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1 Introduction

A group divisible design GDD(v = v1+va+- - -4y, g, k, A1, A2) is a collection
of k-subsets (called blocks) of a v-set of elements, where the v-set is divided
into g groups of sizes v, vy,...,v,; each pair of elements from the same
group occurs in exactly A; blocks; and each pair of elements from different
groups occurs in exactly Ay blocks. Pairs of symbols occurring in the same
group are known to statisticians as first associates, and pairs occurring in
different groups are called second associates.

It is useful to describe GDDs graphically. Let AK,, denote the graph on
n vertices in which each pair of vertices is joined by A edges. Let G; and G5
be graphs. The graph G; V), Gs is formed from the union of G; and G5 by
joining each vertex in G; to each vertex in G, with A edges. If A =1 then
we simply write G, V G3. A G-decomposition of a graph H is a partition of
the edges of H such that each element of the partition induces a copy of G.
Hence a GDD(v = m + n, 2,3, A1, A2) is equivalent to a K3-decomposition
of MK Va, MKp. In this graph theoretic setting, edges joining vertices
(symbols) in the same group are referred to as pure edges, whereas edges
joining vertices in different groups are called mized edges.

In general, if the number of groups is less than the block size, or if
the groups are of unequal size, then the construction of such GDDs is
notoriously difficult. For k = 3 this existence problem was completely
solved [6, 7] in the case where all groups have the same size.

The existence of such GDDs has been of interest over the years, going
back to at least the work of Bose and Shimamoto in 1952 who began clas-
sifying such designs [2]. More recently, much work has been done on the
existence of such designs when A; = 0 (see (3] for a summary), and the de-
signs here are called partially balanced incomplete block designs (PBIBDs)
of group divisible type in [3]. In [10] they are called group association de-
signs. The case of group divisible designs with two associate classes, with
k =3, GDD (v = m + n,2,3,A;1, A2), has been considered by El-Zanati,
Punnim and Rodger [5], Pabhapote and Punnim [13], and others.

In Section 2 we completely solve the problem for k¥ = 3 of determining
all pairs of integers (n, A) in which a GDD(v =1 +n, 2, 3,1, A) exists. The
results have circulated in preprint form but have not been published. In
fact, these results and techniques have been used by other papers [5] , {13]
and [10], and have also been cited by them. The paper [13] found all triples
of integers (m,n,A) in which a GDD(n = m + n,2,3, )\, 1) exists, and in
[10], the cases for group sizes (n,1,1) and (n,1,1,1) were dealt with.

In Section 3 we introduce new necessary conditions for three groups of
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unequal sizes including congruence restrictions on the indices. In Section
4 we apply these necessary conditions to three groups with sizes (n,2,1).
Then, using these conditions, we completely solve the (n,2,1) cases for
n € {2,..,6}.

1.1 Special notation

The following notation for sets of triples will be used throughout the paper
for our constructions.

1. Let T = {z,y,2} be a triple and a ¢ T. We use a * T for the three
triples {a,z,v}, {a,z, 2}, {a,y,2}. If T is a set of triples, then a * T
is defined as {a*T: T € T}.

2. Let e = uv be an edge of a graph G. We use a + e for the triple
{a,u,v}. If X is a set of edges of a graph G, then a + X is defined as
{a+e:ee X}.

3. By {a,b,c} x j we mean use j copies of the block {a,b, c}.

4. In later sections, the block size will always be three, and we abbreviate
the notation when the block size is three: if the number of groups is
two, we use the notation GDD(vy, v2; A1, A2) and when the number of
groups is three we use the notation GDD(vy, va, v3; A1, A2).

1.2 Remarks on triple systems

A BIBD(v,b,r,k,A) is a set S of v elements together with a collection of
b k-subsets of S, called blocks, where each point occurs in r blocks and
each pair of distinct elements occurs in exactly A blocks (see [12]). In
a BIBD(v, b, 7, k, \) the parameters must satisfy the necessary conditions:
vr = bk and A(v — 1) = 7(k — 1). Hence a BIBD(v,b,7,k, ) is usually
written as BIBD(v,k,A). When k£ = 3, a BIBD is often called a triple
system. We will review some known results concerning BIBDs with block
size three, or triple systems [12], [4], and apply them in Sections 2 and 3.

2 GDD(1,v;1,))

We will give in this section necessary and sufficient conditions for the exis-
tence of GDD(1, v; 1, A). First we obtain necessary conditions. It is clear by
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definition of K; vV K, that the graph has order v+1 and size ('2') + Av. Fur-
thermore, it has one vertex of degree Av and v vertices of degree A+ v —1.
Thus the existence of a Kj3-decomposition of K; V) K, implies 2 | v,
2| (A+v—1)and 3| (3) + Av. Thus:

Theorem 1 The necessary conditions for the existence of a GDD(1,v; 1, A)
are

1. 2|(v=-1-2),
2. 6|v(v—1-2]), and
3. %< ()

Let v be a positive integer v > 3. We define the spectrum of A, denoted
S1,v to be:
S1,0 = {A: aGDD(1,v;1, )) exists}.

Theorem 2 The necessary conditions for the ezistence of GDD(1,v;1, A)
imply the following.

S1,0 € {1,3,5,...,v — 1} if v = 0 (mod 6).

S1,v € {6,12,18,...,v — 1} if v =1 (mod 6).

S1,0 € {1,7,13,...,v— 1} if v = 2 (mod 6).

S1v € {2,4,6,...,v — 1} if v = 3 (mod 6).

S10 C {3,9,15,...,v — 1} if v = 4 (mod 6).

S1,0 € {4,10,16,...,v — 1} if v = 5 (mod 6).

L

Thus we can conclude the section with the following theorem and re-
marks.

Theorem 3 Let v > 3 be any integer. Then X € Sy, if and only if 2 |
(v=1-X) and 6 |v(v—1-]).

Detailed notes on a proof of these results have been circulated for some
time. Here we merely indicate a new method of proof contributed by an
annonymous referee.
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Note that a GDD(1, v; 1, A) is equivalent to a decomposition of the graph
K, vV K, into edge-disjoint copies of K3. By counting, there must be %
blocks containing the element from the singleton group and the remaining

ﬁ%ﬁ blocks with all elements from the group containing v elements. It

is known that there exists a partial triple system on v points with 1’-(”—"61;*1
blocks. Using such a partial triple system, one can apply a method given in
Andersen, Hilton and Mendelsohn [1] to obtain an equitable partial triple
system. Each of the remaining pairs or edges from K, can be used with
the element from the singleton group to create the remaining %‘1 blocks.

This proof has the advantage of showing the existence but of course
requires understanding of the techniques in [1].

In [9], the problem of existence of minimal enclosings for triple sys-
tems with 1 < A < 6 and any v, i.e., an inclusion of BIBD(v,3,)) into
BIBD(v+1, 3, A+ m) for minimal positive m. Note that the problem under
consideration in this note is not the same as enclosing considered in (9]

3 GDDs With Three Groups of Unequal Size

In this section we consider the problem of determining necessary conditions
for the existence of GDDs with three groups of unequal size and prove that
the usual conditions are not sufficient for the cases we consider. The three
groups will be G, = {1,2,...,n}, G3 = {a,b}, and G; = {z} with sizes,
respectively of n, 2, and 1. We begin with an infinite family of examples.

Example 1 Let n = 3t. We give a family of GDD(n,2,1;2n + 2,2),
where G, = {1,2,...,n}, G2 = {a,b} and G3 = {z} are the three groups.
We suppose there exists a BIBD(n, 3, 1) which has (at least) one parallel
clsss C. Then use the following blocks for the GDD. Use z * C, that is, for
each block {c,d, e} in C, form the three blocks z*{c, d, e}. In this way point
z meets each point of G,, twice. Use two copies of block {a,b,j} for each
J € G, and two copies of block {a, b, z}. It follows that A\ = 2. Points a, b
of G already meet in 2n+2 blocks, and so we require u = 2n+2. It follows
that Ay = 2n + 2. The parameter n may be taken to be 6s+ 3 for s > 0 or
6s for s > 1, the since resolvable BIBDs are known to exist for A = 2 and
such n [see Section 7.4 of [3]; if n = 6, a resolvable BIBD(6, 3,4) exists].
It is especially noteworthy that, if n = 3u, then u and \; may increase
arbitrarily while the second index stays fixed at 2. This may be contrasted
with the results in the next sections where n is small and Ay > ;.
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3.1 Necessary Conditions for the Three Group Case

Necessary conditions on the existence of a GDD(n;, ng, n3, A1, A2) can be
obtained from a graph theoretic point of view as before. The existence of
a GDD(n,, ng, n3; A1, A2) is easily seen to be equivalent to the existence
of a K3-decomposition of (A Ky, Vi, Ai1Kn,) Vi, A1Ky,, from here on
designated simply as A1 Kp, Vi, A1Kn, Vi, A1Ky, by associativity of joins
and folds. The graph A Ky, Va, A1 Ky, Vi, A1 Ky, isof order ny+nz2+n3 and
size M [(3) + () + ("23)] +A2(ning+ngnz-+nan,). It contains n; vertices of
degree A;(n1—1)+A2(na+n3) , na vertices of degree A; (n2 —1)+Az(n1+n3),
and ng vertices of degree A;(ns — 1) + A2(ny + n2) Thus the existence of a
K3-decomposition of A\ Kn, Vi, A1Kn, Va, A1Kn, implies:

Lemma 1 For any GDD(ny,na,n3; A1, A2), it is necessary that:

131 M((%) + () + (")) + dz2(nang + nang + nany), and

2.2 l )\1(711 - 1) + )\z(nz + n3), 2 | /\1(n2 - 1) + Az(’nl + 'n3) and 2 |
Al(na - 1) + /\2(n1 + nz).

3. b=} (M(n} + n3 +nd — n1 — ng — na) + 2hg(n1ng + nina 4 ngna)).
The dividends divided by 2 in item 2 are the replication numbers of an
element of each group: 73,72 and r3 respectively. Hence the total number

of blocks can be readily computed: b = -};(’rlnl + rong + r3ng), which in
turn leads to the equation in (3).

3.2 GDD(n,2,1; A;, Ao)

Now we continue to investigate all triples of integers (A;,n, Ag) in which a
GDD(n, 2, 1; A1, A2) exists, where A; > 1. First we specialize the formulas of
the previous section to our situation: n; = n, ny =2 and nz = 1, involving
the sets G1 = {1,2,...,n}, G2 = {a,b}, and G5 = {z} respectively. After
some simplification, we obtain:

1. A1 (n(n—1) 4+ 2) + A2 =0 (mod 3)

2. Ai(n=1)+ A2 =0 (mod 2), A\; + Az2(n+1) =0 (mod 2), and An =
0 (mod 2).

3. b= 21 (M(n? —n+2)+2X(3n +2)).
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It is convenient in what follows to have available the replication numbers
r1, r2, and 73, for their respective groups. These are ry = [A;(n—1)+3X;)/2,
T2 = [A1 + A2(n + 1)]/2, and r3 = (n + 2)A2/2.

Using these formulas, the first condition in Theorem 4 can be shown to
be (3n — 4)A2 £ (n? — n + 2)), or for large n, when Xy > Ay, it follows
that Ay § ('nAl)/3

Two rather hidden necessary conditions require a close consideration of
the blocks containing the elements of the small groups.

Theorem 4 For any GDD(n,2,1; A1, As) with B blocks, (1) it is necessary
that ro—(A1+A2) € B—(r3+7r2—A2) or equivalently, 2ra+13 < B+A1 422,
and (2) it is necessary that (n + 1)A2 > A.

The argument for (2) is attractive: point a appears in blocks to create
(n+1)Ag pairs with points from the two other groups. But point a appears
in A; blocks with b which create only A; of these pairs. Thus, (n + 1)\ —
A1 2 0 and the result follows. Next, for item (1), we define §; to be the
total number of blocks less the number of blocks with 2, and also less the
number of blocks with a but without z. We also define d; to be the number
of blocks with b but without a and without 2. From these definitions,
d2 < §,.Now, there are r3 blocks containing z, there are ro blocks with a,
and there are Az blocks with both. By inclusion-exclusion, it is easy to see
that §; < B — (r3+12— A2). Since there are r; blocks with b and, as the set
{a,b} is contained in exactly A; blocks, and as the set {z,b} is contained
in Ao blocks, the number v — (A\; + A2) is a lower bound for §;. We have
shown ro — (A1 + Ag) <83 < 6; < B —(rs+7r2 — A2). The result follows.

3.3 Congruence Restrictions on the Indices

We consider the congruences itemized in Section 3.2. First consider
Mn(n—1)+2)+ A2 =0 (mod3). If n =1+6t, then 2X\; +X2 =0
(mod 3). With these values, the congruence in (2) above implies Ay is
even, and then the second implies A; is also even. But, as both indices are
even, from (1) again, 2); + A2 = 0 (mod 3) implies A; = A2 (mod 6). Other
cases require similar computations. The arguments are similar and we omit
them.

Theorem 5 If a GDD(n,2,1; Ay, Ap) exists, it is necesary that: (1) the
indices are both even or else both odd; (2) if n is odd, the indices must both
be even; (8) the indices and n must satisfy the entries (mod 6) in the table
below.
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n (mod 6) )\1 /\2 A1 )\2 n (mod 6) Al /\2 /\1 )\2
0 0 01 1 3 o o} - -
0 2 23 3 3 2 2| - -
0 4 415 5 3 4 4| - -
1 0 0] - - 4 0 o1 1
1 2 2 - - 4 2 213 3
1 4 4 | - - 4 4 415 5
2 0 03 3 5 o o} - -
2 2 4 (1 5 5 2 4 - -
2 4 2156 1 5 4 2| -

We close this section with a new general construction which realizes the
extreme case in Theorem 4(2).

Theorem 6 There ezists a GDD(n,2,1;6w,8) for every n > 3 and for
2<w<<n+1.

Use six copies of block {a, b, j} for j € {1,2,3,...,n, z}. Use n+1 copies of
a BIBD(n, 3,6). WLOG, we may assume existence of a 3-resolution class C,
and we take C = {{1,2,3},{2,3,4},{3,4,5},...,{n—1,n,1},{n,1,2}}. Use
blocks zxC. Counting pairs shows (A1, A2) = (6(n+1), 6).This construction
can be modified to reduce A; by six and maintain A2 = 6. Use only n copies
of the BIBD(n, 3,6) and delete one block, say {p,q,7}, from the retained
BIBDs. Now delete the six blocks {a,b,j} x 2 for j € {p,q,7} and. replace
them with the six blocks a*{p, ¢,7} and b*{p, q,7}. Now (A1, A2) = (6n, 6).
Continue in this way, reducing \; by six at each stage ending with A; = 12.

4 Restricting the Large Group to Small Num-
bers

The groups in this section have sizes (n,2, 1) for n € {2,...,6}. For each
case, we state a necessary condition, and then we show in each case that
the necessary conditions we have found are sufficient for their existence.

4.1 Groups With Sizes (2,2,1)

We begin with a couple of non-existence results although the congruences
in Theorem 5 are satisfied..
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Example 2 There does not exist a GDD(2,2,1;1,5). If there were such a
design, it would have 14 triples and 10 of them would have z as a vertex.
The remaining triples are subsets of {1, 2, a,b} which would mean A\; > 2,
a contradiction.

Example 3 There does not exist a GDD(2,2, 1;5,1). There are six blocks
for the design. The pair {1,2} requires 5 blocks, and the pair {a,b} requires
5 blocks. There are not enough blocks.

We now arrive at a couple of positive results.

Example 4 There exists a GDD(2,2,1;5,7). The blocks are: 212, zab,
zla, z1b, z2a, 22b, al2, b12, lab, 2ab, bz, abz, abl, ab2, 122, 122, 12a, 12b.
We note that we now have 7 pairs of ab and 12, as well as 5 "mixed” pairs
from different groups as required.

Example 5 There exists a GDD(2,2,1;7,5). We will need 22 triples. The
degree of z is 28 so that there will be 14 blocks with 2 inside. We list the
blocks: 212, zab, z1a, 22a, 21b, 22b, abl, ab2, 12a, 12b, zla, 22a, z1b, 22b,
zla, 22a, z1b, 22b, abl, ab2, 12a, 12b, and arrive at 22 triples. Checking,
there are 5 occurrences each of the pairs ab and 12 and 7 occurrences each
of the pairs 21, 22, za,zb, la, 1b, 2a and 2b. Thus we have our required

design.

For any GDD(2,2,1; A1, A2), each of its two indices is bounded above
by a multiple of the other.

Theorem 7 For any GDD(2,2,1; A1, A2), it is necessary that A\; < 2Xp <
4)\;.

Note that the inequality is more restrictive for this case than is Theorem
4(2). To see these inequalities, first observe that there are A blocks of the
type {a, b,*) and A; blocks of the type {1,2, *}, where * is an element from
another group. In these two sets of blocks, let ¢ denote the number of blocks
with z and let s denote the number without z. We note

t+s= 2/\1.
The rest of the blocks contain one point from each group. Since there
are 4o pairs with z, there are 4\ — 2t pairs with z from these blocks.

It follows that there are 2Ay — ¢ blocks of this type. The total number of
blocks is
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b=A1+A+2—t=2(A1 + ) —t.
However, for any GDD with three groups with sizes 2,2, and 1,
b= 1(4A +16X2) = (2A1 + 8X2)/3.
Equating these two expressions and solving for ¢ gives t = (4A; —2)2)/3.

Ast is non-negative, this implies 0 < 4\;—2\5, from which we get Ay < 2);.

There are 2)A; blocks of type {a, b, ¥} or {1, 2, x}. These triples give 4,
second associate pairs in the design, which has 162 /2 second associate pairs
in all. Thus, 4); < 8)\3 or A; < 2\;. Combining the two key inequalities
gives the desired result:

A1 €2X2 €4,

This inequality also explains the two non-existence examples which be-
gan this section.

We next present two small designs which can be used to build examples
with large indices.

Example 6 There exist GDD(2,2,1;2,4) and GDD(2,2,1;4,2). For (A1,)) =
(2,4) use blocks {a,bd,1}, {a,d,2}, {1,2,a}, {1,2,b}, {a,1,2}, {a,1,z2},
{a,2,2}, {a,2,2}, {b,1,2},{b,1,2},{b,2,2}, {b,2,2}. For (A1, A2) = (4,2),

use blocks {a,b, z}, {a,b,z}, {a,b,1}, {a,b,2}, {1,2,2}, {1,2,2}, {1,2,a},
{1,2,b}.

Now let z denote a number of copies of the GDD(2,2,1, 2,4) and let y
denote a number of copies of the GDD(2,2,1, 4, 2). Set

2z + 4y = 6s, and
4z 4+ 2y = 6t.

Solving for z and y, we get

r=2t—s, and
y=2s—t.
It follows that we get a GDD(2,2, 1; 65, 6t) using = copies and y copies

of the respective GDDs. (It follows from the previous theorem that = and
y are nonnegative.)
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For a GDD(2,2,1;6s + 2,6t +4) use 2 = 2t —s+1land y = 2s — ¢
copies of the designs. For a GDD(2,2,1; 63 + 4, 6t + 2) use z = 2t — 5 and
y =2s —t+ 1 copies of the designs.

We have shown that GDD(2,2,1; A1, A2) exist for all possible even in-
dices allowed by Table 3 in the n = 2 (mod 6) case. Now suppose both
indices are odd. With z and y as before, let u denote a number of copies of
a GDD(2,2,1;7,5) and w denote a number of copies of a GDD(2, 2,1;5, 7).

First suppose (Ay,Az) = (6s + 7,6t 4+ 5). Then we may take z = 2t — s
andy=2s—tandw=0and u=1.

Next, if (A1, A2) = (6s+5,6t+7),let z =2t —s,y=2s—t,andw =1
and u = 0. For (A1, A2) = (6s+9,6t+15),let z =2t —s+2 and y = 2s—t¢,
and let v = 0 and w = 1. For (A1, A2) = (65 + 15,6t +9), let = = 2t — s,
y=2s—t+2, and let w = 0 and u = 1. We have now proven the following
theorem since we have constructed examples of all such designs allowed by
Theorems 5 and 7.

Theorem 8 The necessary conditions are sufficient for the existence of
GDD (2, 2, 1; Al, /\2).

4.2 Groups With Sizes (3, 2, 1)

Here n = 3, and we establish a necessary condition applying Theorem 4
and construct examples which satisfy it. Let G, = {1,2,3}, G2 = {a,b},
and G3 = {z}.

Example 7 A GDD(3,2,1;8,2). Use blocks {1,2,3}x7, {1,2, z}, {2,3, 2},
{3,1,2}. Use two copies each of the triples {a,b,1}, {a,b,2}, {a,b, 3}, and
{a,b,2}.

Example 8 Two non-isomorphic GDD(3,2, 1;12,6). Use blocks {1, 2, 3} x
5,{1,2,a}x2, {1,3,a} x2, {3,2,a} x2, {1,2,b} x2, {1,3,b} x2, {3,2,b} x2,
{a,b,1} x 2, {a,},2} x 2, {a,b,3} x 2, {a,b,2) x 6, {1,2,2) x 3, {2,3,2) x 3,
{3,1, 2z) x 3. For the second example, use the blocks of a GDD(3,2,1;8,2),
and the blocks of a BIBD(6, 3, 4).

The construction of the GDD(3, 2, 1; 8, 2) provides an extreme example
in the sense of the next theorem.

Theorem 9 There exists a GDD(3,2,1; A1, A2) only if the indices satisfy
the conditions listed below:
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(M, A2) Condition on s,t

(65, 6t) 1.25s < 5t < 8s
(6s+2,6t+2) [ 1.256s <5t <8s+1
(6s+4,6t+4) | 1.25s <5t <8s+2

The left-hand inequality follows, in each case, from Theorem 6, which

provides an upper bound on Ay = (n + 1)A2 = 4A, and this gives a bound
for s,t. The right-hand inequalities of the 3 cases develop using Theorem
4, where (A1, Ag) = (65 + 2w, 6t + 2w), for 2w =0, 2,4:

T2 — (A +A2) Lb—{ra+(r2 = A2)},
5A2 < 84,
5(6t + 2w) < 8(6s + 2w),
5t < 8s +w.

For the 3 cases in the preceeding theorem, we will construct example
designs for allowable parameters and thereby show these necessary con-
ditions are sufficient. For example, a GDD(3,2,1;8,2) exists, and if we
use the blocks of this design and the blocks of a BIBD(6, 3,2), we get a
GDD(3,2,1,10,4).

Theorem 10 A GDD(3,2,1,A1A2) with 4A2 > Ay > A2 may be constructed
using = copies of a GDD(3,2,1;8,2) and y-copies of a BIBD(6,3,2), where
z= (A1 — A2)/6 and y = (4h2 — A1)/6.

Set Ay = 8z 4 2y and Az = 2z + 2y and solve for = and y.

Example 9 A GDD(3,2,1;14,20). Use blocks a*{1,2,3} x5, bx{1,2,3}x
5,and 2% {1,2,3} x5 (see Section 1.1 for this notation). Use 6 copies each of
{z,a,1}, {2,0,2}, {z,4a,3}, {z,b,1}, {2,b,2}, and {z2,b,3}. Use {z,a,b} x2.
Use 4 copies each of {a,b,1}, {a,b,2}, {a,b,3}.

Example 10 A GDD(3,2,1;10,16). Use blocks {e, 2,1} x 5, {a, 2,2} x 5,
{a,2,3} x5, {b,2,1} x 5, {b,2,2} x 5, {b, 2,3} x 5. Use three copies of each
of the six blocks {1, 2,a}, {1,3,a}, {2,3,a}, {1,2,b}, {1,3,b}, {2,3,b}. Use
{a,b,1} x 4, {a,b,2} x 3, and {a, b,3} x 3. Use {2,3,a}, {2,3,b}, {1, 3,d},
and {1,2,a}. Finally, use 2 % {1,2,3} x 2, and {a, 2,3}, {b, 2,2}.

It follows from Theorem 10 that a GDD(3,2,1;6,12) does not exist

(since s = 1and t = 2 - thus 5t £ 8s). It follows that the GDD(3, 2, 1; 10, 16)
example is the smallest example with A\; < As.
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Example 11 A GDD(3,2,1;12,18) Use blocks {1,2,3}, {2,1,a} x 6,
{2,1,b} x 6, {z,2,a} x 6, {2,2,bx 6, {2,3,a} x 6, {z,3,b} x 6, {a,b,1} x 4,
{a,b,2} x4, {a,b,3} x4, {1,2,a} x 4, {1,3,a} x4, {2,3,a} x4, {1,2,b} x4,
{1,3,b} x 4, {2,3,b} x 4, {2,1,2} x 3, {2,1,3} x 3, {z,2,3} x 3. A different
example comes from the blocks of a GDD(3, 2, 1; 10, 16) and a BIBD(6, 3, 2).

Theorem 11 There exists a GDD(3,2,1; 6s+2w, 6t+2w), withw =0,1,2,
if and only if the necessary conditions are satisfied.

In view of Theorem 10, we only need to show existence for the case
A1 < A2. A GDD(3,2,1;6s + 2w, 6t + 2w) with A; < Ay may be con-
structed using the blocks of z-copies of a GDD(3,2, 1;10, 16) and y-copies
of a BIBD(6, 3,2) where z =t — s and y = 8s — 5¢ + w.

4.3 Groups With Sizes (4,2,1)

As in the previous subsections, we apply Theorem 4 with n = 4 to obtain:

Theorem 12 For any GDD(4,2,1; Ay, A3), it is necessary that 4\ <
721 < 35),.

Example 12 A GDD(4,2,1;8,2). Use blocks {1,2,3} x4 and 4%{1,2,3} x
3. Use the blocks {a,b, 2} x 2, {a,b,2} x 2, {a,b,3} x 2, {a,b,4}, {a,b,1}.
Next use {1, 2, z}, {1,3, 2}, {2,4, 2}, {3,4, 2}, {2,3,4}, {1,4,a}, and {1,4, b}.

Observe Ag = 1 is not possible since, by Theorem 12, A; < (4+1)Az = 5.
However, Theorem 5 requires A\; = A2 (mod 6) so A\; must be at least 7,
which is too large. There do exist GDD(4,2,1; 6¢,6) with 2 < ¢t < 5, by
Theorem 6. When A; < Ag, Theorem 12 (and the congruence restriction
from Theorem 5) tell one that the smallest possible values of the indices
are (A1, A2) = (8,14). Therefore, if the indices are multiples of 6, then
(M, A2) = (6s + 67,6t + 65) where t/s = 7/4 (the left-hand side of the
inequality in Theorem 12).

Example 13 A GDD(4,2,1;8,14). Decompose 8 copies of K4 into 24
one-factors, say Fy,Fy,...,Fa4. Use blocks a + F; for 1 < i < 8. Use
b+ F; for 9 < i <16. Use z+ F; for 17 < i < 23. Use Fy4 with a,b
in the blocks {a,3,4} and {b,1,2}. Use {a,z2,1}, {a,z2,2}, {b, 2,3}, and
{b, z,4}. Use 2 copies each of the set of blocks {a,b,1}, {a,b,2}, {a,b,3},
and {a,b,4}. Use 3 copies of each of the next 8 blocks: {a, 2,1}, {a,z,2},
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{a,2,3}, {a,z,4}, {b, 2,1}, {b, 2,2}, {b,a,3} and {b, z,4}. It is noteworthy
that, in this example, we have exact equality in the left-hand side of the
inequality and no three pairs of the 4-element group are used to make a
block.

Theorem 13 The necessary conditions are sufficient for the existence of
GDD (4, 2, 1,’ )\1, )\2)

The proof will be complete if we construct designs which satisfy the
necessary conditions. If A; < Az, construct a GDD(4,2,1;6s + +65 + w,
6t + 65 + w) by using (¢ — s)-copies of a GDD(4,2,1;8,14) and copies of a
BIBD(7, 3,65 +w). If A; < Aq, then s —t < 30, and one may use a number
of copies of a2 BIBD(7, 3,1) and a linear combination of GDD(4,2,1; Ay, A2)
with (A1, A2) € {(30,6), (24,6) , (18,6), (12,6), (8,2)}.

4.4 Groups With Sizes (5, 2, 1)

When n = 5, both indices must be even (Theorem 5). We first apply
Theorem 4 with n = 5 to obtain:

Theorem 14 For any GDD(5,2,1; A1, o), it is necessary that Ay < 2); <
12);.

We next construct GDD with the smallest parameters allowable by this
theorem.

Example 14 A GDD(5,2,1;2,4). Columns are blocks.

e a a a b b b b a a 5 3 4 3 5 3 1
1 2 3 41 2 3 4 b bf,{b b b b b b b,
z 2 z 2z z z z z 5 5 1 2 1 4 4 2 2

z z 2z 2 zZ zZ a a @ & a a a

5 5 5 51 2 1 1 1 5 &5 4 2

1 2 3 4 3 4 2 3 4 2 3 3 4

Example 15 A GDD(5,2,1;4,2). The necessary blocks, say Bs, are the
relative complement of B; in A;, where B; denotes the blocks in the
GDD(5,2,1;2,4) just above and .A; denotes the blocks in the (unique)
BIBD(8, 3,6) with the same 8 points (whose blocks are exactly the set of
all triples on the 8 points).
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Let D, denote the GDD(5, 2, 1; 36, 6) from Theorem 6, let D, = GDD(5, 2, 1;
30, 6), let D3 = GDD(5, 2, 1; 24, 6) and let D, = GDD(5,2,1; 18, 6). Let Ds
= GDD(5, 2, 1;12, 6), most easily constructed using 3 copies of By, above.

Example 16 A GDD(5,2,1;10,2) exists. Denote this design by Dg. Use
the blocks in a BIBD(5, 3,9) using the points of G, and use the blocks in
the arrays:

a a a a a a a a a a a b 2 z 2z 2z 5 5§
b b b b b b b b b b|,|5 5 2 3 2 3 2 4
1 2 3 4 5 2 1 2 3 4 z z 4 1 1 4 3 1

Theorem 15 The necessary conditions are sufficient for the existence of
a GD.D(5, 2, 1; Al,)\z).

Suppose A1 < Az < 2A;. Then use the blocks of z-copies of a GDD
(5,2,1;2,4) and y-copies of a BIBD(8, 3,6) where = and y may be found as
before using A\ = 6s; 4+ s2 = 2z + 6y and A; = 6t; + t3. = 4z + 6y. When
6A2 > A1 > Ag, a GDD(5,2,1; A1, A2) may be constructed using a suitable
linear combination of the set of designs {By, Bz, D4, ...,Ds, A1}

For example, a GDD(5, 2,1; 124, 68) may be constructed using 8 x Ds,
B, and 2 x A;.

4.5 Groups With sizes (6,2,1)

When the first index is larger than the second, we must consider Ay = 1,2
These possibilities will occur, and we illustrate with some important

examples.

Example 17 A GDD(6,2,1;7,1). Use blocks {a,b, 5} for j € {1,2,...,6, z}.
Use the blocks of a BIBD(6, 3,6) and use the blocks in the array

[\ )
- N
[~ IR )
[SAIV I
W N
(=20 S
B Ov o

Example 18 There exists a GDD(6,2, 1;8,2). Use the blocks of a BIBD(6, 3, 4)
with the points {1, 2, ...,6}. Use a BIBD(7, 3, 1) with the points {1,2, ...,6,a}.
Use a BIBD(7, 3,1) with the points {1,2, ...,6,b}. Use a BIBD(7, 3, 2) using

the points {1,2,...,6,z}. Finally, use the blocks {a,b,z} x 2 and {a,b, j}

for j € {1,2,...,6}.
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Theorem 16 The necessary conditions are sufficient for the existence of
GDD (6,2,1; /\1,)\2) with A1 > Ao.

We may assume Ay > 1. The blocks of a BIBD(9,3,1) based on the
points {1,2, ...,6, a,b, z} may be added to the blocks of a GDD(6t,2,1;8,2)
to create a GDD(6t,2,1;9,3), and all other GDDs with A; — A; = 6s and
with odd indices may be formed by adding the blocks of a BIBD(6t +
3,3,2m+1) to a design or designs already constructed. When both indices
are even, then Theorem 6, the BIBD(9,3,1) and the GDD(6, 2, 1; 8, 2) just
above, and their multiples, give all possible indices.

We consider the case with A; < Ag, and for convenience we restate part
of Theorem 4 in a form useful here.

Lemma 2 For any GDD(n,2,1; A\, A2), it is necessary that (3n — 4)Ay <
(n?2 —n+2)A; and, when n = 6, this becomes TAz < 16);.

Note Ay = 7 + 6s if A\; were to equal 1, but even A3 = 7 is too large,
applying the lemma. So A; = 1 is not possible. In fact, the smallest indices
possible in this case are (A, A2) = (5,11) and (A1, A2) = (6,12) and we
construct both.

Example 19 A GDD(6,2,1;6,12). Use 10 one-factors, say Fj,...,Fio, from
2 copies of the complete graph K¢ as follows: ax F; for ¢ = 1,...,5; b* F; for
i =6,...,10. Use the blocks of a resolvable BIBD(6, 3, 4) with 10 resolution
classes Ry,...,Rj0. Useax R; (i =1,2). Use bx R; (i =3,4). Use 2% R;
(¢=5,...,8) The blocks in Ry and Rjo remain unaltered. Finally, use the
blocks {a,b,5} and {a, z,j} x 2 and {b,z,j} x 2 for j =1,...,6.

By taking multiple copies of this design one may obtain (A}, A;) =
(6t,12t) for any ¢, and in particular (A, A2) = (42,84) is possible with
t = 7. However, the lemma allows (A1, A2) = (42, 96).

Example 20 A GDD(6,2,1;5,11) and, using it, a GDD(6, 2, 1;9,15). The
former is the smallest design allowed by Theorem 5 and Theorem 4. First,
decompose five copies of the complete graph Kj on six points into 23 one-
factors, F; to Fy3, and into the particular two-factor which makes the
two triangles {1,2,6} and {3,4,5}. Use the latter triangle in the design
but decompose the pairs of the first triangle into {a,1,6}, {b,2,6} and
{z,1,2}. Next, use blocks a + F; for i = 1,..8; b+ F; for i = 9,...16;
z+ F; for i = 17,...,23. Use the blocks {a,z,j} and {b, 2,5} for j €
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{1,2,3,4,5,6}. Further, use {a,z,j} for j € {2,3,4,5,6} and {b,z,j} for
j € {3,4,5,6,1}. The GDD(6, 2,1;9, 15) can be constructed from the blocks
of this GDD(6, 2,1;5,11) and a BIBD(9, 3, 4).

Theorem 17 A BIBD(9,3,1) and a GDD(6,2,1;5,11) can be embedded
into a GDI(6,2,1;6,12).

This is just a way of saying that the blocks of the two designs give
a GDD(6,2, 1; 6,12) which is non-isomorphic to the (6,12) example just
above.

We may not yet construct all GDDs for n = 6 with A2 — A\; = 6s. Since
a BIBD(9, 3,1) exists, we may, however, use the blocks of w copies of this
BIBD to the blocks of some multiple of the GDD(6,2,1;5,11) and/or those
blocks of a GDD(6, 2, 1; 6s, 6t) to create a GDD(6, 2, 1; 65+w, 6t+w), and w
may be odd or even. Therefore, to complete the picture for n = 6 requires
the construction of GDD(6, 2, 1; 63, 6t) for each s up to the largest possible
corresponding value of t. Fortunately, it essentially suffices only to consider
the largest t-value applying the Lemma above. The array below gives the
maximum possible second index corresponding to a given first index. For
(A1, A2) = (42,96) exact equality occurs in Lemma 10.

AL 6 |12 (18|24 | 30| 36| 42
Max X, (12|24 |36 | 54 | 66 | 78 | 96

It is a consequence of Theorem 5 and Lemma 2 that, if 42 < 6s = \; <
Ao = 6t, a (6s, 6t)-design, that is a GDD(6, 2, 1; 6s, 6t), may be constructed
using a linear combination of multiples of smaller designs - from those in
the table and those constructed in this section (see below).

‘When A; = 12, only two designs are possible, a GDD(6, 2, 1; 12, 18) and
a GDD(6,2,1;12,24). The former may be realized from a GDD(6, 2, 1; 6, 12)
and a BIBD(9,3,6). The (12, 24)-design may be realized from two copies
of the (6, 12)-design already constructed.

The designs with A = 18 are equally easy to get in similar fashion. A
GDD(6,2,1; 24,54) cannot be constructed from smaller designs. However,
a GDD(6, 2, 1; 30, 66) can be obtained from the (24, 54) and (6,12) designs,
and the (36, 78) design can be obtained from the (30,66) and the (6,12).
Thus, it only remains to construct the two critical designs mentioned.

Example 21 A GDD(6,2,1;24,54). Use blocks {a, 2, 7} x9 and {b, 2, j} x9

and {a,b,j} x 4 for j € G;. Use ten one-factors, Fy to Fyp, from two copies
of K¢, and form blocks a+ F; (i = 1...,5) and b+ F; (i = 6,...,10). Use the
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blocks of 13 copies of a resolvable BIBD(6, 3,4) which yield 130 resolution
classes. We decompose 54 of the classes using 18 with each of a,b, znd z.

Example 22 A GDD(6,2,1;42,96). In this case, 7A; = 16A;. Use the
blocks {a, 2,7} x 16 and {b,2,5} x 16 for j € {1,2,...,6}. In this way
points a and b each appear 96 times with 2. Use the blocks {a,b, j} x 7 for
j€{1,2,...,6}. Now points a and b appear together in 42 blocks. Points a
and b appear in blocks 23 times with each point of G1and point z appears
32 times with points of G;. Decompose 42 copies of K¢ into 210 one-factors.
Use 73 one-factors with point ¢ and 73 with point b to make new blocks.
Use the remaining 64 one-factors to make blocks with point z. Notice that
no block contains a triple of points from group G;.

It is straightforward to alter this construction to lower A2 to 90 but keep
A1 at 42. Use blocks {a,z,j} x 15, use {b, 2,5} x 15, and use {a,b,5} X 7
for j € G;. Next use the blocks of a BIBD(86,3,2) and of a resolvable
BIBD(6, 3,40), with 100 resolution classes, say Rj,..., Rigp. We leave two
classes alone and decompose 98 of the classes: ¢ * R; (i = 1...,34), bx R;
(i =35,...,68), and z * R; (i = 69,...,98). One may continue to lower A\,
by six in similar fashion. We omit the details, but mention that, instead of
a BIBD(S, 3, 2), alternate lowerings require one to use 10 one-factors, five
with each of @ and b. In this way one may obtain a GDD(6, 2, 1; 42, 6t) with
8<t<16.

We have now constructed all the designs in the table above, and GDDs
with slightly lower second index, with first index fixed, are easy to obtain
from smaller designs or by direct construction. All odd index designs may
be obtained from those constructed and BIBD(9, 3, w). We have thus show
that:

Theorem 18 The necessary conditions are sufficient for the existence of
GDD (6,2, 1; Al,Az) with A\; < As.

4.6 Concluding Remarks

The case for n = 6 shows that there are complications as n gets larger,
and the most severe complications occur for A\; < Ag since the relevant
inequality (Lemma 10, Theorem 4) is quadratic in n. It is thus much
harder to get general constructions (like Theorem 6). The other direction,
with Ay > Ao, is restricted only linearly with n. It is possible to predict
that success in further understanding, for the group vector (n,2, 1) or other
group vectors, will come from restricting considerations to a particular n
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or range of values, or by restricting consideration to A; < Aj, for i =1 or
2. The authors are presently persuing both approaches.

We present two quite general theorems, each for a family of n-values,
and each illustrating the value of having designs with small parameters
avajlable to give access to families of designs with larger parameters.

Theorem 19 There exists ¢ GDD(6t + 5,2,1;4,2) for allt > 0.

Use the blocks of a resolvable BIBD(6t+3, 3, 4) based on points {1, 2, ..., 6t+
3}. Make blocks with points 6 + 4 and 6t + 5 using two resolution classes
with each. Use the blocks of a GDD(2, 2, 1; 4, 2) with groups {6t+4,6t+5},
{a,b} and {z}.

Theorem 20 There exists a GDD(6t + 3,2,1;8,2) for allt > 0.

We may assume t > 1. We make use of the blocks of two copies of a
resolvable BIBD(6¢, 3, 4) using the points {1,2, ...,6t}. There are 4(6t — 1)
resolution classes, and we decompose 15 of them (at least 20 are available).
Use 4 classes with each of points 6t + 1, 6t + 2, and 6t + 3, and use one
with each of a,b, and z. Finally, use the blocks of a GDD(3,2, 1; 8, 2) with
groups {6t + 1, 6t + 2, 6t + 3}, {a, b}, and {z}.
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