On Color-Connected Graphs

Ryan Jones, Kyle Kolasinski, Chira Lumduanhom and Ping Zhang Department of Mathematics, Western Michigan University Kalamazoo, MI 49008-5248 USA

Abstract

For a connected graph G and a positive integer k, the kth power G^k of G is the graph with $V(G^k) = V(G)$ where $uv \in E(G^k)$ if the distance $d_G(u, v)$ between u and v is at most k. The edge coloring of G^k defined by assigning each edge uv of G^k the color $d_G(u, v)$ produces an edge-colored graph G^k called a distance-colored graph. A distance-colored graph is properly p-connected if every two distinct vertices u and v in the graph are connected by p internally disjoint properly colored u-v paths. It is shown that G^2 is properly 2connected for every 2-connected graph that is not complete, a double star is the only tree T for which T^2 is properly 2-connected and G^3 is properly 2-connected for every connected graph G of diameter at least 3. All pairs k, n of positive integers for which P_n^k is properly k-connected are determined. It is shown that every properly colored graph H with $\chi'(H)$ colors is a subgraph of some distance-colored graph and the question of determining the smallest order of such a graph is studied.

1 Introduction

For a connected graph G and a positive integer k, the kth power G^k of G is the graph with $V(G^k) = V(G)$ where $uv \in E(G^k)$ if the distance $d_G(u,v)$ between u and v (the length of a shortest u-v path in G) is at most k. The graph G^2 is called the square of G and G^3 is the cube of G. Among the best known results concerning powers of graphs are those concerning Hamiltonian properties. In particular, Sekanina [7] proved that the cube of every connected graph is Hamiltonian-connected and is therefore Hamiltonian (if its order is at least 3). Hence for every connected graph G of order $n \geq 3$, there is a Hamiltonian cycle $G = (v_1, v_2, \ldots, v_n, v_{n+1} = v_1)$ of G^3 , which implies that $d_G(v_i, v_{i+1}) \in \{1, 2, 3\}$ for $1 \leq i \leq n$. While the square of every connected graph need not be Hamiltonian, Fleischner [4] showed that the square of every 2-connected graph is Hamiltonian.

For a connected graph G of order n and diameter d and integers i and k with $1 \le i \le k \le d$, the color i is assigned to an edge uv in G^k if $d_G(u,v)=i$. The resulting edge-colored graph G^k is called a distance-colored graph. If a distance-colored graph G^k contains a properly colored subgraph isomorphic to a graph H, then G^k is called H-colored. Certainly, it is only possible for G^k to be H-colored if $\chi'(H) \le k$, where $\chi'(H)$ is the chromatic index of H. If $H = C_n$, then G^k is called a Hamiltonian-colored graph. The Hamiltonian coloring exponent hce(G) of G is defined as the minimum k for which G^k is Hamiltonian-colored. These concepts were introduced and studied in [1] and studied further in [2, 5, 6].

For a connected graph G and a positive integer k, the distance-colored graph G^k is called properly color-connected, or simply color-connected, if every two vertices u and v in G^k are connected by a properly colored u-v path in G^k . If the diameter of G is d, then G^d is complete and so every two vertices u and v in G^d are connected by the path (u,v) of length 1 in G^d . Thus G^d is color-connected. The smallest integer k for which G^k is color-connected is called the color-connection exponent cce(G) of G. In fact, this number is 2 for all non-complete connected graphs (see [6]).

Theorem 1.1 If G is a non-complete connected graph, then cce(G) = 2.

By Theorem 1.1, the distance-colored graph G^2 is colored-connected and so for every two vertices u and v of G^2 , there is at least one properly colored u-v path in G^2 . This gives rise to another concept. If G is a connected graph with connectivity $\kappa(G)=\kappa$, then it follows from a well-known theorem of Whitney [8] that for every two distinct vertices u and v of G, the graph G contains κ internally disjoint u-v paths. A graph G is p-connected if $\kappa(G) \geq p$. For a connected graph G and an integer $k \geq 2$, the distance-colored graph G^k is properly colored p-connected or simply properly p-connected if for every two distinct vertices u and v of G^k , there are p internally disjoint properly colored u-v paths in G^k . If G is a complete graph, then G^k is not properly p-connected for all integers k, p with $k \geq 1$ and $p \geq 2$. Thus we consider only non-complete connected graphs. For a connected graph G and an integer $k \geq 2$, the color-connectivity of G^k is the maximum positive integer p for which G^k is properly p-connected.

In Section 2, we study the color-connectivities of the square and the cube of a connected graph, while in Section 3 we determine all pairs k,n of positive integers for which P_n^k is properly k-connected. In Section 4, we show that every properly colored graph H with $\chi'(H)$ colors is a subgraph of some distance-colored graph and study the question of determining the smallest order of such a graph. We refer to the book [3] for graph theory notation and terminology not described in this paper. We assume that all graphs under consideration are connected.

2 Properly 2-Connected Graphs

For a connected graph G of order 3 or more, it is well known that G^2 is 2-connected and so every two distinct vertices u and v of G are connected by two internally disjoint u-v paths in G^2 . By Theorem 1.1, the distance-colored graph G^2 is colored-connected. However, G^2 need not be properly 2-connected, that is, it is possible that for some pair u,v of vertices of G^2 , two internally disjoint properly colored u-v paths do not exist in G^2 . For example, if $G=K_{1,n-1}$ where $n\geq 3$, then $G^2=K_n$ is 2-connected but not properly 2-connected (as any two end-vertices of G are not connected by two internally disjoint properly colored paths in G^2). On the other hand, if G is 2-connected, then G^2 is properly 2-connected. In order to show this, we first present a lemma, which was established in [1].

Lemma 2.1 For each integer $n \geq 3$, the distance-colored graph P_n^2 contains a properly colored Hamiltonian path.

Theorem 2.2 If G is a 2-connected graph that is not complete, then G^2 is properly 2-connected.

Proof. Let u and v be two distinct vertices of G. Since G is 2-connected, G contains at least two internally disjoint u-v paths. Among all internally disjoint u-v paths in G, let P and P' be two of smallest possible lengths. Let $P=(u=x_1,x_2,\ldots,x_s=v)$ and $P'=(u=y_1,y_2,\ldots,y_t=v)$. By the defining property of P and P', it follows that $d_P(x_i,x_{i+2})=2=d_G(x_i,x_{i+2})$ for $1 \le i \le s-2$ and $d_{P'}(y_j,y_{j+2})=2=d_G(y_j,y_{j+2})$ for $1 \le j \le t-2$. By Lemma 2.1, there is a properly colored u-v path Q in the square of P and a properly colored u-v path Q' in the square of P'. Since P and P' are internally disjoint, so are Q and Q'. Therefore, G^2 is properly 2-connected.

For a connected graph G, its square can be properly 2-connected without G being 2-connected, however. In the case of trees, for example, we know precisely those trees whose square is properly 2-connected. A *double star* is a tree of diameter 3. The double stars are the only trees T for which T^2 is properly 2-connected.

Theorem 2.3 Let T be a tree of order at least 3. Then T^2 is properly 2-connected if and only if T is a double star.

Proof. First, suppose that T is a double star whose central vertices are x and y. Let $X = \{x_1, x_2, \ldots, x_r\}$ and $Y = \{y_1, y_2, \ldots, y_s\}$ be the sets of endvertices of T such that x is adjacent to every vertex in X and y is adjacent to every vertex in Y, where then $r, s \ge 1$. Let $u, v \in V(T)$. We show that u and v are connected by two internally disjoint properly colored paths. If

 $\{u,v\}=\{x,y\}, \text{ say } u=x \text{ and } v=y, \text{ then } (u,v) \text{ and } (u,x_1,v) \text{ are two internally disjoint properly colored } u-v \text{ paths in } T^2. \text{ If } \{u,v\}\cap\{x,y\}=\emptyset, \text{ then we may assume that } u\in X. \text{ If } v\in X, \text{ say } v=x_2, \text{ then } (u,v) \text{ and } (u,x,y_1,y,v) \text{ are two internally disjoint properly colored } u-v \text{ paths in } T^2. \text{ If } v\in Y, \text{ say } v=y_1, \text{ then } (u,y,v) \text{ and } (u,x,v) \text{ are two internally disjoint properly colored } u-v \text{ paths in } T^2. \text{ If } |\{u,v\}\cap\{x,y\}|=1, \text{ then we may assume that } u=x \text{ and } v\neq y. \text{ If } v\in X, \text{ say } v=x_1, \text{ then } (u,v) \text{ and } (u,y,v) \text{ are two internally disjoint properly colored } u-v \text{ paths in } T^2. \text{ If } v\in Y, \text{ say } v=y_1, \text{ then } (u,v) \text{ and } (u,x_1,y,v) \text{ are two internally disjoint properly colored } u-v \text{ paths in } T^2.$

For the converse, assume that T is not a double star. Let $d = \operatorname{diam}(T)$ and so $d \neq 3$. If d = 2, then T is a star and we saw that T^2 is not properly 2-connected. Thus we may assume that $d \geq 4$. Let u be an end-vertex of T whose eccentricity $e_T(u)$ is d and let v be a vertex of T such that $d_T(u,v)=4$. We show that there are no two internally disjoint properly colored u-v paths in T^2 . Suppose that (u,v_1,v_2,v_3,v) is the u-v path in T. Assume, to the contrary, that T^2 contains two internally disjoint properly colored u-v paths P_1 and P_2 . By an extensive case-by-case analysis, it can be shown that each properly colored u-v path in T^2 must contain at least two vertices in $\{v_1,v_2,v_3\}$. This implies that each of P_1 and P_2 must contain at least two vertices from $\{v_1,v_2,v_3\}$, which is impossible.

We have seen that if G is a connected graph, then G^2 is 2-connected. Since $(G^2)^2 = G^4$ for each connected graph G, the following is an immediate consequence of Theorem 2.2.

Corollary 2.4 If G is a connected graph such that G^2 is not complete, then G^4 is properly 2-connected.

By Corollary 2.4, if G is a connected graph of diameter at least 3, then G^4 is properly 2-connected. This gives rise to a natural question: For a connected graph G of diameter at least 3, what is the minimum k such that G^k is properly 2-connected? By Theorem 2.2 and Corollary 2.4, either k=3 or k=4. Next, we show that k=3.

Theorem 2.5 If G is a connected graph of diameter at least 3, then G^3 is properly 2-connected.

Proof. Since the diam $(G) \geq 3$, it follows that the order of G is at least 4. Let u and v be two distinct vertices of G. We show that u and v are connected by two internally disjoint properly colored paths in G^3 . We consider two cases, according to $1 \leq d_G(u, v) \leq 2$ or $d_G(u, v) \geq 3$.

Case 1. $1 \leq d_G(u,v) \leq 2$. If $N_G(u) \neq N_G(v)$, say $x \in N_G(u) - N_G(v)$, then (u,v) and (u,x,v) are two internally disjoint properly colored

u-v paths in G^3 . Thus, we may assume that $N_G(u)=N_G(v)$. Since $\operatorname{diam}(G)\geq 3$, it follows that $\operatorname{rad}(G)\geq 2$ and $e_G(y)\geq 2$ for all $y\in V(G)$. If $e_G(u)\geq 3$ or $e_G(v)\geq 3$, say the former, then there is $w\in V(G)$ such that $d_G(u,w)=3$. Let (u,x_1,x_2,w) be a u-w geodesic in G. Since $N_G(u)=N_G(v)$, it follows that v is adjacent to x_1 (and v is not adjacent to x_2). Then (u,v) and (u,w,x_1,v) are two internally disjoint properly colored u-v paths in G^3 . Thus we may assume that $e_G(u)=e_G(v)=2$. Then $\operatorname{rad}(G)=2$ and $3\leq \operatorname{diam}(G)\leq 4$. Let w and w' be vertices with d(w,w')=3. Clearly, u,v,w,w' are distinct. Then (u,v) and (u,w,w',v) are two internally disjoint properly colored u-v paths in G^3 .

Case 2. $d_G(u,v) \geq 3$. Let $d = d_G(u,v)$ and let $P = (u = v_0, v_1, v_2, \ldots, v_d = v)$ be a u - v geodesic in G. Thus $d_P(x,y) = d_G(x,y)$ for all $x,y \in V(P)$. If d = 3, then (u,v) and (u,v_2,v) are two internally disjoint properly colored u - v paths in G^3 . If d = 4, then (u,v_1,v) and (u,v_3,v) are two internally disjoint properly colored u - v paths in G^3 . Thus, we may assume that $d \geq 5$. Suppose that $d \equiv i \pmod{4}$ where i = 0, 1, 2, 3 and let d = 4k + i for some positive integer k. In each case, G^3 contains two internally disjoint properly colored u - v paths Q_1 and Q_2 as follows: For d = 4k,

$$Q_1 = (u, v_1, v_4, v_5, v_8, v_9, \dots, v_{4k-3}, v_{4k})$$

$$Q_2 = (u, v_2, v_3, v_6, v_7, v_{10}, \dots, v_{4k-2}, v_{4k}).$$

For d = 4k + 1.

$$Q_1 = (u, v_1, v_4, v_5, v_8, v_9, \dots, v_{4k}, v_{4k+1})$$

$$Q_2 = (u, v_2, v_3, v_6, v_7, v_{10}, \dots, v_{4k-1}, v_{4k+1}).$$

For d = 4k + 2.

$$Q_1 = (u, v_1, v_4, v_5, v_8, v_9, \dots, v_{4k}, v_{4k+2})$$

$$Q_2 = (u, v_2, v_3, v_6, v_7, v_{10}, \dots, v_{4k-1}, v_{4k+2}).$$

For d = 4k + 3,

$$Q_1 = (u, v_1, v_4, v_5, v_8, v_9, \dots, v_{4k+1}, v_{4k+3})$$

$$Q_2 = (u, v_2, v_3, v_6, v_7, v_{10}, \dots, v_{4k+2}, v_{4k+3}).$$

Therefore, G^3 is properly 2-connected.

Theorem 2.5 brings up another question: For a connected graph G of diameter at least 3, is G^3 is properly 3-connected? We will see in the next section that this is not true in general.

3 Color-Connectivities of Powers of a Path

We have seen in the proofs of Theorems 2.2 and 2.5 that the color-connectivity of the distance-colored graph P_n^k of a path P_n of order n plays an important role in determining the color-connectivity of a connected graph. Thus in this section, we investigate the color-connectivities of the distance-colored graph P_n^k for integers n and k with $n \ge k+1 \ge 3$. By Theorem 2.3, the distance-colored graph P_n^2 is properly 2-connected if and only if n = 4. By Theorem 2.5, P_n^3 is properly 2-connected for all $n \ge 4$. However, P_n^3 is not properly 3-connected in general. In fact, for $n \ge 4$, it can be verified that the distance-colored graph P_n^3 is properly 3-connected if and only if n = 6. Next, we determine all pairs k, n of integers with $n \ge k+1 \ge 4$ for which P_n^k is properly k-connected. In order to do this, we first present two lemmas.

Lemma 3.1 For each even integer $k \geq 2$, the distance-colored graph P_{k+2}^k is properly k-connected.

Proof. We proceed by induction on even integers $k \geq 2$. By Theorem 2.3, P_4^2 is properly 2-connected and so the statement holds for k=2. Suppose that P_{k+2}^k is properly k-connected for some even integer $k \geq 2$. Let $P_{k+4} = (v_0, v_1, v_2, \ldots, v_{k+3})$ and let u and v be two distinct vertices of P_{k+4} . We show that there are k+2 internally disjoint properly colored u-v paths in P_{k+4}^{k+2} . We consider two cases.

Case 1. u and v are not end-vertices of G. Then $u, v \in \{v_1, v_2, \ldots, v_{k+2}\}$. Let $P_{k+2} = (v_1, v_2, \ldots, v_{k+2})$. Since P_{k+2}^k is properly k-connected by the induction hypothesis, there are k internally disjoint properly colored u-v paths Q_1, Q_2, \ldots, Q_k in P_{k+2}^k . Let $Q_{k+1} = (u, v_0, v)$ and $Q_{k+2} = (u, v_{k+3}, v)$. Therefore, $Q_1, Q_2, \ldots, Q_{k+2}$ are k+2 internally disjoint properly colored u-v paths in P_{k+4}^{k+2} .

Case 2. At least one of u and v is an end-vertex of G, say $u=v_0$. If $v=v_{k+3}$, then let $Q_i=(v_0,v_i,v_{k+3})$ for $1\leq i\leq k+2$, producing k+2 internally disjoint properly colored v_0-v_{k+3} paths in P_{k+4}^{k+2} . Thus, we may assume that $v\neq v_{k+3}$. If $v=v_{2\ell+1}$ for some nonnegative integer ℓ , where $1\leq 2\ell+1\leq k+1$, then construct k+2 internally disjoint properly colored $v_0-v_{2\ell+1}$ paths Q_1,Q_2,\ldots,Q_{k+2} in P_{k+4}^{k+2} as follows:

$$Q_i = \left\{ \begin{array}{ll} (v_0, v_i, v_{2\ell+1}) & \text{if } 1 \leq i \leq 2\ell \\ (v_0, v_{2\ell+1}) & \text{if } i = 2\ell+1 \\ (v_0, v_i, v_{2\ell+1}) & \text{if } 2\ell+2 \leq i \leq k+2. \end{array} \right.$$

If $v = v_{2\ell}$ for some positive integer ℓ where $2 \le 2\ell \le k+2$, then construct k+2 internally disjoint properly colored $v_0 - v_{2\ell}$ paths $Q_1, Q_2, \ldots, Q_{k+2}$

in P_{k+4}^{k+2} as follows:

$$Q_i = \left\{ \begin{array}{ll} (v_0, v_i, v_{2\ell}) & \text{if } 1 \leq i \leq k+2 \text{ and } i \neq \ell, 2\ell \\ (v_0, v_{2\ell}) & \text{if } i = 2\ell \\ (v_0, v_\ell, v_{k+3}, v_{2\ell}) & \text{if } i = \ell. \end{array} \right.$$

Therefore, P_{k+4}^{k+2} is properly (k+2)-connected.

Lemma 3.2 For each odd integer $k \geq 3$, the distance-colored graph P_{k+3}^k is properly k-connected.

Proof. We proceed by induction on odd integers $k \geq 3$. Figure 1 shows that P_6^3 is properly 3-connected.

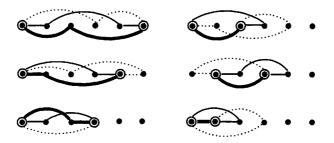


Figure 1: Showing that P_6^3 is properly 3-connected

Assume that P_{k+3}^k is properly k-connected for some odd integer $k \geq 3$. We show that P_{k+5}^{k+2} is properly (k+2)-connected. Let $P_{k+5} = (v_0, v_1, \ldots, v_{k+4})$ and let u and v be two distinct vertices of P_{k+5} . We may assume that $u = v_s$ and $v = v_t$ where $0 \leq s < t \leq k+4$. We consider two cases.

Case 1. u and v are not end-vertices of P_{k+5} . Then $u,v \in \{v_1, v_2, \ldots, v_{k+3}\}$. First, suppose that $u \neq v_1$ and $v \neq v_{k+3}$. By the induction hypothesis, there are k internally disjoint properly colored u-v paths Q_1,Q_2,\ldots,Q_k whose vertices belong to $\{v_1,v_2,\ldots,v_{k+3}\}$. Let $Q_{k+1}=(u,v_0,v)$ and $Q_{k+2}=(u,v_{k+4},v)$. Then Q_1,Q_2,\ldots,Q_{k+2} are k+2 internally disjoint properly colored u-v paths in P_{k+5}^{k+2} and so P_{k+5}^{k+2} is properly (k+2)-connected.

Next, suppose that either $u=v_1$ or $v=v_{k+3}$. We may assume, without loss of generality, that $u\in\{v_1,v_2,\ldots,v_{k+2}\}$ and $v=v_{k+3}$. Let $d_{P_{k+5}}(u,v)=p$. Suppose that $u=v_i$, where $1\leq i\leq k+2$, and so p=k+3-i. If p is odd, then define

$$Q_j = \begin{cases} (v_i, v_j, v_{k+3}) & \text{if } j \in \{1, 2, \dots, k+2\} - \{i\} \\ (v_i, v_{k+3}) & \text{if } j = i. \end{cases}$$

If p is even, then define

$$Q_j = \begin{cases} (v_i, v_j, v_{k+3}) & \text{if } j \in \{1, 2, \dots, k+2\} - \{i, \frac{i+k+3}{2}\} \\ (v_i, v_{k+3}) & \text{if } j = i \\ (v_i, v_{k+4}, v_{k+3}) & \text{if } j = \frac{i+k+3}{2}. \end{cases}$$

In each case, $Q_1, Q_2, \ldots, Q_{k+2}$ are k+2 internally disjoint properly colored u-v paths in P_{k+5}^{k+2} and so P_{k+5}^{k+2} is properly (k+2)-connected.

- Case 2. At least one of u and v is an end-vertex of P_{k+5} , say $u = v_0$. Observe that the neighborhood of v_0 in P_{k+5}^{k+2} is $\{v_1, v_2, \ldots, v_{k+2}\}$.
 - If $v = v_t$ and $1 \le t \le k + 2$, then define

$$Q_i = \begin{cases} (v_0, v_i, v_t) & \text{if } i \in \{1, 2, \dots, k+2\} - \{t, \frac{t}{2}\} \\ (v_0, v_t) & \text{if } i = t \\ (v_0, v_i, v_{k+3}, v_t) & \text{if } i = \frac{t}{2}. \end{cases}$$

- If $v = v_{k+3}$, then define $Q_i = (v_0, v_i, v_{k+3})$ for $1 \le i \le k+2$ and $i \ne \frac{k+3}{2}$ and $Q_{\frac{k+3}{2}} = (v_0, v_{\frac{k+3}{2}}, v_{k+4}, v_{k+3})$;
- If $v = v_{k+4}$, then define $Q_1 = (v_0, v_1, v_{k+3}, v_{k+4})$ and $Q_i = (v_0, v_i, v_{k+4})$ for $2 \le i \le k+2$.

In each case, Q_1,Q_2,\ldots,Q_{k+2} are k+2 internally disjoint properly colored u-v paths in P_{k+5}^{k+2} and so P_{k+5}^{k+2} is properly (k+2)-connected.

We are now prepared to determine all pairs k, n of integers with $n \ge k+1 \ge 4$ for which P_n^k is properly k-connected.

Theorem 3.3 Let k and n be integers where $n \ge k+1 \ge 4$. Then P_n^k is properly k-connected if and only if n is even and either k is odd and $k+3 \le n \le 2k$ or k is even and $k+2 \le n \le 2k$.

Proof. First, suppose that n is even and we show that P_n^k is properly k-connected if either k is odd and $k+3 \le n \le 2k$ or k is even and $k+2 \le n \le 2k$. We consider two cases.

Case 1. k is odd. We proceed by a finite induction on integers n to show that, for each odd integer $k \geq 3$, if $k+3 \leq n \leq 2k$, then P_n^k is properly k-connected. By Lemma 3.2, this statement is true for n=k+3. Assume, for each odd integer $k \geq 3$, that P_n^k is properly k-connected for an even integer n with $k+3 \leq n \leq 2k-2$. We show that P_{n+2}^k is properly k-connected. Let $P_{n+2} = (v_0, v_1, \ldots, v_{n+1})$ and let u and v be two distinct vertices of P_{n+2} . First, suppose that $d_{P_{n+2}}(u,v) < n$. We may assume, without loss of generality, that $u, v \in \{v_0, v_1, \ldots, v_{n-1}\}$. By the induction

hypothesis, there are k internally disjoint properly colored u-v paths in P_n^k where $P_n=(v_0,v_1,\ldots,v_{n-1})$ and so in P_{n+2}^k as well. Next, suppose that $n\leq d_{P_{n+2}}(u,v)\leq n+1$. We may assume that $u=v_0$. If $v=v_n$, then define

$$Q_i = \begin{cases} (v_0, v_i, v_{i+k}, v_n) & \text{if } 1 \le i < n-k \text{ and } i \ne \frac{n}{2} \\ (v_0, v_i, v_n) & \text{if } n-k \le i \le k \text{ and } i \ne \frac{n}{2} \\ (v_0, v_{\frac{n}{2}}, v_{n+1}, v_n) & \text{if } i = \frac{n}{2}. \end{cases}$$

If $v = v_{n+1}$, then define

$$Q_i = \begin{cases} (v_0, v_i, v_{i+k}, v_{n+1}) & \text{if } 1 \le i \le n - k \\ (v_0, v_i, v_{n+1}) & \text{if } n - k < i \le k. \end{cases}$$

In each case, Q_1, Q_2, \ldots, Q_k are k internally disjoint properly colored u-v paths in P_{n+2}^k and so P_{n+2}^k is properly k-connected.

Case 2. k is even. We proceed by a finite induction on integers n to show that, for each even integer $k \geq 4$, if $k+2 \leq n \leq 2k$, then P_n^k is properly k-connected. By Lemma 3.1, this statement is true for n=k+2. Assume for each even integer k that P_n^k is properly k-connected for an even integer n with $k+2 \leq n \leq 2k-2$. An argument similar to the one in Case 1 shows that P_{n+2}^k is properly k-connected.

To verify the converse, we consider two cases, according to n is odd or n is even.

Case 1. n is odd. We show that P_n^k is not properly k-connected for all k and n with $k \geq 2$ and $n \geq k+1$. Assume, to the contrary, that for some integer $k \geq 2$ there is an odd integer $n \geq k+1$ such that P_n^k is properly k-connected. By Theorem 2.3, $k \geq 3$. Let $n = 2\ell+1$ for some integer $\ell \geq 2$ and let $P_n = (v_0, v_1, \ldots, v_{2\ell})$. Since P_n^k is properly k-connected, there are k internally disjoint properly colored $v_0 - v_{2\ell}$ paths Q_1, Q_2, \ldots, Q_k in P_n^k . Since $\deg_{P_n^k} v_0 = k$ and v_0 is adjacent to v_1, v_2, \ldots, v_k in P_n^k , we may assume that v_0 is adjacent to v_i in Q_i for $1 \leq i \leq k$. Since these k paths are internally disjoint, this implies that $v_1 \in V(Q_1)$ must be adjacent to v_{k+1} in Q_1 and so $v_2 \in V(Q_2)$ must be adjacent to v_{k+2} in Q_2 . Continuing in this manner, we obtain that $v_i \in V(Q_i)$ must be adjacent to v_{k+i} in Q_i for $1 \leq i \leq k$. However then, $Q_\ell = (v_0, v_\ell, v_{2\ell})$ is not properly colored, which is a contradiction.

Case 2. n is even. In this case, for an odd integer $k \geq 3$, we show that if n = k + 1 or $n \geq 2k + 2$, then P_n^k is not properly k-connected; while for an even integer $k \geq 2$, we show that if $n \geq 2k + 2$, then P_n^k is not properly k-connected. Therefore, it suffices to show that if n = k + 1 or $n \geq 2k + 2$, then P_n^k is not properly k-connected. Assume, to the contrary, that P_n^k is

properly k-connected for some integers $k \geq 2$ and n such that n = k + 1 or $n \geq 2k + 1$. We consider these two subcases.

Subcase 2.1. n=k+1. Let $P_{k+1}=(v_0,v_1,\ldots,v_k)$. Since P_{k+1}^k is properly k-connected, there are k internally disjoint properly colored v_0-v_2 paths Q_1,Q_2,\ldots,Q_k in P_{k+1}^k . Since $\deg_{P_{k+1}^k}v_0=k$ and v_0 is adjacent to v_1,v_2,\ldots,v_k in P_{k+1}^k , it follows that v_0 is adjacent to v_i $(1 \le i \le k)$ in exactly one of these k paths. We may assume that v_0 is adjacent to v_i in Q_i for $1 \le i \le k$. However then, $Q_1=(v_0,v_1,v_2)$ is not properly colored, which is a contradiction.

Subcase 2.2. $n \geq 2k+2$. Let $P_n = (v_0, v_1, \ldots, v_{n-1})$. Since P_n^k is properly k-connected, there are k internally disjoint properly colored $v_0 - v_{2k}$ paths Q_1, Q_2, \ldots, Q_k in P_n^k . Since $\deg_{P_n^k} v_0 = k$ and v_0 is adjacent to v_1, v_2, \ldots, v_k in P_n^k , we may assume that v_0 is adjacent to v_i in Q_i for $1 \leq i \leq k$. Thus, $v_i \in V(Q_i)$ must be adjacent to v_{k+i} in Q_i for $1 \leq i \leq k$. However then, $v_0 v_k$ and $v_k v_{2k}$ are adjacent edges in Q_k , which is impossible.

While it follows from Theorem 3.3 that the distance-colored graph P_n^k is not properly k-connected whenever $n \geq 2k+1 \geq 7$, the following is believed to be true.

Conjecture 3.4 For each integer $k \geq 3$, the distance-colored graph P_n^{k+1} is properly k-connected for all $n \geq 2k+1$.

Conjecture 3.4 is true for k=3, however, as we now verify. First, we introduce some additional definitions and notation. For a path $(x_0, x_1, \ldots, x_{n-1})$, the vertex x_{n-1} is called the *terminal vertex* of this path. For a path Q of a connected graph H and $v \in V(H) - V(Q)$, let t(Q, v) denote the distance between v and the terminal vertex of Q. For a set Q of paths in a connected graph H, let V(Q) be the set of vertices of H that belong to some path in Q. For each $v \in V(H) - V(Q)$, define

$$T(\mathcal{Q},v)=\max\{t(\mathcal{Q},v): \mathcal{Q}\in\mathcal{Q}\}.$$

That is, T(Q, v) is the maximum distance between v and the terminal vertex of a path in Q.

For a connected graph G, let Q be a properly colored u-v path in G^k for some integer $k \geq 2$ and let w be a vertex of G^k that does not belong to Q. Then Q is extendable to w if (Q, w) is a properly colored u-w path in G^k . In this case, we can extend Q to w in G^k and the path (Q, w) is then called the extension of Q to w in G^k .

Let $P_n = (v_0, v_1, \dots, v_{n-1})$ be a path of order $n \geq 7$. Next, we present an algorithm that produces three internally disjoint properly colored paths

 Q_1, Q_2 and Q_3 in P_n^4 with initial vertex v_0 such that the distance between v_{n-1} and the terminal vertex of each path Q_i $(1 \le i \le 3)$ is at most 4. That is, if $Q = \{Q_1, Q_2, Q_3\}$, then $T(Q, v_{n-1}) \le 4$.

Algorithm 1 For $P_n = (v_0, v_1, \ldots, v_{n-1})$ where $n \geq 7$, this algorithm produces three internally disjoint properly colored paths Q_1, Q_2 and Q_3 in P_n^4 with initial vertex v_0 such that the distance between v_{n-1} and the terminal vertex of each path Q_i $(1 \leq i \leq 3)$ is at most 4.

Input: An integer $n \geq 7$ and a path $P_n = (v_0, v_1, \dots, v_{n-1})$.

Step 1: The first path begins at v_0 and moves to v_1 , the second path begins at v_0 and moves to v_2 and the third path begins at v_0 and moves to v_4 .

At the end of Step 1, we obtain three paths

$$Q_1^1 = (v_0, v_1), \ Q_2^1 = (v_0, v_2), \ Q_3^1 = (v_0, v_4).$$

Let $Q^1 = \{Q_1^1, Q_2^1, Q_3^1\}.$

Step 2: If $T(Q^1, v_{n-1}) \leq 4$, then stop; while if $T(Q^1, v_{n-1}) > 4$, then do the following:

Let $Q_p^1 \in \mathcal{Q}^1$ $(1 \leq p \leq 3)$ such that $t(Q_p^1, v_{n-1}) = T(\mathcal{Q}^1, v_{n-1})$. Suppose that j is the smallest integer such that v_j does not belong to any path in \mathcal{Q}^1 and Q_p^1 is extendable to v_j in P_n^4 . Let $Q_p^2 = (Q_p^1, v_j)$ and rename the remaining two paths Q_q^1 and Q_q^1 (where $q, q' \in \{1, 2, 3\} - \{p\}$) in Q^1 as Q_q^2 and $Q_{q'}^2$, respectively. Let $Q^2 = \{Q_1^2, Q_2^2, Q_3^2\}$.

If $T(Q^2, v_{n-1}) \leq 4$, then stop; while if $T(Q^2, v_{n-1}) > 4$, then repeat this procedure above. In general, at the step i for an integer $i \geq 1$, let $Q^i = \{Q_1^i, Q_2^i, Q_3^i\}$.

Step i+1: If $T(Q^i, v_{n-1}) \leq 4$, then stop; while if $T(Q^i, v_{n-1}) > 4$, then do the following:

Let $Q_p^i \in \mathcal{Q}^i$ $(1 \leq p \leq 3)$ such that $t(Q_p^i, v_{n-1}) = T(\mathcal{Q}^i, v_{n-1})$. Suppose that j is the smallest integer such that v_j does not belong to any path in \mathcal{Q}^i and Q_p^i is extendable to v_j in P_n^4 . Let $Q_p^{i+1} = (Q_p^i, v_j)$ and rename the remaining two paths Q_q^i and Q_q^i (where $q, q' \in \{1, 2, 3\} - \{p\}$) in Q^i as Q_q^{i+1} and Q_q^{i+1} , respectively. Let $Q_p^{i+1} = \{Q_p^{i+1}, Q_p^{i+1}, Q_p^{i+1}\}$.

Output: Three internally disjoint properly colored paths Q_1, Q_2 and Q_3 in P_n^4 with initial vertex v_0 such that $T(\{Q_1, Q_2, Q_3\}, v_{n-1}) \leq 4$.

For a properly colored path $Q = (x_1, x_2, \dots, x_\ell)$ in G^k , the distance sequence of Q is defined as

$$d(Q): d_1, d_2, \ldots, d_{\ell-1}$$

where $d_i = d_G(x_i, x_{i+1})$ for $1 \le i \le \ell - 1$.

Lemma 3.5 For each integer $n \geq 7$, let $P_n = (v_0, v_1, \ldots, v_{n-1})$. Then the distance-colored graph P_n^4 contains three internally disjoint properly colored $v_0 - v_{n-1}$ paths.

Proof. First, suppose that $7 \le n \le 9$.

- For n = 7, let $Q_1 = (v_0, v_1, v_3, v_6)$, $Q_2 = (v_0, v_2, v_5, v_6)$ and $Q_3 = (v_0, v_4, v_6)$;
- For n = 8, let $Q_1 = (v_0, v_1, v_3, v_7)$, $Q_2 = (v_0, v_2, v_5, v_7)$ and $Q_3 = (v_0, v_4, v_7)$;
- For n = 9, let $Q_1 = (v_0, v_1, v_3, v_7, v_8)$, $Q_2 = (v_0, v_2, v_6, v_8)$ and $Q_3 = (v_0, v_4, v_5, v_8)$.

We now assume that $n \geq 10$. By Algorithm 1, we obtain three internally disjoint properly colored paths Q_1 , Q_2 and Q_3 in P_n^4 for an arbitrarily large integer n such that $T(\{Q_1,Q_2,Q_3\},v_{n-1})\leq 4$ and the distance sequences of these three paths are

$$d(Q_1) : 1,2,3,2,\underbrace{4,3,4,3,2},\underbrace{4,3,4,3,2},\dots$$

$$d(Q_2) : 2,3,4,\underbrace{1,3,4,1,3,4},\underbrace{1,3,4,1,3,4},\dots$$

$$d(Q_3) : 4,3,\underbrace{4,3,2,4,3},\underbrace{4,3,2,4,3},\dots$$

Let

$$s_1: 4, 3, 4, 3, 2, s_2: 1, 3, 4, 1, 3, 4 \text{ and } s_3: 4, 3, 2, 4, 3.$$
 (1)

Then the three internally disjoint properly colored paths Q_1 , Q_2 and Q_3 obtained by Algorithm 1 have the distance sequences as follows:

 $d(Q_1)$: $1, 2, 3, 2, s_1, s_1, \ldots$ $d(Q_2)$: $2, 3, 4, s_2, s_2, \ldots$ $d(Q_3)$: $4, 3, s_3, s_3, \ldots$

Observe that the sum of integers in s_i in (1) is 16 for $1 \le i \le 3$. Let

$$Q_1^0 = (v_0, v_1, v_3, v_6, v_8), Q_2^0 = (v_0, v_2, v_5, v_9) \text{ and } Q_3^0 = (v_0, v_4, v_7).$$

Then Q_1^0 , Q_2^0 and Q_3^0 are internally disjoint properly colored paths in P_n^4 for a sufficiently large integer n. For each integer $i \geq 0$, the three paths Q_1^{i+1} , Q_2^{i+1} and Q_31^{i+1} are constructed from Q_1^i , Q_2^i and Q_3^i , respectively, as follows:

(1) the path Q_1^{i+1} is obtained from Q_1^i and the path

$$X_i = (v_{8+16i}, v_{8+16i+4}, v_{8+16i+7}, v_{8+16i+11}, v_{8+16i+14}, v_{8+16(i+1)})$$

by identifying the the vertex v_{8+16i} in Q_1^i and X_i , respectively.

(2) the path Q_2^{i+1} is obtained from Q_2^i and the path

$$Y_i = (v_{9+16i}, v_{9+16i+1}, v_{9+16i+4}, v_{9+16i+8}, v_{9+16i+9}, v_{9+16i+12}, v_{9+16(i+1)})$$

by identifying the the vertex v_{9+16i} in Q_2^i and Y_i , respectively.

(3) the path Q_3^{i+1} is obtained from Q_3^i and the path

$$Z_i = (v_{7+16i}, v_{7+16i+4}, v_{7+16i+7}, v_{7+16i+9}, v_{7+16i+13}, v_{7+16(i+1)})$$

by identifying the the vertex v_{7+16i} in Q_3^i and Z_i , respectively.

Observe that Q_1^i , Q_2^i and Q_3^i are internally disjoint properly colored paths in P_n^4 for all $i \geq 0$ (where n is sufficiently large). We now verify the following claim.

Claim. For each $n \geq 10$, three internally disjoint properly colored $v_0 - v_{n-1}$ paths Q_1, Q_2 and Q_3 can be constructed from the paths Q_1^i, Q_2^i and Q_3^i for some integer i with $i \geq \left\lceil \frac{n-9}{16} \right\rceil$ by an appropriate modification.

Proof of Claim. The distance sequences of Q_1^0 , Q_2^0 and Q_3^0 are

$$d(Q_1^0): 1, 2, 3, 2, \quad d(Q_2^0): 2, 3, 4, \quad \text{and} \quad d(Q_3^0): 4, 3.$$

In general, for each integer $i \geq 0$,

$$d(Q_1^{i+1}):d(Q_1^i),s_1,\quad d(Q_2^{i+1}):d(Q_2^i),s_2,\quad \text{ and }\quad d(Q_3^{i+1}):d(Q_3^i),s_3$$

where s_i are shown in (1) for $1 \leq i \leq 3$. Since (i) the sum of integers in s_i is 16 for $1 \leq i \leq 3$ and (ii) the terminal terms in $d(Q_1^i)$, $d(Q_2^i)$, $d(Q_3^i)$ are 2, 4, 3 for all $i \geq 0$, it follows that, to verify the claim, it suffices to show that for each n with $10 \leq n \leq 25$, three internally disjoint properly colored $v_0 - v_{n-1}$ paths Q_1, Q_2 and Q_3 can be obtained from Q_1^1 , Q_2^1 and Q_3^1 in P_n^4 . This is verified by the following table, where a path $(v_{i_1}, v_{i_2}, \ldots, v_{i_s})$ is denoted by (i_1, i_2, \ldots, i_s)

n = 10	Q_1 : (0, 1, 3, 7, 9)	n = 18	Q ₁ : (0, 1, 3, 6, 8, 12, 15, 17)
	Q_2 : (0, 2, 6, 9)		Q_2 : (0, 2, 5, 9, 10, 13, 17)
	Q_3 : (0, 4, 5, 9)		Q3: (0, 4, 7, 11, 14, 16, 17)
	Q_1 : $(0, 1, 3, 6, 10)$	n = 19	Q1: (0, 1, 3, 6, 8, 12, 15, 16, 18)
	Q2: (0, 2, 5, 9, 10)		Q_2^2 : (0, 2, 5, 9, 10, 13, 17, 18)
	Q3: (0, 4, 7, 8, 10)		Q3: (0, 4, 7, 11, 14, 18)
	Q ₁ : (0, 1, 3, 6, 8, 11)	n = 20	Q1: (0, 1, 3, 6, 8, 12, 15, 19)
	Q ₂ : (0, 2, 5, 9, 11)	<i>7</i>	Q2: (0, 2, 5, 9, 10, 13, 17, 19)
		1	Q ₃ : (0, 4, 7, 11, 14, 16, 19)
	Q3: (0, 4, 7, 11)		
	Q_1 : (0, 1, 3, 6, 8, 12)	n = 21	Q1: (0, 1, 3, 6, 8, 12, 15, 19, 20)
	Q2: (0, 2, 5, 9, 12)		Q2: (0, 2, 5, 9, 10, 13, 17, 20)
	Q3: (0, 4, 7, 11, 12)		Q3: (0, 4, 7, 11, 14, 16, 20)
	Q ₁ : (0, 1, 3, 6, 8, 12, 13)	n = 22	Q1: (0, 1, 3, 6, 8, 12, 15, 19, 21)
	Q2: (0, 2, 5, 9, 10, 13)		Q2: (0, 2, 5, 9, 10, 13, 17, 18, 21)
	Q3: (0, 4, 7, 11, 13)		Q_3 : (0, 4, 7, 11, 14, 16, 20, 21)
n = 15	Q1: (0, 1, 3, 6, 8, 12, 14)	n = 23	Q1: (0, 1, 3, 6, 8, 12, 15, 19, 22)
1	Q2: (0, 2, 5, 9, 10, 13, 14)		Q2: (0, 2, 5, 9, 10, 13, 17, 18, 21, 22)
	Q3: (0, 4, 7, 11, 14)		Q3: (0, 4, 7, 11, 14, 16, 20, 22)
	Q ₁ : (0, 1, 3, 6, 8, 12, 15)	n = 24	Q1: (0, 1, 3, 6, 8, 12, 15, 19, 22, 23)
	Q2: (0, 2, 5, 9, 10, 13, 15)		Q2: (0, 2, 5, 9, 10, 13, 17, 18, 21, 23)
	Q3: (0, 4, 7, 11, 14, 15)		Q3: (0, 4, 7, 11, 14, 16, 20, 23)
	Q ₁ : (0, 1, 3, 6, 8, 12, 15, 16)	n = 25	Q1: (0, 1, 3, 6, 8, 12, 15, 19, 21, 24)
		74 = 25	
	Q2: (0, 2, 5, 9, 10, 14, 16)		Q2: (0, 2, 5, 9, 10, 13, 17, 18, 22, 24)
	Q ₃ : (0, 4, 7, 11, 13, 16)		Q3: (0, 4, 7, 11, 14, 16, 20, 23, 24)

The result then follows from the claim.

We are now prepared to show that P_n^4 is properly 3-connected for each $n \geq 7$.

Theorem 3.6 For each integer $n \geq 7$, the distance-colored graph P_n^4 is properly 3-connected.

Proof. Let $P_n = (v_0, v_1, \ldots, v_{n-1})$. We proceed by induction on n. For n=7, it is straightforward to verify that P_7^4 is properly 3-connected. Assume that P_k^4 is properly 3-connected for some integer $k \geq 7$. Now let u and v be two distinct vertices of P_{k+1}^4 . First, suppose that $\{u,v\} \neq \{v_0, v_k\}$. We may assume, without loss of generality, that $v_k \notin \{u, v\}$. Let $P_k = P_{k+1} - v_k$. Then $u, v \in V(P_k)$ and $d_{P_k}(u, v) = d_{P_{k+1}}(u, v)$. By the induction hypothesis, P_k^4 contains three internally disjoint properly colored u-v paths and these three paths are also properly colored paths in P_{k+1}^4 . Next, suppose that $\{u,v\} = \{v_0, v_k\}$. It then follows by Lemma 3.5 that P_{k+1}^4 contains three internally disjoint properly colored $v_0 - v_k$ paths.

4 On H-Colored and H-Chromatic Graphs

In Sections 2 and 3, we investigated connected graphs G for which G^k is properly p-connected for some integers $k, p \geq 2$. If G^k is properly p-connected, then G^k contains a properly colored subdivision of $K_{2,p}$ as a subgraph. In fact, there is no restriction on what properly colored subgraphs that G^k can possess.

Theorem 4.1 For every connected graph H, there exists a connected graph G and a positive integer k such that the distance-colored graph G^k contains a copy of H and a proper edge coloring of H using $\chi'(H)$ colors.

Proof. Since the result is obvious if $H = K_2$, we may assume that H has order at least 3. Let $\chi'(H) = \chi \geq 2$ and let c be a proper χ -edge coloring of H using the colors $1, 2, \ldots, \chi$. We consider two cases.

Case 1. $\chi=2$. For each $e\in E(H)$ such that c(e)=2, subdivide the edge e exactly once. Denote the resulting graph by G. Then the distance-colored graph G^2 contains a copy of H and a proper 2-edge coloring of H using colors 1 and 2.

Case 2. $\chi \geq 3$. Let $M=\chi-3$. For each $e\in E(H)$, subdivide the edge e a total of M+c(e)-1 times, resulting in a path of length M+c(e). Denote the resulting graph by G. Suppose that e joins u and v in H. Since there is a path of length M+c(e) connecting u and v in G, it follows that $d_G(u,v)\leq M+c(e)$. We claim that $d_G(u,v)=M+c(e)$. Suppose that $d_G(u,v)< M+c(e)$. Then there exists a u-v path in G of length less than M+c(e). From the way in which G is constructed, the length of such a path must be at least (M+p)+(M+q) for some positive integers p and q such that $p+q\geq 3$. Since $(M+p)+(M+q)\geq 2M+3$, it follows that $2M+3< M+c(e)\leq M+\chi$ and so $M<\chi-3$, which is impossible. Thus $G^{M+\chi}$ contains a copy of H and a proper χ -edge coloring of H using colors $M+1,M+2,\ldots,M+\chi$.

Theorem 4.1 raises the question of determining the smallest order of such a graph G. Let H be a given connected graph. A connected graph G is H-colored if there is a positive integer k such that the distance-colored graph G^k contains a properly edge-colored copy of H with $\chi'(H)$ colors. If the properly edge-colored copy of H in an H-colored graph G is produced by a $\chi'(H)$ -edge coloring C, then G is an H-colored graph with respect to C. The minimum order of such a graph G is called the color-order of G0, denoted by G1. An G2 is a nontrivial connected graph of order G3 and G4 is an G5 is an G5 is an G6.

Let H be a nontrivial connected graph of size m with $E(H) = \{e_1, e_2, \ldots, e_m\}$ and $\chi'(H) = \chi$. For a χ -edge coloring c of H, define the σ -number of c by

$$\sigma(c) = \sum_{i=1}^{m} (c(e_i) - 1).$$

Let C(H) be the set of all χ -colorings of H. The minimum σ -number (or simply σ -number) of H is defined by

$$\sigma(H) = \min \left\{ \sigma(c) : c \in \mathcal{C}(H) \right\}.$$

First, we establish bounds for the color-order of a connected graph in terms of its order, size, chromatic index and minimum σ -number.

Theorem 4.2 If H is a nontrivial connected graph of order n with $\chi'(H) \geq 3$, then

$$n + \sigma(H) \le \operatorname{co}(H) \le n + m(\chi'(H) - 3) + \sigma(H). \tag{2}$$

Proof. The upper bound for co(H) is a consequence of the proof of Theorem 4.1, in which the H-colored graph has order $n+m(\chi'(H)-3)+\sigma(H)$ if we choose a χ -edge coloring whose σ -number is $\sigma(H)$. Thus, it remains to verify the lower bound. Let c be a χ -edge coloring of H using the colors $1, 2, \ldots, \chi$ and let G be an H-colored graph with respect to c. Thus there is a positive integer k such that the distance-colored G^k contains a properly edge-colored copy of H produced by the coloring c. Let $E(H) = \{e_1, e_2, \ldots, e_m\}$. For each i with $1 \leq i \leq m$, let $e_i = x_i y_i$ and $c(e_i) = c_i$. Since $d_G(x_i, y_i) = c_i$, there is an $x_i - y_i$ geodesic Q in G^k . Suppose that $Q = (x_i = v_0, v_1, \ldots, v_{c_i} = y_i)$. Since e_i is an edge of H, each of the vertices $v_1, v_2, \ldots, v_{c_{i-1}}$ belongs to V(G) - V(H). This implies that each edge e_i $(1 \leq i \leq m)$ colored c_i contributes a total $c_i - 1$ to the order of G. Since $V(H) \subseteq V(G)$, the order of G is at least

$$n+\sum_{i=1}^m(c_i-1)\geq n+\sigma(H),$$

giving the desired result.

Next, we describe a class of connected graphs H for which $co(H) = n + \sigma(H)$. The girth g(H) of a graph H having a cycle is the length of a smallest cycle in H.

Proposition 4.3 Let H be a nontrivial connected graph of order n. If H is a tree or $\chi'(H) \leq |3(g(H)-1)/2|$, then $co(H) = n + \sigma(H)$.

Proof. Suppose that $\chi'(H) = \chi$. Let c be a χ -edge coloring of H using the colors $1, 2, \ldots, \chi$ such that $\sigma(c) = \sigma(H)$. For each $e \in E(H)$, subdivide the edge e a total of c(e)-1 times, resulting in a path of length c(e). Denote the resulting graph by G. Thus the order of G is $n + \sigma(c)$. It remains to show that G is H-colored with respect to the coloring c. Suppose that e joins e and e in e. Since there is a e path of length e connecting e and e in e, it follows that e connecting e. We claim that e connecting e and e in e, it follows that e connecting e.

First, suppose that H is a tree. Since G is a subdivision of a tree, G is a tree as well. Thus the u-v path of length c(e) is the only u-v path in G. Hence $d_G(u,v)=c(e)$ if H is a tree. Next, suppose that H is not a tree. Assume, to the contrary, that $d_G(u,v)< c(e)$. Then there exists a u-v path G in G of length less than c(e). Let G be a G path in G. Since the girth of G is G and G and G is either 1 or is at least G 1. If the length of G is 1, then G is a subdivision of a tree, G is a tree.

to a u-v path of length c(e) in G. Thus, we may assume that the length of P is ℓ and so $\ell \geq g-1$. Let $P=(u=x_0,x_1,x_2,\ldots,x_\ell=v)$. Since P is properly colored by c, it follows from the way in which G is constructed that P gives rise to a u-v path in G whose length is at least

$$\sum_{i=0}^{\ell-1} c(x_i x_{i+1}) \geq \left\lceil \frac{g-1}{2} \right\rceil + 2 \left\lfloor \frac{g-1}{2} \right\rfloor = \left\lfloor \frac{3(g-1)}{2} \right\rfloor.$$

This implies that the length of Q is at least |3(g-1)/2|. However then,

$$c(e) > d_G(u,v) \ge \left| \frac{3(g-1)}{2} \right| \ge \chi'(H) \ge c(e),$$

which is a contradiction. Therefore, G^{χ} contains a properly edge-colored copy of H using χ colors and G is H-colored.

The following is an immediate consequence of Theorem 4.2 and Proposition 4.3.

Corollary 4.4 If H is a nontrivial connected graph of order n such that $\chi'(H) = 2$ or $\chi'(H) = 3$, then $co(H) = n + \sigma(H)$.

5 Acknowledgments

We are grateful to the referee whose valuable suggestions resulted in an improved paper.

References

- G. Chartrand, R. Jones, K. Kolasinski and P. Zhang, On the Hamiltonicity of distance-colored graphs. Congr. Numer. 202 (2010) 129-136.
- [2] G. Chartrand, K. Kolasinski and P. Zhang, The colored bridges problem. Geographical Analysis. 43 (2011) 370-382.
- [3] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs, Fifth Edition. Chapman & Hall/CRC, Boca Raton, FL (2011).
- [4] H. Fleischner, The square of every two-connected graph is Hamiltonian. J. Combin. Theory Ser. B 16 (1974) 29-34.
- [5] R. Jones, K. Kolasinski, C. Lumduanhom and P. Zhang, Color-distance in color-connected graphs. *Util. Math.* To appear.

- [6] R. Jones, K. Kolasinski and P. Zhang, On Hamiltonian-colored graphs. *Util. Math.* To appear.
- [7] M. Sekanina, On an ordering of the set of vertices of a connected graph. Publ. Fac. Sci. Univ. Brno. 412 (1960) 137-142.
- [8] H. Whitney, Congruent graphs and the connectivity of graphs. Amer. J. Math. 54 (1932) 150-168.