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Abstract

For a connected graph G and a positive integer k, the kth power
G* of G is the graph with V(G*) = V(G) where uv € E(G*) if the
distance dg(u,v) between u and v is at most k. The edge coloring
of G* defined by assigning each edge uv of G* the color dg(u,v)
produces an edge-colored graph G* called a distance-colored graph.
A distance-colored graph is properly p-connected if every two distinct
vertices u and v in the graph are connected by p internally disjoint
properly colored u — v paths. It is shown that G2 is properly 2-
connected for every 2-connected graph that is not complete, a double
star is the only tree T' for which T2 is properly 2-connected and G*
is properly 2-connected for every connected graph G of diameter at
least 3. All pairs k,n of positive integers for which P¥ is properly
k-connected are determined. It is shown that every properly colored
graph H with x'(H) colors is a subgraph of some distance-colored
graph and the question of determining the smallest order of such a
graph is studied.

1 Introduction

For a connected graph G and a positive integer k, the kth power G* of
G is the graph with V(G*) = V(G) where uv € E(G¥) if the distance
dg(u,v) between u and v (the length of a shortest u — v path in G) is
at most k. The graph G? is called the square of G and G® is the cube of
G. Among the best known results concerning powers of graphs are those
concerning Hamiltonian properties. In particular, Sekanina [7] proved that
the cube of every connected graph is Hamiltonian-connected and is therefore
Hamiltonian (if its order is at least 3). Hence for every connected graph G
of order n > 3, there is a Hamiltonian cycle C = (vq,va,...,Vn, Unt1 = V1)
of G, which implies that dg(vi,vi+1) € {1,2,3} for 1 < i < n. While the
square of every connected graph need not be Hamiltonian, Fleischner [4]
showed that the square of every 2-connected graph is Hamiltonian.
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For a connected graph G of order n and diameter d and integers  and
k with 1 < i < k < d, the color i is assigned to an edge wv in G* if
dg(u,v) = i. The resulting edge-colored graph G* is called a distance-
colored graph. If a distance-colored graph G* contains a properly colored
subgraph isomorphic to a graph H, then G* is called H-colored. Certainly,
it is only possible for G* to be H-colored if x'(H) < k, where x/(H) is
the chromatic index of H. If H = C,,, then G* is called a Hamiltonian-
colored graph. The Hamiltonian coloring exponent hce(G) of G is defined
as the minimum k for which G* is Hamiltonian-colored. These concepts
were introduced and studied in [1] and studied further in [2, 5, 6].

For a connected graph G and a positive integer k, the distance-colored
graph G* is called properly color-connected, or simply color-connected, if
every two vertices u and v in G* are connected by a properly colored u — v
path in G*. If the diameter of G is d, then G? is complete and so every
two vertices u and v in G¢ are connected by the path (u,v) of length 1
in G%. Thus G? is color-connected. The smallest integer k for which G*
is color-connected is called the color-connection exponent cce(G) of G. In
fact, this number is 2 for all non-complete connected graphs (see [6]).

Theorem 1.1 If G is a non-complete connected graph, then cce(G) = 2.

By Theorem 1.1, the distance-colored graph G? is colored-connected
and so for every two vertices u and v of G2, there is at least one properly
colored u — v path in G2. This gives rise to another concept. If G is a
connected graph with connectivity k(G) = k, then it follows from a well-
known theorem of Whitney (8] that for every two distinct vertices u and v
of G, the graph G contains s internally disjoint « — v paths. A graph G is
p-connected if K(G) > p. For a connected graph G and an integer k > 2, the
distance-colored graph G* is properly colored p-connected or simply properly
p-connected if for every two distinct vertices u and v of G¥, there are p
internally disjoint properly colored u — v paths in G*. If G is a complete
graph, then G* is not properly p-connected for all integers k,p with k > 1
and p > 2. Thus we consider only non-complete connected graphs. For a
connected graph G and an integer k > 2, the color-connectivity of G* is the
maximum positive integer p for which G* is properly p-connected.

In Section 2, we study the color-connectivities of the square and the
cube of a connected graph, while in Section 3 we determine all pairs k,n
of positive integers for which P* is properly k-connected. In Section 4, we
show that every properly colored graph H with x'(H) colors is a subgraph
of some distance-colored graph and study the question of determining the
smallest order of such a graph. We refer to the book [3] for graph theory
notation and terminology not described in this paper. We assume that all
graphs under consideration are connected.
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2 Properly 2-Connected Graphs

For a connected graph G of order 3 or more, it is well known that G2 is
2-connected and so every two distinct vertices u and v of G are connected
by two internally disjoint u — v paths in G2, By Theorem 1.1, the distance-
colored graph G? is colored-connected. However, G2 need not be properly
2-connected, that is, it is possible that for some pair u, v of vertices of G2,
two internally disjoint properly colored « — v paths do not exist in G2. For
example, if G = K ,—; where n > 3, then G? = K,, is 2-connected but not
properly 2-connected (as any two end-vertices of G are not connected by
two internally disjoint properly colored paths in G2). On the other hand,
if G is 2-connected, then G2 is properly 2-connected. In order to show this,
we first present a lemma, which was established in [1].

Lemma 2.1 For each integer n > 3, the distance-colored graph P2 con-
tains a properly colored Hamiltonian path. .

Theorem 2.2 If G is a 2-connected graph that is not complete, then G2
is properly 2-connected.

Proof. Let u and v be two distinct vertices of G. Since G is 2-connected,
G contains at least two internally disjoint u— v paths. Among all internally
disjoint u ~ v paths in G, let P and P’ be two of smallest possible lengths.
Let P = (v = z1,23,...,25 = v) and P = (u = y,¥2,...,% = v).
By the defining property of P and P’, it follows that dp(z;,Zit2) = 2 =
de(zi, Tig2) for 1 < i < s — 2 and dp/(y;,yj42) = 2 = de(yj, yj+2) for
1< j<t—-2. By Lemma 2.1, there is a properly colored © — v path Q in
the square of P and a properly colored u — v path Q' in the square of P’.
Since P and P’ are internally disjoint, so are Q and Q’. Therefore, G2 is
properly 2-connected. ]

For a connected graph G, its square can be properly 2-connected without
G being 2-connected, however. In the case of trees, for example, we know
precisely those trees whose square is properly 2-connected. A double star
is a tree of diameter 3. The double stars are the only trees T for which T2
is properly 2-connected.

Theorem 2.3 Let T be a tree of order at least 3. Then T? is properly
2-connected if and only if T is a double star.

Proof. First, suppose that T is a double star whose central vertices are z
and y. Let X = {z,,22,...,z,} and Y = {y1,¥2,...,¥s} be the sets of end-
vertices of T such that z is adjacent to every vertex in X and y is adjacent
to every vertex in Y, where then r,s > 1. Let u,v € V(T). We show that
u and v are connected by two internally disjoint properly colored paths. If
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{u,v} = {z,y}, say v = z and v = y, then (u,v) and (u,z;,v) are two
internally disjoint properly colored u —v paths in T2. If {u,v}N{z,y} =0,
then we may assume that v € X. If v € X, say v = z3, then (u,v) and
(u,z,¥1,y,v) are two internally disjoint properly colored u — v paths in T2.
IfveY, say v=y, then (u,y,v) and (u,z,v) are two internally disjoint
properly colored v — v paths in T2. If |{u,v} N {z,y}{ = 1, then we may
assume that u =z and v # y. lf v € X, say v = z;, then (u,v) and (u,y,v)
are two internally disjoint properly colored « — v paths in T2, If v € Y,
say v = yj, then (u,v) and (u,z;,y,v) are two internally disjoint properly
colored u — v paths in T2.

For the converse, assume that T is not a double star. Let d = diam(T’)
and so d # 3. If d = 2, then T is a star and we saw that T2 is not properly
2-connected. Thus we may assume that d > 4. Let u be an end-vertex
of T whose eccentricity er(u) is d and let v be a vertex of T such that
dr(u,v) = 4. We show that there are no two internally disjoint properly
colored u—v paths in T'2. Suppose that (u, v, vz, va,v) is the u—v path in T.
Assume, to the contrary, that T2 contains two internally disjoint properly
colored u — v paths Py and P,. By an extensive case-by-case analysis, it
can be shown that each properly colored » — v path in T2 must contain at
least two vertices in {v;, v, v3}. This implies that each of P, and P, must
contain at least two vertices from {vi,v2,v3}, which is impossible. ]

We have seen that if G is a connected graph, then G2 is 2-connected.
Since (G?)? = G* for each connected graph G, the following is an immediate
consequence of Theorem 2.2.

Corollary 2.4 If G is a connected graph such that G? is not complete,
then G4 is properly 2-connected.

By Corollary 2.4, if G is a connected graph of diameter at least 3, then
G* is properly 2-connected. This gives rise to a natural question: For a
connected graph G of diameter at least 3, what is the minimum & such
that G* is properly 2-connected? By Theorem 2.2 and Corollary 2.4, either
k =3 or k = 4. Next, we show that k = 3.

Theorem 2.5 If G is a connected graph of diameter at least 3, then G®
is properly 2-connected.

Proof. Since the diam(G) > 3, it follows that the order of G is at least
4. Let u and v be two distinct vertices of G. We show that u and v
are connected by two internally disjoint properly colored paths in G3. We
consider two cases, according to 1 < dg(u,v) < 2 or dg(u,v) 2 3.

Case 1. 1 < dg(u,v) < 2. If Ng(u) # Ng(v), say ¢ € Ng(u) —
N¢(v), then (u,v) and (u,z,v) are two internally disjoint properly colored
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u — v paths in G3. Thus, we may assume that Ng(u) = Ng(v). Since
diam(G) > 3, it follows that rad(G) > 2 and eg(y) > 2 for all y € V(G).
If eg(u) > 3 or eg(v) > 3, say the former, then there is w € V(G) such
that dg(u,w) = 3. Let (u,z;,z2,w) be a u — w geodesic in G. Since
Ng(u) = Ng(v), it follows that v is adjacent to z; (and v is not adjacent
to z2). Then (u,v) and (u,w,z;,v) are two internally disjoint properly
colored u — v paths in G3. Thus we may assume that eg(u) = eg(v) = 2.
Then rad(G) = 2 and 3 < diam(G) < 4. Let w and w’ be vertices with
d(w,w’) = 3. Clearly, u,v,w,w’ are distinct. Then (u,v) and (u,w,w’,v)
are two internally disjoint properly colored « — v paths in G3.

Case 2. dg(u,v) = 3. Let d = dg(u,v) and let P =(u = v, vy, va,
..., Yg = v) be a u — v geodesic in G. Thus dp(z,y) = dg(z,y) for all
z,y € V(P). If d = 3, then (u,v) and (u,vs,v) are two internally disjoint
properly colored v — v paths in G3. If d = 4, then (u,v1,v) and (u,vs,v)
are two internally disjoint properly colored u — v paths in G3. Thus, we
may assume that d > 5. Suppose that d = ¢ (mod 4) where i = 0,1,2,3
and let d = 4k + i for some positive integer k. In each case, G® contains
two internally disjoint properly colored u — v paths Q; and Q, as follows:
For d = 4k,

Q1 = (u,v1,v4,75,V8,V9,...,Vsk—3, Vik)
Q2 = (u,v2,v3,V6,V7,V10,. .., Vak—2, Vak).
Ford =4k +1,
Q1 = (u,v1,v4,0s,78,V0,...,Vak, Vak+1)
Q2 = (u,v2,v3,V6,V7,v10,...,Vak—1,Vak+1)-
For d = 4k + 2,
Ql = (ul v, V4, Vs, Vg, Yy, . .. s'v4kav4k+2)
Q2 = (u,V2,¥3,V6,V7,V10,. .-, Vak—1, Vak+2)-
For d = 4k + 3,
Ql = (u$ V1,Y4,Vs5,U8, V9, ..., V4k+1, v4k+3)
Q2 = (u,v2,93,6,97,V10,- .- Vak+2, Vak+3)-
Therefore, G3 is properly 2-connected. n

Theorem 2.5 brings up another question: For a connected graph G of
diameter at least 3, is G3 is properly 3-connected? We will see in the next
section that this is not true in general.
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3 Color-Connectivities of Powers of a Path

We have seen in the proofs of Theorems 2.2 and 2.5 that the color-connectivity
of the distance-colored graph P¥ of a path P, of order n plays an important
role in determining the color-connectivity of a connected graph. Thus in
this section, we investigate the color-connectivities of the distance-colored
graph P,'f for integers n and k with n > k+ 1 > 3. By Theorem 2.3, the
distance-colored graph P2 is properly 2-connected if and only if n = 4. By
Theorem 2.5, P2 is properly 2-connected for all n > 4. However, P2 is
not properly 3-connected in general. In fact, for n > 4, it can be verified
that the distance-colored graph P3 is properly 3-connected if and only if
n = 6. Next, we determine all pairs k, n of integers withn > k+1 > 4 for
which P¥ is properly k-connected. In order to do this, we first present two
lemmas.

Lemma 3.1 For each even integer k > 2, the distance-colored graph P} 2
is properly k-connected.

Proof. We proceed by induction on even integers k > 2. By Theorem 2.3,
P} is properly 2-connected and so the statement holds for k = 2. Suppose
that Pf ', 2 is properly k-connected for some even integer k > 2. Let Peyy =
(vo,v1,V2, - -.,Uk+3) and let u and v be two distinct vertices of Pri4. We
show that there are k + 2 internally disjoint properly colored v — v paths
in PgFZ. We consider two cases.

Case 1. u and v are not end-vertices of G. Thenu,v € {vy,va,...,v4+2}.
Let Piy2 = (v1,v2,...,vk42). Since P¥ _, is properly k-connected by
the induction hypothesis, there are k internally disjoint properly colored
u-—-v pa’ths erQZ," . )Qk in P”:'l'z' Let Qk+1 = (ua vOav) and Qk+2 =
(%, Vky3,v). Therefore, Q1,Q2,...,Qr+2 are k + 2 internally disjoint prop-
erly colored u — v paths in P&fZ.

Case 2. At least one of u and v is an end-vertezr of G, say u = vy. If
vV = Ug4s, then let Q; = (vo, s, vk43) for 1 < ¢ < k + 2, producing &k + 2
internally disjoint properly colored vy — vx+3 paths in P,:‘_"f'f. Thus, we may
assume that v # vr43. If v = vgesq for some nonnegative integer £, where
1<2¢+1 < k+1, then construct k + 2 internally disjoint properly colored

Vo — VUge41 Paths @3, Q2, ..., Qrsz in P,f:f as follows:
(v07 Vi, 1)28'{-1) if1 <i< 2¢
Qi = (va le-{-l) ifi=20 + 1
(vo,vi,v0e41) if204+2<i<k+2

If v = vy for some positive integer £ where 2 < 2¢ < k + 2, then construct
k + 2 internally disjoint properly colored vg — vy paths @1,Q@2,..., Q42
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in P§f2 as follows:

(vo, ¥4, v2e) ifl<i<k+2andi#42¢
Qi =14 (vo,v2e) if i =2¢
(vo, Ve, Vk43,v2e) ifi=4L.

Therefore, P,f_tf is properly (k + 2)-connected. n

Lemma 3.2 For each odd integer k > 3, the distance-colored graph P¥, ,
is properly k-connected.

Proof. We proceed by induction on odd integers k > 3. Figure 1 shows
that P} is properly 3-connected.

Figure 1: Showing that Pg is properly 3-connected

Assume that P,f+3 is properly k-connected for some odd integer k£ > 3.
We show that P,f;"g is properly (k + 2)-connected. Let Piys =(vo, v1, ...,
Uk+4) and let u and v be two distinct vertices of Pry5. We may assume
that © = v and v = v, where 0 < s < t < k + 4. We consider two cases.

Case 1. u and v are not end-vertices of Piys. Then u,v € {vy, vs,
..., Uk43}. First, suppose that u # v; and v # vk4+3. By the induction
hypothesis, there are k internally disjoint properly colored u — v paths
Q1,Q2,...,Qx whose vertices belong to {v1,v2,...,vk4+3}. Let Qrq1 =
(uyv0,v) and Qr42 = (U, Vk+4,v). Then Q1,Qa,...,Qr42 are k + 2 inter-
nally disjoint properly colored u — v paths in P,f;"g and so P,f.:'g is properly
(k + 2)-connected.

Next, suppose that either u = v; or v = vg3. We may assume, with-
out loss of generality, that u € {v,v2,...,vk42} and v = vgys. Let
dp,,.s(¢,v) = p. Suppose that v = v;, where 1 < i < k + 2, and so
p=k+3—1. If pisodd, then define

Q'= (U,',Uj,’l)k+3) ifj€{1,2,...,k+2}—{i}
g (vi, Vie43) if j =4,
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If p is even, then define

(i, V5, Vk43) if j € {.1,2,...,k+2}—{i,£%}
Qi =< (vi,vk43) ifj=1
(viavk+4’vk+3) if] = ﬂ-_kg_‘!._s-

In each case, @1, Q2,. .., Qk+2 are k+2 internally disjoint properly colored
u — v paths in P5}Z and so Pf}? is properly (k + 2)-connected.

Case 2. At least one of u and v is an end-verter of Piys, say u = vp.
Observe that the neighborhood of vy in P,f;'_'g is {v1,v2,...,Vk42}.

e Ifv=v,and 1 <t <k+2, then define

(vo, vi, V) ifie{1,2,...,k+2}— {t,&
Qi=1q (vo,v) ifi=t
(v01vi1vk+3,vt) ifi = %.

o If v = w43, then define Q; = (vo,vs,vk43) for 1 < i < k+2 and
i# 4% and Qrgs = (v0, Vg, Vk44, Vk43);

o If v = w44, then define Q, = (vo,v1,Vk+3,Vk+4) and Q; =(vo, vi,
Uptq) for 2<i<k+2.

In each case, @1, Q3,...,Qk+2 are k+2 internally disjoint properly colored
u — v paths in PF}? and so Pf? is properly (k + 2)-connected. .

We are now prepared to determine all pairs k,n of integers with n >
k +1 > 4 for which P¥ is properly k-connected.

Theorem 3.3 Let k and n be integers where n > k+1 > 4. Then P¥
is properly k-connected if and only if n is even and either k is odd and
k+3<n<2korkisevenandk+2<n<2k.

Proof. First, suppose that n is even and we show that P* is properly
k-connected if either k isodd and k+3<n<2korkisevenand k+2 <
n < 2k. We consider two cases.

Case 1. k is odd. We proceed by a finite induction on integers n to
show that, for each odd integer k > 3, if k+ 3 < n < 2k, then PF is
properly k-connected. By Lemma 3.2, this statement is true for n = k + 3.
Assume, for each odd integer k > 3, that P* is properly k-connected for
an even integer n with k + 3 < n < 2k —2. We show that P¥,, is properly
k-connected. Let P42 = (vo,v1,...,vn+1) and let u and v be two distinct
vertices of P,42. First, suppose that dp, ,(2,v) < n. We may assume,
without loss of generality, that u,v € {v,v1,...,vn—1}. By the induction
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hypothesis, there are & internally disjoint properly colored « — v paths in
Pk where P, = (vo,v1,...,%n-1) and so in Pk, as well. Next, suppose
that n < dp,,(u,v) < n+1. We may assume that u = vp. If v = vy, then
define

(vo,v,-,vi.l,k,vn) iflSi<n—kandi-,£'=%
Qi =< (vo,vi,vn) fn-k<i<kandi#3

(v0,vg,VUnt1,vn) ifi=3.
If v = v 41, then define

Qi = (v0, Vi, VitksVn1) f1<i<n—k
¢ V0, Vi, Unt1 fn—-k<i<k.
+

In each case, Q1,Q2,...,Qk are k internally disjoint properly colored u —v
paths in P%,, and so Pk, is properly k-connected.

Case 2. k is even. We proceed by a finite induction on integers n to
show that, for each even integer k > 4, if k +2 < n < 2k, then PF is
properly k-connected. By Lemma 3.1, this statement is true for n = k + 2.
Assume for each even integer k that P¥ is properly k-connected for an even
integer n with kK +2 < n < 2k — 2. An argument similar to the one in
Case 1 shows that P¥_, is properly k-connected.

To verify the converse, we consider two cases, according to n is odd or
n is even.

Case 1. n is odd. We show that P¥ is not properly k-connected for all
k and n with & > 2 and n > k + 1. Assume, to the contrary, that for some
integer k > 2 there is an odd integer n > k + 1 such that P¥ is properly
k-connected. By Theorem 2.3, k > 3. Let n = 2¢+ 1 for some integer £ > 2
and let P, = (vo,v1,...,v2¢). Since P¥ is properly k-connected, there
are k internally disjoint properly colored vy — v paths @, Qs,...,Qy in
Pk, Since degpx vo = k and v is adjacent to vy, vs,..., vk in P¥, we may
assume that vg is adjacent to v; in Q; for 1 < i < k. Since these k paths are
internally disjoint, this implies that v1 € V(Q1) must be adjacent to ve4;
in @1 and so v2 € V(Q2) must be adjacent to vg42 in Q2. Continuing in
this manner, we obtain that v; € V(Q;) must be adjacent to vk; in Q; for
1 <4 < k. However then, Q¢ = (vo, ve,v2¢) is not properly colored, which
is a contradiction.

Case 2. n is even. In this case, for an odd integer k > 3, we show that
ifn=k+1orn>2k+2, then P* is not properly k-connected; while for
an even integer k > 2, we show that if n > 2k + 2, then PF is not properly
k-connected. Therefore, it suffices to show that if n=k+1orn > 2k + 2,
then PF is not properly k-connected. Assume, to the contrary, that Pk is
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properly k-connected for some integers k£ > 2 and n such that n =k +1 or
n > 2k + 1. We consider these two subcases.

Subcase 2.1. n = k+ 1. Let Pryy = (vo,v1,...,vk). Since P,f_*,1 is
properly k-connected, there are k internally disjoint properly colored vg—vs
paths @1,Q2,...,Q% in P,f_,_l. Since degp':.“ vo = k and v is adjacent to
v1,V2,..., U iD P,EH, it follows that v is adjacent to v; (1 £ ¢ < k) in
exactly one of these k paths. We may assume that v is adjacent to v; in
Q; for 1 < i < k. However then, @; = (vp,v1, ) is not properly colored,
which is a contradiction.

Subcase 2.2. n > 2k + 2. Let P, = (vo,v1,...,Un-1). Since P¥ is
properly k-connected, there are & internally disjoint properly colored vp —
vak paths Q1,Qz,...,Qx in PE. Since degpsvo = k and v is adjacent
to vy,v2,...,v in P¥ we may assume that v is adjacent to v; in Q;
for 1 < i < k. Thus, v; € V(Q;) must be adjacent to vg4; in Q; for

1 < i < k. However then, vour and vivor are adjacent edges in Qg, which
is impossible. .

While it follows from Theorem 3.3 that the distance-colored graph PF is
not properly k-connected whenever n > 2k+1 > 7, the following is believed
to be true.

Conjecture 3.4 For each integer k > 3, the distance-colored graph Pk+!
is properly k-connected for all n > 2k + 1.

Conjecture 3.4 is true for k = 3, however, as we now verify. First, we
introduce some additional definitions and notation. For a path (zg, z3, .. .,
Tn—1), the vertex z,_, is called the terminal vertez of this path. For a path
Q of a connected graph H and v € V(H) — V(Q), let ¢(Q,v) denote the
distance between v and the terminal vertex of Q. For a set @ of paths in
a connected graph H, let V(Q) be the set of vertices of H that belong to
some path in Q. For each v € V(H) — V(Q), define

T(Q,v) = max{t(Q,v) : Q € Q}.

That is, T'(Q, v) is the maximum distance between v and the terminal vertex
of a path in Q.

For a connected graph G, let Q be a properly colored u — v path in G*
for some integer £ > 2 and let w be a vertex of G* that does not belong to
Q. Then Q is extendable to w if (Q,w) is a properly colored v — w path in
G*. In this case, we can extend Q to w in G* and the path (Q,w) is then
called the extension of Q to w in G¥.

Let P, = (vo,%1,...,Un—1) be a path of order n > 7. Next, we present
an algorithm that produces three internally disjoint properly colored paths
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Q1,Q2 and Q3 in P2 with initial vertex vp such that the distance between
¥n—1 and the terminal vertex of each path Q; (1 € i < 3) is at most 4.
That is, ifQ= {Ql: Q2, Q3}1 then T(Q’ ’Un...]_) <4

Algorithm 1 For P, = (vg,v1,...,Vn-1) where n > 7, this algorithm pro-
duces three internally disjoint properly colored paths Q1,Q2 and Q3 in P}
with initial vertex vy such that the distance between v,_; and the terminal

vertez of each path Q; (1 < i < 3) is at most 4.
Input: An integer n > 7 and a path P, = (vo,v1,...,Vn—1).

Step 1: The first path begins at vo and moves to vy, the second path
begins at vo and moves to vo and the third path begins at vp and moves
to vq.

At the end of Step 1, we obtain three paths
Q% = (‘Uo,vl)' Q% = ('Uo, ‘02), Qé = ('UOy '04)-

Let Ql {Q11Q2’Q3}

Step 2: If T(Q!,vn-1) < 4, then stop; while if T(Q,vn—1) > 4, then
do the following:

Let Q} € Q' (1 < p < 3) such that t(Q},vn—1) = T(Q,vn_1).
Suppose that j is the smallest integer such that v; does not belong
to any path in Q! and Q} is extendable to v; in P3. Let Q% =
(Q1 v;) and rename the remaining two paths Q} and QL (where
9,9’ € {1,2,3} — {p}) in Q' as Q2 and Q2, respectwely Let
Q* = {01,Q3, Q%)

If T(Q2,un_1) < 4, then stop; while if T(Q? vn,—1) > 4, then repeat
this procedure above. In general, at the step i for an integeri > 1, let

Q' = {Q1, @5, Q3}).
Step i+ 1: If T(Q%,vn—1) < 4, then stop; while if T(Q},va_1) > 4,
then do the following:

Let Q € @ (1 < p < 3) such that t(Q}, vn—1) = T(Q,vn_1).
Suppose that j is the smallest integer such that v; does not belong
to any path in Q' and Q;, is eztendable to v; in Pi. Let Q5! =

(Qp,vj) and rename the remaining two paths Qq and Q‘ (where
0.q' € {1,2,3} — {p}) in Q° as Qi*' and Q;F, respectively. Let

i+l i+l 1+l i+1
Q - {Ql ’ 3Q .
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Output: Three internally disjoint properly colored paths @1, Q2 and Q3 in
P2 with initial vertez vy such that T({Q1,Q2,Q3},vn-1) < 4.

For a properly colored path Q = (z;,z2,...,2¢) in G¥, the distance
sequence of Q is defined as

d(Q) : dlt dzv [ ’dl—l
where d; = dg(zi,Ti4+1) for 1 i< €1,

Lemma 3.5 For each integer n > 7, let P, = (vo,v1,...,Yn—1). Then the
distance-colored graph P2 contains three internally disjoint properly colored

Vg — Un—1 paths.
Proof. First, suppose that 7<n < 9.
e For n=17, let Q, = (v, v1,v3,Vs), @2 = (o, v2,s,v6) and
Q3 = (vo,v4,v6);
e For n =8, let @ = (vo,v1,vs,v7), @2 = (vo, v2,Vs5,v7) and
Q3 = (vo, v4, v7);
e For n =9, let @y = (vo,v1,v3,v7,08), @2 = (vo, V2, s, vs) and
Q3 = (vo, va, Vs, 8).

We now assume that n > 10. By Algorithm 1, we obtain three internally
disjoint properly colored paths Q;, Q2 and Q3 in P2 for an arbitrarily large
integer n such that T({Q1, @2, @3}, vn—1) < 4 and the distance sequences
of these three paths are

d@1) : 1,2,3,2,4,3,4,3,2,4,3,4,3,2,...
Ny e Nt e

d@z) : 2,3,41,3,4,1,3,4,1,3,4,1,3,4,...
d(Qs) : 4,3,4,3,2,4,3,4,3,2,4,3,...
N e N
Let
$1:4,3,4,3,2,52:1,3,4,1,3,4 and s3:4,3,2,4,3. (¢))]

Then the three internally disjoint properly colored paths Q;, @2 and Q3
obtained by Algorithm 1 have the distance sequences as follows:

d(Ql) : 1!233x2131,31n"~
d(Q2) : 2,3,4,s2,80,...
d(Qs) : 4,3,s3,83,...

Observe that the sum of integers in s; in (1) is 16 for 1 <7 < 3. Let
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Q% = (vo,v1,vs3, 6, V8), Q3 = (vo, v2,vs,vg) and Q3 = (vo, vy, v7).

Then QY, Q} and Q3 are internally disjoint properly colored paths in P4
for a sufficiently large integer n. For each integer ¢ > 0, the three paths
Qi™', Q4*! and Q31%*! are constructed from Q%, Q% and Qj, respectively,
as follows:

(1) the path Qi*! is obtained from Qi and the path
Xi = (UB4+16i) V8-+16i+4) UB+16i-+7 UB+16i+11, US+16i+14) VB+16(i+1))
by identifying the the vertex vs+16: in Qi and X;, respectively.
1
(2) the path Qi*! is obtained from Q% and the path
Y: = (voi16i)Vo+16i+1,V9+16i+4 V9.+16i+85 V9+16i+9,
V9+16i+12; '09+16(i+1))
by identifying the the vertex vg416: in Q% and Y;, respectively.
3) the path Qi*! is obtained from Qf and the path
3 3
Z; = (V1416 V74+16i-+4) UT+16i+7: VT+16i40 V74+16i+13, V7416(i+1))
by identifying the the vertex v7416: in Q3 and Z;, respectively.
3

Observe that Qi, Q% and Q} are internally disjoint properly colored paths
in P2 for all i > 0 (where n is sufficiently large). We now verify the following
claim.

Claim. For each n > 10, three internally disjoint properly colored
Vo — Un—1 paths Q1,Q2 and Q3 can be constructed from the paths Qf, Q3
and Q} for some integer i with i > f“—l'eﬂ] by an appropriate modification.

Proof of Claim. The distance sequences of QY, Q3 and QF are
dQY):1,2,3,2, d(Q):2,34, and d(QY):43.
In general, for each integer i > 0,
d(Qi*):d(@Q1), 81, d(Q5™'):d(Q}),s2, and d(Q5T):d(Q), s

where s; are shown in (1) for 1 <4 < 3. Since (i) the sum of integers in s;
is 16 for 1 < 4 < 3 and (ii) the terminal terms in d(Q}), d(Q3), d(Q3) are
2,4,3 for all ¢ > 0, it follows that, to verify the claim, it suffices to show
that for each » with 10 < n < 25, three internally disjoint properly colored
Yo — Un—1 Paths Q1,Q2 and Q3 can be obtained from Q}, Q} and Q} in
P7. This is verified by the following table, where a path (vi,,vi,,...,v;,)
is denoted by (i,12,...,1%s)
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A=10 Q1 (0, 1,3, 7, 0) w=18 @1 (0. 1,3, 6.8, 13, 15, 17)

Q2: (0, 2, 6, 9) Qa: (0, 2, 5, 9, 10, 18, 17)
Q3a: (0, 4, 5, 9) Q3: (0. 4, 7. 11, 14, 16, 17)
n =11 Q1 (0, 1, 3, 6, 10) w=19  @p: (0, 1,3, 6, 8, 13, 15, 16, 18)
Qz: (0, 2, 5, 9, 10) Q2: (0,2, &, 9, 10, 13, 17, 18)
Qg3: (0, 4, 7, 8, 10) _ Q o. 4, 7, 11, 14, )8
n=12 Qi: (0, 1,3,6,8, 11) n= g, 1, 3, 6, 8, 132,
Q2: (0, 2, 5, 9, 11) Qz (0, 2. 5, 9, 10, 13, 17, 19)
Qg: (0, 4, 7, 11) Qga: (0, 4, 7, 11, 14, 16, 19)
n=13 Q1: (0, 1,3, 6,8, 13) mn=21 @Q1: (01,358, 8,13, 15, 19, 20)
Qz: (0, 2, 5, 9, 12) Qa: (0. 2. 5, 9, 10, 13, 17, 20)

Qg: (0, 4, 7, 11, 12) Qa: (0, 4, 7, 11, 14, 16, 20
n=14 Qy: (0, 1,3, 8, 8, 13, 13) n = 23 1: (0, 1, 3, 8, 8, 1%, 18, 19, 21
Q3z: (0, 2, 5, 9, 10, 13) Qz: (0, 3, 5, 9, 10, 13, 17, 18, 21)
: {0, 4, 7, 11, 14, 16, 20, 21

Qg: (0, 4,7, 11, 13)

n=15 Qi: (0, 1, 8, 6, 8, 12, 14) n = 23 1: (0, 1, 8, 6, 8, 12, 15, 19,
Qg: {0, 2, 5, 9, 10, 13, 14) Qa: (0, 2, 5, 9, 10, 13, 17, 18, 21, 22)
3: (0, 4, 7, 11, 14) Qa: (0, 4, 7, 11, 14, 16, 20, 22)
=16 Q, 0, 1, 3, 6, 8, 13, 15) n=24 &1 (0, 1,30 8,13, 15, 19, 32, 23)
Q3: (0, 2, 5, 9, 10, 13, 18) Q3: (0, 2, 8, 9, 10, 13, 17, 18, 21, 23)
Qa: (0, &, 7, 11, 14, 15) Q3: (0, 4, 7, 11, 14, 16, 20, 23)
n =17 Q1: (0, 1, 3, 6, 8, 13, 15, 16) n =25 Q1: (0, 1, 8, 6, 8, 12, 15, 19, 21, 24)
Qa: (0, 2, 5, 9, 10, 14, 16) Q2: (0, 2, 8, 9, 10, 13, 17, 18, 22, 24)
Qa: (0, 4, 7, 11, 13, 16) Q3: (0, 4, 7, 11, 14, 16, 20, 23, 24)
The result then follows from the claim. ]

We are now prepared to show that P2 is properly 3-connected for each
n>T.

Theorem 3.6 For each integer n > 7, the distance-colored graph P} is
properly 3-connected.

Proof. Let P, = (vg,v1,...,%n—1). We proceed by induction on n. For
n = 7, it is straightforward to verify that Pj is properly 3-connected.
Assume that P¢ is properly 3-connected for some integer k > 7. Now let
u and v be two distinct vertices of P# ;. First, suppose that {u,v} #
{vo,vr}. We may assume, without loss of generality, that v; ¢ {u,v}. Let
P; = P41 — vk. Then u,v € V(P:) and dp, (u,v) = dp,,(u,v). By the
induction hypothesis, P¢ contains three internally disjoint properly colored
u — v paths and these three paths are also properly colored paths in P 1
Next, suppose that {u,v} = {vo,vx}. It then follows by Lemma 3.5 that
P}, contains three internally disjoint properly colored vo — vx paths. =

4 On H-Colored and H-Chromatic Graphs

In Sections 2 and 3, we investigated connected graphs G for which G*
is properly p-connected for some integers k,p > 2. If G* is properly p-
connected, then G* contains a properly colored subdivision of K3, as a
subgraph. In fact, there is no restriction on what properly colored sub-
graphs that G* can possess.

Theorem 4.1 For every connected graph H, there exists a connected
graph G and a positive integer k such that the distance-colored graph G*
contains a copy of H and a proper edge coloring of H using x'(H) colors.

224



Proof. Since the result is obvious if H = K, we may assume that H has
order at least 3. Let x'(H) = x > 2 and let c be a proper x-edge coloring
of H using the colors 1,2,...,x. We consider two cases.

Case 1. x = 2. For each e € E(H) such that c(e) = 2, subdivide the
edge e exactly once. Denote the resulting graph by G. Then the distance-
colored graph G? contains a copy of H and a proper 2-edge coloring of H
using colors 1 and 2.

Case 2. x > 3. Let M = x — 3. For each e € E(H), subdivide the
edge e a total of M + c(e) — 1 times, resulting in a path of length M + c(e).
Denote the resulting graph by G. Suppose that e joins « and v in H. Since
there is a path of length M + c(e) connecting u and v in G, it follows that
de(u,v) < M + c(e). We claim that dg(u,v) = M + c(e). Suppose that
de(u,v) < M + c(e). Then there exists a u — v path in G of length less
than M +c(e). From the way in which G is constructed, the length of such
a path must be at least (M + p) + (M + gq) for some positive integers p and
g such that p+ ¢ > 3. Since (M +p) + (M +q) > 2M + 3, it follows that
2M+3 < M+c(e) < M+ x and so M < x — 3, which is impossible. Thus
GM*X contains a copy of H and a proper x-edge coloring of H using colors
M+1,M+2,....M+x. ™

Theorem 4.1 raises the question of determining the smallest order of
such a graph G. Let H be a given connected graph. A connected graph G
is H-colored if there is a positive integer k such that the distance-colored
graph G* contains a properly edge-colored copy of H with x'(H) colors. If
the properly edge-colored copy of H in an H-colored graph G is produced
by a x'(H)-edge coloring ¢, then G is an H-colored graph with respect to
¢. The minimum order of such a graph G is called the color-order of H,
denoted by co(H). An H-colored graph of order co(H) is called an H-
chromatic graph. Thus if H is a nontrivial connected graph of order n and
G is an H-colored graph of order n/, then n < co(H) < n'.

Let H be a nontrivial connected graph of size m with E(H) ={e;, es,
..., em} and x'(H) = x. For a x-edge coloring c of H, define the o-number

of ¢ by o
o(c) = Z(c(e,-) -1).
i=1

Let C(H) be the set of all x-colorings of H. The minimum o-number (or
simply o-number) of H is defined by

o(H) =min{o(c): ce C(H)}.

First, we establish bounds for the color-order of a connected graph in terms
of its order, size, chromatic index and minimum o-number.
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Theorem 4.2 If H is a nontrivial connected graph of order n with x'(H) >
3, then
n+o(H) < co(H) < n+m(x'(H)—3)+o(H). (2)

Proof. The upper bound for co(H) is a consequence of the proof of The-
orem 4.1, in which the H-colored graph has order n+m(x'(H) - 3) +o(H)
if we choose a x-edge coloring whose o-number is o(H). Thus, it re-
mains to verify the lower bound. Let ¢ be a x-edge coloring of H using
the colors 1,2,...,x and let G be an H-colored graph with respect to c.
Thus there is a positive integer k such that the distance-colored G* con-
tains a properly edge-colored copy of H produced by the coloring ¢. Let
E(H) = {e1,e2,...,em}. For each i with 1 < i < m, let ¢; = z;y; and
c(e;) = ci. Since dg(zi,y;) = ci, there is an z; — y; geodesic Q in G*.
Suppose that @ = (z; = vo,v1,...,Ve = Yi). Since e; is an edge of H, each
of the vertices vy, vs, ..., v, belongs to V(G) — V(H). This implies that
each edge e; (1 <1 < m) colored ¢; contributes a total ¢; — 1 to the order
of G. Since V(H) C V(G), the order of G is at least

n+i(ci—1)2n+a(H),

i=1
giving the desired result. ™

Next, we describe a class of connected graphs H for which co(H) =
n+ o(H). The girth g(H) of a graph H having a cycle is the length of a
smallest cycle in H.

Proposition 4.3 Let H be e nontrivial connected graph of order n. If H
is a tree or X'(H) < |3(9(H) —1)/2], then co(H) =n +o(H).

Proof. Suppose that x'(H) = x. Let ¢ be a x-edge coloring of H using
the colors 1,2,...,x such that o(c) = g(H). For each e € E(H), subdivide
the edge e a total of c(e) —1 times, resulting in a path of length c(e). Denote
the resulting graph by G. Thus the order of G is n 4+ o(c). It remains to
show that G is H-colored with respect to the coloring c¢. Suppose that e
joins u and v in H. Since there is a u — v path of length c(e) connecting u
and v in G, it follows that dg(u,v) < c(e). We claim that dg(u,v) = ¢(e).

First, suppose that H is a tree. Since G is a subdivision of a tree, G is
a tree as well. Thus the u — v path of length c(e) is the only © — v path in
G. Hence dg(u,v) = c(e) if H is a tree. Next, suppose that H is not a tree.
Assume, to the contrary, that dg(u,v) < ¢(e). Then there exists a u — v
path Q in G of length less than c(e). Let P be a u—v path in H. Since the
girth of H is g and uv € E(H), it follows that the length of P is either 1
or is at least g — 1. If the length of P is 1, then P = (u,v) and P gives rise
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to a u — v path of length c(e) in G. Thus, we may assume that the length
of Pisfandso £ > g—1. Let P = (u = z9,71,%2,...,Z¢ = v). Since P
is properly colored by ¢, it follows from the way in which G is constructed
that P gives rise to a u — v path in G whose length is at least

jz;;c(m,-m.-ﬂ) > [2;2_—1-] +2 [2_'2.'_1_J = [.:.;.@2;12-‘ .

This implies that the length of Q is at least [3(g — 1)/2|. However then,
o0) > dauno) 2 | XD > w(#) 2 ol

which is a contradiction. Therefore, GX contains a properly edge-colored
copy of H using x colors and G is H-colored. u

The following is an immediate consequence of Theorem 4.2 and Propo-
sition 4.3.

Corollary 4.4 If H is a nontrivial connected graph of order n such that
X' (H) =2 or x'(H) = 3, then co(H) =n + o(H).
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