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Abstract

A set of S edge-disjoint hamilton cycles in a graph G is said to
be mazimal if the hamilton cycles in S form a subgraph of G such
that G-E(S) has no hamilton cycle. The set of integers m for which
a graph G contains a maximal set of m edge-disjoint hamilton cycles
has previously been determined whenever G is a complete graph, a
complete bipartite graph, and in many cases when G is a complete
multipartite graph. In this paper, we solve half of the remaining open
cases regarding complete multipartite graphs.

1 Introduction

A complete multipartite graph, K%, has p parts of size n such that an edge
exists between vertices u and v if and only if u and v are in different parts.
A hamilton cycle in a graph G is a spanning cycle of G. If S is a set of
hamilton cycles, then let G(S) be the graph induced by the edges in cycles
of S. We denote the edges in this graph by E(G(S)) or E(S). The set S is
maximal if G — E(S) has no hamilton cycle.
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Considerable research has come before this paper to find maximal sets
of hamilton cycles in certain graphs. Hoffman, Rodger, and Rosa [5] found
that there exists a maximal set S of m edge-disjoint hamilton cycles in K,
if and only if m € {I.H_P-J’ I'"—Ig_l +1,.., l"—;lJ } It was later shown by
Bryant, El-Zanati, and Rodger [1] that there exists a maximal set of S of
m edge-disjoint hamilton cycles in K, , if and only if 2 <m < 3. Daven,
MacDougall and Rodger [2] extended the results to complete multipartite
graphs, showing that there exists a maximal set of m hamilton cycles in KP
if and only if (a) l-ﬂ;LQ-I <m< lﬂfz_—lzj and (b) m > 1(”{—1-1 if either n
isodd and p = 1 (mod 4) or p = 2, n = 1, except possibly for the undecided
case when n > 3 is odd, p is odd and m < ﬁ"—'*'l)éﬂ. Jarrell and Rodger
[6] solved the open cases when p > 5, and removed all but the smallest
possible values when n = 3, showing that a maximal set of hamilton cycles
of size m exists when n = 3 and 5“’—4"—1)- +1<m< I-f"—“x;’;lﬁ .

Together, these results mean that for each value of p, exactly one value of
m remains in doubt (namely [1(;;_-12 +1) and even that is only in doubt in

the case where n = 3 and p is odd. Naturally, each remaining case becomes
more and more difficult. Indeed, for some time it was unclear whether the
remaining values would be in S or not.

Our aim in this paper is to solve half of the remaining open cases;
specifically the case when m = [ﬂf’;—ll] + 1 and p = 1(mod4). The case

when m = [ﬂi,&ll-l and p = 3 (mod 4) is still open.

Putting the results above together produces the following state of knowl-
edge:

Theorem 1.1 There exists a mazimal set of m hamilton cycles in K (p
parts of size n) if and only if

1 ['—‘1%11-' <m< lﬂg;llj and

2. m> Me-h if '
(a) n is odd and p=1 (mod 4), or
() p=2,n=1

ezcept possibly when m = [ ﬁ’;;ll-l and p=3 (mod4).
In the following, edge-colorings are used to represent the hamilton cy-

cles, so let G(i) denote the subgraph of G induced by the edges colored
2.
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2 The Technique of Amalgamations

The approach used to prove the main theorem of the paper is that of amal-
gamations. An amalgamation of a graph G is a graph H formed by a
homomorphism f : V(G) — V(H). So for each v € V(H), the vertices of
f~1(v) can be thought of as being amalgamated into the single vertex v
in H; for each v € V(H), n(v) = |f~!(v)| is known as the amalgamation
number of v. G is said to be a disentanglement of H.

In the proof of Theorem 3.1, an amalgamated graph is constructed in
which each color class is connected and each vertex v is incident with 2n(v)
edges of each color, thus looking like what would be obtained by amalgamat-
ing a graph in which each color class is a hamilton cycle. For our purposes,
the two following results will be essential. The first result describes prop-
erties of a graph formed by amalgamating K,,. The second will be used
to show that the amalgamated graph we construct can be disentangled to
form a subgraph of K that has a hamilton decomposition.

Lemma 2.1 [8] Let H = K,, be an l-edge-colored graph, and let f : V(G) —
V(H) be an amalgamating function with amalgamation numbers given by
the function n: V(H) — N. Then H satisfies the following conditions for
any vertices w,v € V(G):

1. d(w) =9(w)(n - 1),

2. m(w,v) = n(w)n(v) if w # v,

3. w is incident with (’7(,;’)) loops, and

4. dg(,-)('w) = Z:uef-‘(w) dH(,-)(u) forl1<i<l

Theorem 2.2 [8] Let H be an i-edge-colored graph satisfying conditions
(1)-(4) of Lemma 2.1 for the function n: V(H) — N. Then there exists a
disentanglement G of H that satisfies

1. H=2 K,,

2. for any z € V(G), |dyuy(v) — dry(u)| < 1 for 1 <4 <1 and all
u,v € f71(2),

3. zf@,ﬁz‘@ is an even integer for all z € V(G), then w(G(3)) = w(H(5)).

Another important result that is invaluable in the main proof is the
following theorem proved by Hilton [4]. A k-edge-coloring of G is said to
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be evenly equitable if |di(v) —d;(v)] < 2for 1 <i< j <k and di(v) is even
for 1 < i < k, where d;(v) is the degree of v in the subgraph induced by
the edges colored <.

Theorem 2.3 [{] For each k > 1, each finite Eulerian graph has an evenly
equitable edge-coloring with k colors.

3 The p=1(mod4) Case

Theorem 3.1 For the complete multipartite graph KE, let p =4z + 1 for
some integer = > 2 and let n = 3. Then there exists a mazimal set of

m= I-ﬂE;_IZ] +1 =3z +1 edge disjoint hamilton cycles in KZ.

Proof We define the hamilton cycles on the vertex set Z, x Z3 in which
the parts are P; = i x Zg for each i € Z,. As we look at this problem, it
is helpful to think of the parts of the graph arranged in p vertical columns
with three vertices in each column; so each part has a top, a middle, and
a bottom vertex. Our goal is to choose the edges for our set S of hamilton
cycles wisely so that we ensure that our set is maximal. In each case S is
shown to be maximal because K? — E(S) = G has a cut vertex. We do this
by splitting V(G) into 3 sections. We denote by G; the subgraph induced
by vertices in the first 2z parts (part O to part 2z — 1) together with the
top vertex of the center part, which we call u. The subgraph induced by
vertices in the last 2z parts (part 2z 4+ 1 to part 4z) together with the
bottom vertex of the center part, which we will call w, is denoted by Gs.
Finally, the middle vertex of the center part will be called v. The vertex v
will serve as a cut vertex in G(S).

The edges we choose to make our set of hamilton cycles fall into the
following three types:

Type 1: All edges in K% that join vertices in Gy to vertices in G2 occur in
E(S).

Type 2: Precisely 2m edges joining vertices in V(G; |J G2) to v occur in E(S).
(Approximately half of these edges are incident with vertices in Gy,
while the others are incident with vertices in Gj.)

Type 3: Certain edges between two vertices in G; or two vertices in G are
finally chosen to make G(S) 2m-regular.

As we select Type 2 edges, we note that v is not yet adjacent to any
other vertices. Thus to produce m = 3z + 1 hamilton cycles, we need the
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degree of v to be 2(3z + 1) = 6z + 2. If m is even, then 3z + 1 of the edges
are chosen to join vertex v to vertices in G, while the other 3z + 1 are
chosen to join vertex v and vertices in Ga. If m is odd, then 3z of the edges
join vertex v and vertices in G;, while the other 3z + 2 join vertex v and
vertices in G2. For the Type 3 edges, we carefully pick edges between two
vertices in G; or two vertices in Gy so that we build each vertex to degree
6z + 2. It turns out that the edges of Types 2 and 3 need to be precisely
chosen if we use amalgamations to produce G. Instead we define H and let
Theorem 2.2 produce G.

The method used to construct the hamilton cycles is that of amalga-
mations. This has been used successfully in this setting (see [6] for ex-
ample). The amalgamation used here is the graph homomorphism f :
V(G) =» V(H) = (Z, \ {22}) U({2z} X Z3) defined as follows. For each
i € Zp \ 2z and for each j € Z3, let f((¢,7)) = ¢, and for each j € Z3 let
f(2z,7) = (2z,j) = u,v, or wif £ = 0,1, or 2 respectively. So, except
for the part containing v, f amalgamates the vertices in each part into a
single vertex in H with amalgamation number 3. The vertices in the part
containing v are not amalgamated by f, so each vertex z has amalgamation
number 7(z) = 1. So we will require that dy(i) = 6m = 6(3z + 1) for each
1€ Zp\ Zy.

The subgraph B of H induced by the edges joining vertices in Z,, to
vertices in Zgz41 \ Zog41 is isomorphic to 9Ko; 9,. Let e=1o0r 0if m is
odd or even respectively. Join v to vertices in Z;41—. and Zoy \ Zz41—¢
with 2 and 1 edges respectively, and join v to vertices in Zzgt14¢ \ Zoz+1
and Zgz4+1 \ Z3z+1+c With 2 and 1 edges respectively; these produce Type
2 edges in G. Pair the vertices in Zg; \ Z;41—c and pair the vertices in
Zgz+1 \ Z3z+1+¢, and join each such pair with an edge; these produce the
Type 3 edges in G. (Notice that each set has an even size by definition of
€.)

Color the edges of H as follows. Since there exists a hamilton decompo-
sition of Koz 2z, the edges of B can be partitioned into 9z sets, each of which
induces a hamilton cycle of H. Let By, ..., B3z be 3z + 1 of these 9z sets,
and color the edges in B; with i foreachi € Z,,,. Let H, = H —Ui‘éz3=+l B;.
Then dgy, (i) = 4m and dgy, (i, j) = 2m.

We now give the subgraph H; of H an evenly equitable edge coloring
with the 3z + 1 colors in Z3z41. Such a coloring exists by Theorem 2.3.
Thus in H; each color appears 4 times at each vertex z with 7(z) = 3 and
twice at each vertex z where 7(2) = 1. So in H each color now appears
6 times at each vertex where 7 = 3 and once where 7 = 1. We are now
assured that our color classes are connected and that each color appears on
the appropriate number of edges, namely 27(z), at each vertex 2.
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The aim now is to disentangle our graph so that we can pick out our
maximal set of hamilton cycles. To be able to apply Lemma 2.1 we still
must add more edges to H to form H* so that H* satisfies properties (1-4)
of Lemma 2.1 (i.e. so that it is an amalgamation of K3,). So add edges
to H so that between each pair of vertices = and y there are: exactly nine
edges if [{z, y}N{u, v, w}| = 0; exactly three edges if |{z, y}N{u,v,w}| = 1;
and exactly one edge if |{z,y} N {u,v,w}| = 2. Finally, add three loops
to each vertex not in {u,v,w}. All these additional edges and loops are
colored 0. It is straightforward to check that H* satisfies properties (1-4)
of Lemma 2.1, so we can now apply Theorem 2.2 to H+ to produce G+,
and edge-colored copy of K3,. Removing all edges in G* corresponding to
loops in H* produces K2, and then removing all remaining edges colored 0
produces G. Each color class in G is 2-regular by property (2) of Theorem
2.2, and is connected by property (3), so is a hamilton cycle. Removing the
edges in these hamilton cycles from K? in particular means that all Type
1 edges are removed, so produces a graph in which v is a cut vertex (it is
actually the graph induced by the edges (not loops) colored 0 in G+). So
the required maximal set of hamilton cycles has been produced. O
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