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Abstract

For an outerplanar graph on n vertices, we determine the maxi-
mum number of vertices of degree at least k. For k=4 (and n > 7)
the answer is n — 4. For k =5 (and n > 4), the answer is | %272 |
(except one less when n =1 mod 6). For & > 6 (and n > k+2), the
answer is | 2=2|. We also determine the maximum sum of the degrees
of s vertices in an n-vertex outerplanar graph and the maximum sum

of the degrees of the vertices with degree at least k.

1 Introduction

For n > k > 0, Erdds and Griggs (1] asked for the minimum, over n-vertex
planar graphs, of the number of vertices with degree less than k. For k < 6,
the optimal values follow from results of Griinbaum and Motzkin [4]. West
and Will [5] determined the optimal values for k£ > 12, obtained the best
lower bounds for 7 < k < 11, and provided constructions achieving those
bounds for infinitely many n when 7 < k < 10. Griggs and Lin [2] indepen-
dently found the same lower bounds for 7 < k < 10 and gave constructions
achieving the lower bounds when 7 < k < 11 for all sufficiently large n.

We study the analogous question for outterplanar graphs, expressed in
terms of large-degree vertices. Let Si(n) be the maximum, over n-vertex
outerplanar graphs, of the number of vertices having degree at least k. For
k < 2, the problem is trivial; Bx(n) = n, achieved by a cycle (or by any
maximal outerplanar graph).
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When k € {3,4}, the square of a path shows that S3(n) > n — 2 and
Ba(r) > n — 4. Since every outerplanar graph with n > 2 has at least two
vertices of degree at most 2, f3(n) = n—2. We will prove f4(n) = n—4 when
n > 7 (Theorem 2.6). For k = 5 and n > 4, we prove fBi(n) = [-2-5"—3'—‘3”,
except one less whenn =1 mod 6 (Theorem 2.5). For k > 6 andn > k+2,
we prove fi(n) = | 2=%| (Theorem 3.4).

We close this introduction with a general upper bound that is optimal
for k =5 when n #2 1 mod 6. In Section 2 we improve the upper bound
by 1 when n =1 mod 6 and provide the general construction that meets
the bound; these ideas also give the upper bound for & = 4. In Section 3
we solve the problem for & > 6. The bounds in [5] were obtained by first
solving a related problem, which here corresponds to maximizing the sum
of the degrees of the vertices with degree at least k. We use this approach
in Section 3 to prove the upper bound on Sx(n) when k > 6.

Adding edges does not decrease the number of vertices with degree at
least k, so an n-vertex outerplanar graph with Bx(n) vertices of degree at
least k must be a maximal outerplanar graph, which we abbreviate to MOP.
For a MOP with n vertices, let 8 be the number of vertices having degree
at least k, and let ng be the number of vertices having degree 2. A MOP
with n vertices has 2n — 3 edges, so summing the vertex degrees yields

2no+3(n—ng— B)+ kB <4n—6. (1)

This inequality simplifies to (k —3)8 < n+mnz —6. Usingnpa < n-4
then yields fx(n) < [%"_—'af—’lj . To improve the bound, we need a structural
lemma.

Lemma 1.1. Let G be an n-vertex MOP with external cycle C. Ifn > 4,
then some two vertices with degree in {3,4} are not consecutive along C.

Proof. We use induction on n. Note that G contains n — 3 chords of C.
If every chord lies in a triangle with two external edges, then n < 6 and
A(G) < 4, and the two neighbors of a vertex of degree 2 are the desired
vertices. This case includes the MOPs for n € {4, 5}.

Otherwise, a chord zy not in a triangle with two external edges splits G
into two MOPs with at least four vertices, each with z and y consecutive
along its external cycle. By the induction hypothesis, each has a vertex
with degree 3 or 4 outside {z,y}. In G, those two vertices retain their
degrees, and they are separated along C by z and y. O

Corollary 1.2. Ifk > 5 and n > 4, then Bi(n) < |28 |,
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Proof. Lemma 1.1 yields n —ng — 8 > 2, and hence np < n -8 - 2.
Substituting this improved inequality into the inequality (k — 3)8 < n +
na — 6 that follows from (1) yields Bx(n) < 2(n — 4)/(k — 2). O

Corollary 1.2 gives us a target to aim for in the construction for & = 5.
For k > 6 we will need further improvement of the upper bound. The
argument of Corollary 1.2 is not valid for k = 4, since vertices of degree 4
are counted by 8. The upper bound 84(n) < n — 4 (for n > 7) will come
as a byproduct of ideas in the next section.

2 The solution for £k =5

We begin with the construction. Let (vy,...,v;) and [vy,...,v;] denote a
path and a cycle with vertices vy, . .., vz in order, respectively. Let B be the
graph formed from the cycle {v, u, z, w, ¥, 2] by adding the path (u,w,v,y).
(see Fig. 1). The reason for naming the vertices in this way is that we
will create copies of B in a large graph by adding the vertices in the order
u,v,w,z,¥, 2.

o8

Figure 1: The graph B and its use in constructing F.

To facilitate discussion, define a j-vertez to be a vertex of degree j, and
define a j*-vertezr to be a vertex of degree at least j.

12(rn —-5)/3] ifn=1 mod®6,

bomma 2.1 [fn 24, then fs(n) 2 {Lz(n -4)/3]" otherwise.

Proof. Begin at n = 2 with one edge having endpoints wp and yo. Add ver-
tices one by one, always adding a vertex adjacent to two earlier neighboring
external vertices; the result is always a MOP. For 6¢ — 3 < n < 6g + 2,
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add the vertices uq, vq, Wg, Zq,¥q, 2¢ in order. The added vertex is the cen-
ter of a 3-vertex path; the paths added are successively (wg—1,%q,¥q-1),
(Yg-1, g, Uq), (g, Wq, %), (g, Tq, w,), (vg:¥q, wg), and (vg, zg,yq). After
z, is added, the subgraph induced by {ug,vq, wq, Z4,¥q,2,} i8 isomorphic
to B; call it B, (see Fig. 1).

When n = 6, the addition of z; augments u; to degree 5 (the first such
vertex). The second occurs at v; when z; is added to reach eight vertices.
This agrees with the claimed values for n from 4 through 8. Subsequently,
addition of ug, vy, Tq, 2, raises wy_1,Yq-1,Uq, Vg, respectively, to degree 5.
Addition of w, and y, does not introduce a 5-vertex, and z, and 2z, never
exceed degree 2.

When n = 6 - 2 — 4, we have two 5-vertices; note that 2 = |2(8 — 4)/3].
For 6g — 3 < n < 6¢ + 2, the values required by the stated formula for
the number of 5*-vertices are 4q — 5,4q — 4,4qg — 4,49 — 3,4q — 3,49 — 2,
respectively. The induction hypothesis for an induction on g states that
when n = 6g — 4 = 6(q— 1) +2, the graph has 4(g— 1) — 2 vertices of degree
5. Starting from this point, we augmented one vertex to degree 5 when n
is congruent to each of {—3,-2,0,2} modulo 6, matching the formula. O

The lower bound in Lemma 2.1 and upper bound in Corollary 1.2 are
equal except when n =1 mod 6. In this case we improve the upper bound
by showing that there is no outerplanar graph having the vertex degrees
required to achieve equality in the upper bound. The construction shows
Bs(n) = |2(n — 5)/3]. We used the existence of two vertices with degree 3
or 4 to improve the upper bound from |2(n — 3)/3] to |2(n — 4)/3], which
differs from |2(n — 5)/3] by 1 when n =1 mod 6. We begin by showing
that slightly stronger hypotheses further reduce the bound.

Lemma 2.2. If G is a MOP having a 6% -vertez, or a 3-verter and a 4-
vertex, or two 4-vertices, or at least three 3-vertices, then G has at most
L(2n — 9)/3] vertices of degree at least 5.

Proof. We have proved 8 < (2n — 8)/3. If the upper bound does not
improve to (2n — 9)/3, then equality must hold in all inequalities used for
B < (2rn - 8)/3. Thus ny = n — B — 2, which forbids a third vertex with
degree 3 or 4. Also, the degrees sum to 2nz + 3(n —na — B) + 58 (see (1)).
Thus the two vertices of degree 3 or 4 both have degree 3, and no vertex
has degree at least 6. m]

Let T be the subgraph of the dual graph of G induced by the vertices

corresponding to bounded faces of G; we call T the dual tree of G. Since G
is a MOP, T is a tree. A triangular face in G having j edges on the external
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cycle corresponds to a (3 — j)-vertex in T'. The next lemma will reduce the
proof of the theorem to the case where T is a special type of tree.

Lemma 2.3. If in the dual tree T the neighbor of a leaf t has degree 2,
then G has a 3-vertex on the triangle corresponding to t. If two leaves in
T have a common neighbor, then the common vertex of the corvesponding
triangles in G is a 4-vertezx in G.

Proof. Let z,y,2 be the vertices of the triangle in G corresponding to ¢,
with = having degree 2 in G. The neighboring triangle ¢’ raises the degree
of y and z to 3. If ¢’ has degree 2 in T, then in G only one of {y,z} can
gain another incident edge.

Two leaves in T having a common neighbor # correspond to two triangles
in G having a common vertex z. The vertex £ in T corresponds to a triangle
in G that shares an edge with each of them. No further edges besides the
four in these triangles are incident to z. ]

A triangle in a MOP is internal if none of its edges are external.

Lemma 2.4. In a MOP with n vertices, let ny be the number of 2-vertices
and t be the number of internal triangles. If n > 4, thent =np — 2.

Proof. Let T be the dual tree. Note that T has n — 2 vertices, of which nq
have degree 1, t have degree 3, and the rest have degree 2. By counting the
edges in terms of degrees, 2(n — 3) = nz + 3t + 2(n — 2 — ny — t), which
vields np —2=1t. 0

_JI12(rn-5)/3] ifn=1 modS6,

Theorem 2.5. Ifn > 4, then Bs(n) = {12 (n—4)/3] otheruise

Proof. 1t suffices to prove the upper bound when n =1 mod 6. Let n =
6g + 1. Corollary 1.2 yields # < 4¢ — 2, and we want to improve this to
4q -3, which equals |(2n — 9)/3]. If the upper bound cannot be improved,
then by the computation in the proof of Lemma 2.2 we may assume that G
has exactly two 3-vertices, exactly 4¢ — 2 vertices of degree 5, and exactly
2g + 1 vertices of degree 2.

A MOP with n vertices has n— 2 bounded faces, so T" has n— 2 vertices.
Since G has 29 + 1 vertices of degree 2, there are 2q + 1 leaves in T by
Lemma 2.4, T has 29 — 1 vertices of degree 3. The remaining 2¢—1 vertices
of T have degree 2.

A caterpillar is a tree such that deleting all the leaves yields a path,
called its spine. A tree that is not a caterpillar contains as a subtree the
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graph Y obtained by subdividing each edge of the star Ky 3. If Y C T,
then consider longest paths in T starting from the central vertex v of Y’
along each of the three incident edges. Each such path reaches a leaf. By
Lemma 2.3, éach such path generates a vertex of degree 3 or 4 in G. Since
G has at most two such vertices, T is a caterpillar. Furthermore, since G
has no 4-vertices, Lemma 2.3 implies that each endpoint of the spine of T
has degree 2 in T'.

Consider vertices a,b,c € V(T) such that ab,bc € E(T). The cor-
responding three triangles in G have a common vertex z. If a and ¢ are
3-vertices in T, then = has degree 6 in G. Hence no two 3-vertices in T have
a common neighbor. This implies that along the spine of T' (which starts
and ends with 2-vertices), there are at most two consecutive 3-vertices, and
nonconsecutive 3-vertices are separated by at least two 2-vertices.

In particular, every run of 3-vertices has at most two vertices, every run
of 2-vertices has at least two vertices (except possibly the runs at the ends),
and the number of runs of 2-vertices is one more than the number of runs
of 3-vertices. The only way this can produce the same number of 2-vertices
and 3-vertices is 2,3,3,2,2,3,3,...,2,2,3,3,2. However, in this configura-
tion the number of vertices of each type is even and cannot equal 2¢ — 1.

Thus no outerplanar graph has the required vertex degrees. (m}
Theorem 2.6. Ifn > 7, then B4(n) =n—4.

Proof. When the dual tree T is a path, the graph G has two 2-vertices,
two 3-vertices, and n — 4 vertices of degree 4; this proves the lower bound.
For the upper bound, since leaves of T' correspond to triangles in G having
2-vertices, we may assume that T has at most three leaves. If T has only
two leaves, then the neighbor of each has degree 2 in T, and Lemma 2.3
provides two 3-vertices in G, matching the construction.

If T has exactly three leaves, then T' has one 3-vertex and at least four
other vertices, since 7" has n — 2 vertices and n > 7. Hence at least one
leaf in T has a neighbor of degree 2, and Lemma 2.3 provides one 3-vertex
in addition to the three 2-vertices in G. (In fact, this case yields another
construction having exactly n — 4 vertices with degree at least 4.) O

3 The solution for k> 6

Trivially, Sx(n) = 1 when k = n — 1, which does not satisfy the general
formula. We restrict our attention to n > k 4 2 and begin with the con-
struction. Fix k with & > 6.
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Form a graph B’ from B in Section 2 by respectively replacing edges yz
and uz with paths P and Q, each having k — 6 internal vertices. Make v
adjacent to all of V(P) and w adjacent to all of V(Q) (see Fig. 2). Since P
and @ have k — 4 vertices each, B’ has 2k — 6 vertices; also, B’ is a MOP.
Its vertices v and w of maximum degree have degree k — 2.

zZ

Figure 2: The graph B’ and its use in constructing F’.

Lemma 3.1. Ifn > k+2, then Bi(n) 2 |£=5].

Proof. Letting n = 2(k — 4)q + 6 + r with 0 < r < 2(k — 4), the claim is
equivalent to fr(n) > 2¢ when 0 < r < k — 4 and Sx(n) > 29 + 1 when
k-4<r<2(k-4).

Let F' be the union of ¢ copies By, . .., B} of B, modifying the names of
vertices in B} by adding the subscript i and taking y; = v;4; and w; = ugy
for i > 1 (see the solid graph in Fig. 2). Note that F' is a MOP with
2 + 2q(k — 4) vertices, and the 2¢ — 2 vertices that lie in two copies of B’
have degree k. To obtain the lower bound, we will add vertices one by one
as in Lemma 2.1, but we will start with the appended vertices zp and vg in
order to raise v; to degree k quickly.

Each vertex when added will be a 2-vertex appended to an edge of
the external cycle, so we always have a MOP. Begin with the triangle on
{v1,20,v0}. Add u;,w,y) and all of P in B} in order. We now have k + 1
vertices, and v; has degree k. There remains only one k-vertex as we add
the rest of Q to complete Bj, at which point w; has degree k — 2.

After finishing B, we have 2g(k — 4) + 4 vertices (including vp and zp),
of which 29—1 have degree k (including v1). We show that adding V(B )
in the right order produces two more k-vertices at the right times.

With two more vertices, n = 2g(k — 4) + 6 and r = 0, and the number
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of k-vertices should be 2¢q. Add wgy1 and then the first vertex of @ from
B .1, raising the degree of w, to k.

q

The next k-vertex should arrive when n = 2g(k — 4) + 6 + (k — 4), with
r = k — 4. Adding the k — 4 vertices from yg41 to zg41 along P in By,
raises the degree of y, from 4 to k. Finally, we add the rest of Q to complete
By ;. No k-vertex appears, but the degree of wg4 rises to k—2 to be ready
for the next iteration. a

In order to prove the upper bound, we consider a related problem. Let
D(n, s) be the maximum sum of the degrees of s vertices in an n-vertex
outerplanar graph. Of course, these will be s vertices of largest degrees,
and the maximum will be achieved by a MOP. We will obtain an upper
bound on D(n, s) by considering the structure of the subgraph induced by
the vertices with largest degrees. Subsequently, we will apply the bound on
D(n, s) to prove that Si(n) < |2=3| when k > 6.

Lemma 38.2. Fiz s with1 < s < n. If G is a MOP in which the sum of
the degrees of some s vertices is D(n,s), then each set of s vertices with
largest degrees in G induces a MOP.

Proof. Let C be the external cycle in an outerplanar embedding of G, with
vertices vy, ..., Vs in order. Let S be a set of s vertices with largest degrees.

We show first that the outer boundary of the subgraph induced by some
such set S is a cycle. For z € S, let y be the next vertex of S along C.
Let P be the path from z to y along C. If z is not adjacent to y, then let
u be the last vertex of P adjacent to z. Since G is a MOP, zu lies in two
triangles, and by the choice of u there is a triangle containing zu whose
third vertex is not on P; let z be this third vertex. Let v be the next vertex
of P after u. Let U be the set of neighbors of u not on the z, u-subpath of
P; note that z € U. Replace the edges from u to U with edges from = to
U U {v}. Each edge moved increases the degree of z, and hence the sum
of the s largest degrees does not decrease. (If we removed an edge from a
neighbor of = that is in S and its degree is no longer among the s largest,
then it was replaced by a vertex of the same degree; thus we have increased
the sum of the s largest degrees, which contradicts the choice of G.)

The last neighbor of z is now farther along P. When it reaches y the
sum of the m largest degrees increases. Since we started with a MOP
maximizing this sum, the edge zy must have been present initially.

We have shown that the outer boundary of G[S] is a cycle. Every
bounded face is a face of G, since there are no vertices of G inside it. Hence
G[S] is a MOP. 0
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In fact, when s < n — 1 there is always a unique set of s vertices with
largest degrees in a graph maximizing the sum of those degrees.

Theorem 3.8. The mazimum value D(n, s) of the sum of s vertez degrees
in an n-vertez outerplanar graph is given by

n—-1 ifs=1,
D(n,s)=¢n-6+4s ifs<n/2,
2n—-6+2s ifs>n/2.

Proof. Let G be a MOP in which some set S of s vertices has degree-sum
D(n, s). If s = 1, then n — 1 is clearly an upper bound, achieved by a star.
For 3 > 2, let G be a MOP achieving the maximum; we know that G[S] is
also a MOP and hence has 2s — 3 edges. The question then becomes how
the remaining n — s vertices can be added to produce the maximum sum

of the degrees in S.

Consider an outerplanar embedding of G. The subgraph induced by S
is also an outerplanar embedding of S. Since G[S] has 2s — 3 edges, the
outer boundary of the subgraph is a cycle. In the embedding of G, no
vertex of V(G) — S appears inside this cycle. Also, vertices outside S can
be adjacent to only two vertices of S, and they can be adjacent to two only
if those two are consecutive on the outer boundary of G[S]. This implies
that at most s vertices of V(G) — S can have two neighbors in S, and the
rest have at most one neighbor in S. Furthermore, the vertices outside S
can be added to achieve this bound.

If s > n/2, then we add 2(n—s) to the degree-sum within G[S], obtaining
D(n,s) =2n — 6+ 2s. If s < n/2, then we add 2s + 1(n — 2s), obtaining
D(n,s) =n—6+4s. o

Theorem 3.4. If k > 6, then fi(n) < | £=3].

Proof. In an extremal graph, the Bx(n) vertices with degree at least k have
the largest degrees. With s = Si(n), we have sk < D(n,s). Using the
bound obtained in Theorem 3.3, we have

ok < n—6+4s ffs<n/2,
2r~-6+2s ifs>n/f2

If k> 6 and s > n/2, then
6s<ks<2n-6+2s<6s—6.

Hence k > 6 implies s < n/2, and therefore ks < n—6-+4s, which simplifies
to s < 2=3. ]
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Finally, we consider the maximum sum of the degrees of the vertices
with degree at least k. Essentially, the point is that we cannot increase this
sum by using fewer than Si(n) vertices with degrees larger than k.

Corollary 3.5. For k > 6, the maximum sum of the degrees of the veﬂgces

with degree at least k in an n-vertex outerplanar graph isn — 6+ 4|23 |.

Proof. Let G be an n-vertex outerplanar graph, and let S be the set of
vertices in G with degree at least k. Let s = |S|. Since S consists of the s
vertices of largest degree, ) .o d(v) < D(n, s).

For k > 6, since D(n, s} is monotone increasing in s, we obtain a bound
on the sum by using the bound on Bi(n) obtained in Theorem 3.4. Since
Be(n) < n/2, Theorem 3.3 yields Y s d(v) < D(n,s) < D(n,Bx(n)) =

n—6

n—6+4|2%].

We show that a modification of the construction in Lemma 3.1 achieves
equality in the bound. When n = (k — 4)¢’ + 6 for some integer ¢’, let G
be the graph constructed in Lemma 3.1, having Sx(n) vertices of degree at
least k; here Bix(n) = ¢’. All ¢’ of these vertices have degree exactly k, so
the sum of their degrees is ¢'k, equaling the upper bound here. For each
increase in n over the next k— 5 vertices, adding one vertex of degree 2 can
increase the degree-sum of these vertices by 1, again equaling the upper
bound here. When the (k — 4)th addition is reached, start over with the
construction from Lemma 3.1 for the new value of ¢'. O

Remark 3.8. Similar analysis solves the problem of maximizing the sum
of the degrees of the vertices with degree at least 5. We remark that the
maximum value when n # 1 mod 6 is 2n — 8 4+ 48x(n), which is smaller by
2 than the former in terms of Bx(n) when k > 6. Writing the expression as
2(n— Br(n)) -2+ (48x(n) —6), we begin with degree-sum 48; —6 within the
MOP H induced by the vertices of degree at least 5. Since 85(n) is roughly
2n/3, we should be able to augment the sum of the degrees by 2 for each
of the remaining n — Bx(n) vertices. However, H has at least two vertices
of degree 2. For each such vertex, raising its degree to 5 requires one of the
added vertices to contribute only 1 instead of 2. With this adjustment, the
improved upper bound meets the construction. When n =1 mod 6, there
are additional technicalities we leave to the reader.
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