed labeling that mutates into labelings for all the
other graphs? Here we have success - an example for one vertex set from
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Table 5: Isomorphism types in mutation classes of strong VMTLs of order
8 cubic graphs.

2C1 C4 C5 cée C7 C8 | #M
34 23360 8094 5399 6514 3043 | 46444 1

1 1 2

2 2 1

1 1 14

1 1 10

1 1 5

34 23364 8108 5399 6524 3048 | 46477 33

Table 6: The mutation class with two strong VMTLs of C4

13 6 14 4 18 13 8 16 11 18
10 (123 13:(6,7) + 20: (5,8) 10 (1 3

7| 18 2175 20 |11 y 5|15 9197 20 (4
9 8 2 6

19 1 16 17 12 14

each magic constant is given in Table 17 in the Appendix, where the size
of the mutation class is also given. This provides us with the following
theorem:

Theorem 4. For each feasible magic constant, there is a mutation class
containing labelings for all order 8 cubic graphs.

It doesn’t seem to be an accident that almost all strong labelings are
in the same mutation class. For the constant k = 37 we chose one of
the label sets, namely {5, 14,15,16,17,18,19,20} and discovered a similar
result. Table 9 shows one very large set and a number of singletons and
other small sets.
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Table 7: The pair of immutable strong VMTLs of C4.

16 8 15 10 17 4 6 13 7 20
1 3 s 12 [0 s

11 19 7206 13 |4 4|17 5183 16 |1
9 12 2 9

14 2 18 19 11 15

Table 8: Mutation generations from Gray’s strong C8 seed.

Gen | 2C1 C4 C5 C6 C7 C8 Py
0 0 0 0 0 0 1 1
1 0 2 0 0 0 8 10
2 0 11 0 5 2 18 36
3 2 42 9 13 0 40 106
4 0 153 36 55 13 70 327
5 4 471 | 106 | 121 71| 129 902
6 1| 1262 | 352 | 348 | 229 | 191 | 2383
7 7| 3113 | 860 | 803 | 646 | 387 | 5816
8 8 5973 | 1929 | 1525 | 1472 | 694 | 11601
9 6| 7510 | 2690 | 1704 | 2175 | 877 | 14962

10 6| 4198 | 1777 | 741 | 1493 | 531 | 8746
11 0 598 | 310 83| 381 93 | 1465
12 0 24 25 1 30 4 84
13 0 3 0 0 2 0 5
14 0 0 0 0 0 0 0

X 34 | 23360 | 8094 | 5399 | 6514 | 3042 | 46444

5 Cubic Graphs of Larger Order

There are 21 cubic graphs of order 10, two of which are disconnected. As
expected, they possess vast numbers of labelings. The range of feasible
magic constants is k € {45...59} and since r = 2 (mod 4), no strong
labelings can exist. For order 10 even the number of label sets for each &
is large, as shown in Table 10.
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Table 9: Mutation classes of VMTLs of order 8 cubic graphs with vertex
labels {5,14,15,16,17,18,19,20}.

2C1 C4 C5 C6 C7 C8 | #M
15 5738 2050 1504 1396 303 | 11006 1
1 1 8

2 2 1

1 1 2 1

1 1 3

2 2 1

1 1 2 3

1 2 3 1

1 1 17

2 2 2

3 3 1

4 4 1

15 5749 2060 1504 1429 303 | 11060 40

Can we find appropriate seeds that mutate into labelings for every
graph? Our computer searches again produced success, and we have the
following positive answer to our Problem.

Theorem 5. For each feasible magic constant, there is a (2,2)-mutation
class containing labelings for all 21 order 10 cubic graphs.

There are 94 cubic graphs of order 12, of which 9 are disconnected. The
number of labelings involved becomes inconveniently large for exhaustive
enumeration. However, because the number is so large, randomised search-
ing is fairly efficient at finding good sequences of mutations. The range of
feasible magic constants is k € {53...71}. A result similar to the previous
theorem holds for order v = 12:

Theorem 6. For each feasible magic constant, there is a (2,2)-mutation
class containing labelings for all 94 order 12 cubic graphs.

Curiously, we noticed that none of the labelings of any of the graphs
that we considered so far (up to v = 12) occurred when the vertex set
consisted of all odd numbers (or dually, all even numbers). We are so far
unable to prove this is true for larger v, but present it as a conjecture.

Conjecture 7. No cubic graphs have a VMTL with every vertex having
an odd label, nor with every vertez having an even label.
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Table 10: Number of vertex sets for order 10 cubic graphs

k #V
45 7
46 164
47 1 358
48 6 272
49 | 18 854
50 [ 39803
51 | 61481
52 | 70922
53 | 61481
54 | 39803
55 | 18 854
56 6 272
57 1 358
58 164
59 7

Y | 326 800

‘We have not explored cubic graphs with more than 12 vertices in enough
detail to draw any conclusions.

6 Quartic Graphs

As noted above, (4, 4)-mutations are not possible for 4-regular graphs, but
we will expect to find both (2, 2)- and (3, 3)-mutations. The unique quartic
graph of smallest order is Ql= Kj5. Table 11 shows the number of VMTLs
for each magic constant. This case is already interesting. Considering the
strong labelings, there are four (2,2)-mutation classes: 2 singleton classes,
and 2 large classes of equal size 91. So the metagraph has 4 components.
The singletons are shown in Table 12; however, notice that there is a rela-
tion between them. Swapping the labels of parallel edges in the left VMTL
produces the right VMTL; the internal edges have their labels decreased by
5, and the external edges have their labels increased by 5; so the edge sums
at each vertex remain constant. This is virtually a swap of the inner 5-cycle
and the outer 5-cycle. Examining the 2 large components reveals the other
extreme: each contains one labeling of meta-degree 8. These are shown
in Table 13; each yields 8 distinct labelings via single mutations. Further,
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Table 11: The number of VMTLs of Q1= K} for each magic constant.

k| #V #L | #M
35 1 184 4
36 7 408 30
37 30| 1172 144
38| 72| 1859 352
391121 | 3310 511
40 | 141 | 3240 606
41 | 121 | 3310 511
42 | 72| 1859 352
43| 30| 1172 144
44 7 408 30
45 1 184 4
Y | 603 | 17106 | 2 688

MaGMa [1] reveals that the components are isomorphic which surely indi-
cates the presence of some kind of duality among the labelings. Whether
this is part of some more general phenomenon would be an interesting
question to explore further.

‘We saw earlier that there were no (2, 2)-mutations of the complete graph
K. In that case, the reason was that all VMTLs had distinct sets of vertex
labels. We found that there were no (3, 3)-mutations of Ks; indeed, the
following general result is true:

Lemma 8. There are no (r — 1,7 — 1)-mutations of K.

Proof. For, if we wish to swap r — 1 edges incident on vertex vy with r — 1
edges incident on vertex v, we find that the remaining edge incident with
v; is the same as the remaining edge incident with vy. Thus the sum of
all edge weights is the same on both vertices, which is impossible in a
VMTL. O

Are (r — 2,7 — 2)-mutations of K, possible? We have seen above
that the answer is yes for r = 4. For each feasible magic constant there
exist VMTLs of Q1= Kj that are (2, 2)-mutatable. We conjecture that the
answer will continue to be yes for all » > 4 and all k, but do not have a
proof yet.

The unique order 6 quartic graph Q2 is the octahedron. Table 14 shows
the large number of VMTLs Q2 possesses. Here Mz 2) is the number of
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Table 12: The pair of immutable strong VMTLs of Ql= K.

11 1
4 9
12 12
3 8
5 10 15 10 5 15
2 7
13 13
1 6
14 14

Table 13: The strong VMTLs of Ql= K} having degree 8 in the metagraph.

11 11
9 1
12
12 1 10
7 (6 15 8 6 15
10 2
13 13
3 4
14 14

(2,2)-mutation classes and M s 3) is the number of (3, 3)-mutation classes.
Remarkably, for each appropriate magic constant, we can find VMTLs
that are both (2,2)- and (3, 3)-mutatable, (3, 3)-mutatable but not (2,2)-
mutatable, (2, 2)-mutatable but not (3, 3)-mutatable, and neither.

There are 2 order 7 quartics, Q3 and Q4 in the Atlas, where Q3 is
the circulant graph C7(1,2). As will be expected by now, there are vast
numbers of VMTLs for each magic constant (see Table 15). For each magic
constant, we find a (2,2)-mutation between Q3 and Q4. An example of
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Table 14: For each magic constant, the number #£ of VMTLs of Q2, and
number of mutation classes #M.

k1l #V #L ]| #FM | #Mpa | #Mas)
42 3 13 377 75 238 8 998
43 26 50 431 827 2 285 34 796
44 106 133 884 3120 7 800 94 818
45 271 262 575 7 691 17 252 192 770
46 488 386 146 | 14 346 30 960 289 448
47 648 468 896 | 19 006 40 626 352 637
48 648 468 896 | 19 006 40 626 352 637
49 488 386 146 | 14 346 30 960 289 448
50 271 262 575 7 691 17 252 192 770
51 106 133 884 3120 7 800 94 818
52 26 50 431 827 2 285 34 796
53 3 13 377 75 238 8 998
130842630618 | 90130 [ 198 322 | 1 946 934

each is shown in Table 18 in the Appendix.

When we consider (3, 3)-mutations it is rather surprising that we find
a situation somewhat similar to that described for the 2 cubics of order 6:
there are no (3, 3)-mutations between the 2 graphs. It will be worth trying
to determine whether these 2 cases are examples from some infinite families
of such failures.

Lemma 9. All (3,3)-mutations of VMTLs of Q38 lead to another VMTL
of Q3.

Proof. As in Theorem 2 and Lemma 8, this is shown a priori without
considering the labels. a

At order 8 there are 6 quartic graphs to consider, all of which have
very large numbers of labelings. Recall that there are no strong labelings
of even regular even order graphs. There are 5 vertex label sets with the
smallest possible magic constant 55; choosing V = {13,18,...,24} we can
easily find mutation classes containing all graphs, as desired. Table 19 in
the Appendix shows a suitable sequence of mutations that uses both (2, 2)-
and (3, 3)-mutations.

Theorem 10. (i) For each magic constant there is a (2,2)-mutation class
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Table 15: Counts of VMTLs of order 7 quartic graphs.

k #V Q3 Q4 P
48 1 813 878 254 983 1 068 861
49 15 3 395 810 1 053 290 4 449 100
50 105 | 12 521 284 3 911 522 16 432 806
51 406 ) 32606 713 9 903 602 42 510 315
52| 1069 | 63912832 | 19 345425 83 258 257
53 1 2043 | 99831438 | 30 491 450 130 322 888
54 | 2983 | 129964 295 | 39 813 149 169 777 444
55 | 3370 | 145105 764 | 43 926 894 189 032 658
56 | 2983 | 129964 295 | 39 813 149 169 777 444
57 | 2043 | 99831438 | 30491450 130 322 888
58 | 1069 | 63912832 | 19 345425 83 258 257
59 406 | 32 606 713 9 903 602 42 510 315
60 105 | 12521 284 3 911 522 16 432 806
61 15 3 395 810 1 053 290 4 449 100
62 1 813 878 254 983 1 068 861
> | 16 614 | 831 198 264 | 253 473 736 | 1 084 672 000

containing all 6 order 8 quartic graphs. (ii) For each magic constant there
is a (38,3)-mutation class containing all 5 order 8 quartic graphs except Ky 4.

Theorem 11. (i) For each magic constant there is a (2,2)-mutation class
containing all 16 order 9 quartic graphs. (ii) For each magic constant there
is a (8,8)-mutation class containing all 16 order 9 quartic graphs.

7 Algorithms

The algorithms used to generate the data presented in this paper were
implemented in MAGMA [1] and run at The University of Newcastle [8].

Our method of finding the VMTLs of all r-regular graphs on v vertices
involves the following. As 2e = rv, the total number of labels is t = v+e =
5(r + 2). The total label set is T = {1,...,t}, with the vertex label set
V C T and the edge label set £ = T\V. Summing the vertex and incident
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edges over all the vertices, we have:

k=) V+2) E
=2) T->V
=t(t+1)—D_V.

When k is an integer, we say that V is a feasible vertex label set for magic
constant k. Let the family of all feasible vertex labels sets be denoted V,
and those with magic constant k be denoted V. For fixed r and v the
feasibility of V only depends on its sum.

Fix a vertex label set V. For each vertex label i € V, we pre-calculate
the family of all size r sets E; of edge labels with }_ E; = k — 1.

We represent a VMTL as a sequence L of adjacency sets: L(i) is the set
of the labels of the objects adjacent to i; if ¢ is a vertex we have a set of r
adjacent edges; if i is an edge we have a set of a two adjacent vertices.

To find VMTLs we perform a depth first search in a tree; each vertex
(other than those at depth v) in the search tree is labeled with an element
of V that is not affixed to any of its ancestors; the downward edges of a
vertex z labeled 7 are labeled with those elements of E; that are compatible
with the edge labels on the path from the root to z; compatibility requires
each edge label to be used at most twice (once for each end of an edge)
and requires that no parallel edges would be built; each vertex at depth v
defines a VMTL specified by the edges label on the path from the root.

The underlying graph of each VMTL can be tested to determine its iso-
morphism class; we can either count cycles in the graph, or use IsIsomorphic
in MAGMA.

When searching for the sequences of mutations required for the proofs
of Theorems 5 and 6, it is more efficient to use a randomised search. For
each magic constant k, the algorithm randomly chooses a vertex set, then
randomly chooses a potential seed and mutates it as follows. Put the seed in
a queue; from the head of the queue find all the mutants; if the underlying
graph of a mutant is not isomorphic to one already processed, then add the
mutant to the tail of the queue (we also add a random selection of those
mutants whose type we have seen before, with probability %); continue until
we have found all the required graphs, or we have exhausted the queue and
need to try another potential seed.
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Appendix

Table 16: The immutable VMTLs of C2 with vertex set {7,11,12,13, 14,15}

12 9 11
4 2

31 15 8 13 |6
1 5

14 10 7

13 1 12
6 5

8{ 15 3 11 {10
4 9

14 2 7

7 2 15
9 6

1
10] 14 13 |5

4 8

11 3 12

11 2 12
6 10

9| 14 3 7 14
5 8

13 1 15

7 4 15
8 6

9(1 1 11 |3
5 10

12 2 13

11 2 13
6 8

9| 15 3 715
4 10

14 1 12

11 6 7
2 5

9| 15 8 14 (10
3 1

12 4 13

11 3 12
6 9

8 15 2 7 14
5 10

14 1 13
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7 2 15

10 6
1

9| 14 13 |5
3 8

12 4 11

7 10 11
8 6

3] 14 2 15 |1
4 5

12 9 13

7 8 13
9 6

4] 14 2 15 {1
3 5

11 10 12

11 6 7
8 10

3] 14 2 15 15
4 1

12 9 13



Table 17: For each magic constant k, a seed VMTL of C1UC1 that mutates
into VMTLs for each of the other order 8 cubic graphs

k C1UCI1 seed Class size
16 18
[ 2 8 3
36 46444
20 ° 15 19 s 17
16 18
3 10 o 8
37 11006
3.5 14
20 1 15 19 2 17
18 16
. 5 3 6
38 271
20 2 17 10 ° 18
18 10
3 7 [ 8
39 233
20 2 17 19 4 12
19 17
3 ] . 7
40 234
20 ° 14 18 8 [}
19 u
3 0 7 9
41 57
20 8 18 10 10 s
17 3
-] 9 5 15
42 54
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Table 18: For magic constant k, a (2,2)-mutation from Q3 to Q4.

k Q3 Mutation Q4

14
17

Y.

15:(5,7)

18 19:(4,8)
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49 21:(4,9)
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52 19:(10,12)

-
©
<
-
»

A
%
N
§

-
©
S
-
©
-
2
3
c

1:(7,15)

53 10:(9,13)

©
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19:(10,13)
21 :(7, 16)
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SN
9
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D
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10 19
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19:(8,12)
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Table 19: Mutations among VMTLs, with vertex label set {13,18,...,24},

of all 6 order 8 quartic graphs.

21 :(5,17)
_.)
23 : (6, 16)

13:(4,7)
(-—
24:(1,10)

13:(4,7,17)
21 :(2,10,16)
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18 :(6,9)
20 :(3,12)

24 : (10,11)
20 : (6, 15)
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