On free α -labelings of cubic bipartite graphs

Wannasiri Wannasit*

Department of Mathematics, Chiang Mai University Chiang Mai 50200, Thailand

Saad El-Zanati

Department of Mathematics, Illinois State University Normal, IL 61790-4520 USA

Dedicated in honor of Roger B. Eggleton

Abstract

It is known that an α -labeling of a bipartite graph G with n edges can be used to obtain a cyclic G-decomposition of K_{2nx+1} for every positive integer x. It is also known that if two graphs G and H admit a free α -labeling, then their vertex-disjoint union also admits a free α -labeling. We show that if G is a bipartite prism, a bipartite Möbius ladder or a connected cubic bipartite graph of order at most 14, then G admits a free α -labeling. We conjecture that every bipartite cubic graph admits a free α -labeling.

1 Introduction

Let N denote the set of nonnegative integers, and denote the set of integers $\{m, m+1, \ldots, n\}$ by [m, n]. For any graph G we call an injective function $h: V(G) \to N$ a labeling (or a valuation) of G. If $v \in V(G)$, we call h(v) the label of v. If $W \subseteq V(G)$, we let $h(W) = \{h(v) : v \in W\}$. If h is a labeling of G, we define a function $\bar{h}: E(G) \to \mathbb{Z}^+$ by $\bar{h}(e) = |f(u) - f(v)|$, where $e = \{u, v\} \in E(G)$. The number |h(u) - h(v)| is called the label of the edge $\{u, v\}$. If $F \subseteq E(G)$, then $\bar{h}(F) = \{\bar{h}(e) : e \in F\}$. For convenience, we will often let h(G) denote the labeled graph G; that is, h(G) is the

^{*}Research supported by the Development and Promotion of Science and Technology Talents Project, Thailand.

graph with vertex set h(V(G)) and edge set $\{\{h(u),h(v)\};\{u,v\}\in E(G)\}$. Rosa [14] called a labeling h of a graph G with q edges a β -valuation of G if $h(V(G))\subseteq [0,q]$ and $\bar{h}(E(G))=[1,q]$. A β -valuation is now more commonly called a graceful labeling. An α -labeling is a graceful labeling having the additional property that there exists an integer λ such that if $\{u,v\}\in E(G)$, then $\{u,v\}=\{a,b\}$, where $h(a)\leq \lambda < h(b)$. The number λ , which is unique, is called the critical value of the α -labeling. Note that necessarily $0, \lambda, \lambda+1$, and |E(G)| are in h(V(G)). Moreover, G must be bipartite.

If h is an α -labeling of G, then h' = |E(G)| - h is also an α -labeling of G with critical value $\lambda' = |E(G)| - (\lambda + 1)$. We shall refer to h' as the complementary labeling of h.

Numerous large classes of bipartite graphs have α -labelings; examples include complete bipartite graphs, caterpillars, d-cubes, bipartite prisms, and cycles of length 4k (see Gallian [11] for a survey). Labelings of graphs are particularly interesting because of their applications to graph decompositions. It is well known that if a graph G with q edges admits an α -labeling, then the edge-sets of K_{2qx+1} , $K_{2qx+2}-I$ (where I is a 1-factor), and $K_{qx,qy}$ can be partitioned into subgraphs isomorphic to G for all positive integers x and y (see [14] and [5]). One may not be able to obtain these same results with the the less restrictive graceful labelings of G.

Let G be a bipartite graph on p vertices and with q edges. We list some known necessary conditions for G to admit an α -labeling:

- I) The Order-Size Condition: $q \ge p 1$.
- II) The Parity Condition: If every vertex of G has even degree, then we must have $q \equiv 0 \pmod{4}$.
- III) Wu's Condition: If d_1, d_2, \ldots, d_p is the degree sequence of G, then we must have $gcd(d_1, d_2, \ldots, d_p, q)$ divides q(q-1)/2.

This last condition is unpublished and is due to Wu according to Gallian (see [11]). Numerous graphs satisfy these conditions, but do not admit α -labelings.

The conditions above can help decide which regular bipartite graphs G might admit α -labelings. For example, rK_2 admits an α -labeling if and only if r=1 (since $|V(rK_2)|>|E(rK_2)|+1$ for $r\geq 2$). Half of the 2-regular bipartite graphs cannot admit an α -labeling by the parity condition. The graph $3C_4$ is the only 2-regular bipartite graph that satisfies the parity condition and is known not to admit an α -labeling. All other 2-regular bipartite graphs that satisfy the parity condition and have at most 3 components admit α -labelings (see [2] and [8]). Moreover, Abrham and Kotzig [1] proved that rC_4 admits an α -labeling for all $r\neq 3$.

As for 3-regular graphs, it is known that $K_{3,3}$, the 3-cube, and all bipartite prisms [10, 9] and bipartite Möbius ladders [12] admit α -labelings. We note that none of the three forbidding conditions above apply to 3-regular graphs. The parity condition does not apply to 4-regular bipartite graphs; however, Wu's condition does. For example, the graph $K_{5,5} - I$, where I is a 1-factor does not admit an α -labeling.

In [6], El-Zanati and Vanden Eynden introduced the concept of a free α -labeling as follows. Let G be a graph with α -labeling h and critical value λ . We say that h is free if $\lambda > 2$, and neither 1 nor $\lambda - 1$ is in h(V(G)). They showed that if both G_1 and G_2 admit free α -labelings, then the vertex-disjoint unions of G_1 and G_2 also admits a free α -labeling.

Theorem 1 Let G_i be a graph with a free α -labeling h_i and critical value λ_i for i = 1, 2. Then the vertex-disjoint union $G_1 \bigcup G_2$ is a graph with a free α -labeling h with critical value $\lambda_1 + \lambda_2 - 1$.

We illustrate how Theorem 1 works by showing how the labeling of $G = G_1 \cup G_2$ is obtained. Let $V(G_i) = X_i \cup Y_i$, where if $v \in X_i$, then $h_i(v) \leq \lambda_i$, and if $v \in Y_i$, then $h_i(v) > \lambda_i$, i = 1, 2. Define h on V(G) to be h_1 on X_1 , $h_2 + \lambda_1 - 1$ on $X_2 \cup Y_2$, and $h_1 + |E(G_2)|$ on Y_1 . Then h is an α -valuation for G with critical value $\lambda = \lambda_1 + \lambda_2 - 1 > 2$.

In this article, we show that if G is a bipartite prism, a bipartite Möbius ladder or a connected cubic bipartite graph of order at most 14, then G admits a free α -labeling. We also conjecture that every bipartite cubic graph admits a free α -labeling.

2 Additional Notation and Terminology

We denote the path with vertices x_0, x_1, \ldots, x_k , where x_i is adjacent to $x_{i+1}, 0 \le i \le k-1$, by (x_0, x_1, \ldots, x_k) . In using this notation, we are thinking of traversing the path from x_0 to x_k so that x_0 is the first vertex, x_1 is the second vertex, and so on. Let $G_1 = (x_0, x_1, \ldots, x_j)$ and $G_2 = (y_0, y_1, \ldots, y_k)$. If G_1 and G_2 are vertex-disjoint except for $x_j = y_0$, then by $G_1 + G_2$ we mean the path $(x_0, x_1, \ldots, x_j, y_1, y_2, \ldots, y_k)$. If the only vertices they have in common are $x_0 = y_k$ and $x_j = y_0$, then by $G_1 + G_2$ we mean the cycle $(x_0, x_1, \ldots, x_j, y_1, y_2, \ldots, y_{k-1}, x_0)$.

Let P(2k) be the path with 2k edges and 2k+1 vertices $0,1,\ldots,2k$ given by $(0,2k,1,2k-1,2,2k-2,\ldots,k-1,k+1,k)$. Note that the set of vertices of this graph is $A \cup B$, where A = [0,k], B = [k+1,2k], and every edge joins a vertex from A to one from B. Furthermore the set of labels of the edges of P(2k) is [1,2k].

Let a and b be nonnegative integers and k, d_1 , and d_2 be positive integers such that $a + kd_1 < b$. Let $\hat{P}(2k, d_1, d_2, a, b)$ be the path with 2k edges and

2k+1 vertices given by $(a, b+(k-1)d_2, a+d_1, b+(k-2)d_2, a+2d_1, \ldots, a+(k-1)d_1, b, a+kd_1)$. Note that $\hat{P}(2k, 1, 1, 0, k+1)$ is the graph P(2k). Note that this graph $\hat{P}(2k, d_1, d_2, a, b)$ has the following properties:

- P1: $\hat{P}(2k, d_1, d_2, a, b)$ is a path with first vertex a, second vertex $b + (k 1)d_2$, and last vertex $a + kd_1$.
- P2: Each edge of $\hat{P}(2k, d_1, d_2, a, b)$ joins a vertex from $A = \{a + id_1 : 0 \le i \le k\}$ to a vertex with a larger label from $B = \{b + id_2 : 0 \le i \le k 1\}$.
- P3: The set of edge labels of $\hat{P}(2k, d_1, d_2, a, b)$ is $\{b-a-kd_1+i(d_1+d_2): 0 \le i \le k-1\} \cup \{b-a-(k-1)d_1+i(d_1+d_2): 0 \le i \le k-1\}.$

The path $\hat{P}(10, 2, 4, 14, 40)$ is shown in Figure 1 below.

Figure 1: The path $\hat{P}(10, 2, 4, 14, 40)$.

3 Free α -labelings of Some Cubic Graphs

We will show that bipartite prisms, bipartite Möbius ladders, and bipartite cubic graphs of order at most 14 admit free α -labelings.

3.1 Free α -labelings of Bipartite Prisms

By a prism D_n $(n \geq 4)$ we mean the cartesian product $C_n \times P_2$ of a cycle with n vertices and a path with 2 vertices. For convenience, we let $D_n = C_n \cup C'_n \cup F$, where $C_n = (v_1, v_2, \ldots, v_n, v_1)$, $C'_n = (v'_1, v'_2, \ldots, v'_n, v'_1)$, and $F = \{\{v_i, v'_i\} : 1 \leq i \leq n\}$. We shall refer to C_n as the outer cycle, to C'_n as the inner cycle, and to F as the spokes. Figure 2 shows the prism D_8 . We note that $D_{2n}, n \geq 2$, is necessarily bipartite with bipartition $(O \cup W', W \cup O')$, where $O = \{v_{2i-1} : 1 \leq i \leq n\}$, $W' = \{v'_{2i} : 1 \leq i \leq n\}$, $W = \{v_{2i} : 1 \leq i \leq n\}$, and $O' = \{v'_{2i-1} : 1 \leq i \leq n\}$. We will show that D_n admits a free α -labeling for all even integers $n \geq 4$.

Theorem 2 The prism D_n admits a free α -labeling for all even $n \geq 4$.

Figure 2: The prism D_8 .

Proof. We separate the proof into 3 cases. In each case, we give an α -labeling f such that the complementary labeling of f is free.

Case 1 $n \equiv 0 \pmod{6}$.

Let n = 6t. Thus, $|V(D_n)| = 12t$ and $|E(D_n)| = 18t$. A free α -labeling of D_6 is given in Table 1 (graph Bc7). For $t \geq 2$, define a one-to-one function $f: V(D_{6t}) \to [0, 18t]$ as follows:

```
v_i \in O = \{v_i : i \text{ odd}, 1 \le i < 6t\},\
 f(v_i) = i - 1,
 f(v_2) = 18t
 f(v_i) = 18t - 2i + 2, v_i \in W_1 = \{v_i : i \text{ even}, \ 2 < i \le 2t\},
                                      v_i \in W_2 = \{v_i : i \text{ even}, 2t < i < 4t\},\
 f(v_i) = 18t - 2i,
 f(v_i) = 18t - 2i - 2
                                      v_i \in W_3 = \{v_i : i \text{ even}, 4t < i < 6t\},\
f(v_{6t}) = 12t - 3
f(v_1') = 18t - 3,
                                       v_i \in W' = \{v_i : i \text{ even}, 1 < i \le 6t\},\
f(v_i')=i-1,
f(v_i') = 18t - 2i + 2,
                                     v_i \in O_1' = \{v_i : i \text{ odd}, 1 < i \le 2t + 1\},\
f(v_i') = 18t - 2i, v_i \in O_2' = \{v_i : i \text{ odd}, 2t + 1 < i \le 4t - 1\},
 f(v_i')=18t-2i-2,
                                   v_i \in O_3' = \{v_i : i \text{ odd}, 4t - 1 < i < 6t\}.
```

Note that $W = \{v_2\} \cup W_1 \cup W_2 \cup W_3 \cup \{v_{6t}\}$ and $O' = \{v_1'\} \cup O_1' \cup O_2' \cup O_3'$. Thus the domain of f is indeed $V(D_{6t})$.

Next, we confirm that f is one-to-one. We compute

$$f(O) = \{0, 2, \dots, 6t - 2\},$$

$$f(W_1) = \{18t - 6, 18t - 10, \dots, 14t + 2\},$$

$$f(W_2) = \{14t - 4, 14t - 8, \dots, 10t\},$$

$$f(W_3) = \{10t - 6, 10t - 10, \dots, 6t + 2\},$$

$$f(W') = \{1, 3, \dots, 6t - 1\},$$

$$f(O'_1) = \{18t - 4, 18t - 8, \dots, 14t\},$$

$$f(O'_2) = \{14t - 6, 14t - 10, \dots, 10t + 2\},$$

$$f(O'_3) = \{10t - 4, 10t - 8, \dots, 6t\}.$$

Note that f is piecewise strictly increasing by 2 or strictly decreasing by 4 and that all labels are distinct. Thus f is one-to-one. Moreover, $f(O \cup W') = [0, 6t-1]$ and for $v_i \in W \cup O'$, $6t \leq f(v_i) \leq 18t$.

To help compute the edge labels, we will describe $f(D_{6t})$ in terms of the paths $\hat{P}(2k, d_1, d_2, a, b)$. For convenience, we will identify the vertices of C_{6t} and C'_{6t} with their labels. We have $f(C_{6t}) = G_1 + G_2 + G_3 + (6t - 2, 12t - 3, 0, 18t, 2)$, where

$$G_1 = \hat{P}(2(t-1), 2, 4, 2, 14t + 2),$$

$$G_2 = \hat{P}(2t, 2, 4, 2t, 10t),$$

$$G_3 = \hat{P}(2(t-1), 2, 4, 4t, 6t + 2).$$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1)) &= \{12t+2+6i: 0 \leq i \leq t-2\} \cup \{12t+4+6i: 0 \leq i \leq t-2\} \\ &= \{\ell \equiv 2 \pmod{6}: 12t+2 \leq \ell \leq 18t-10\} \\ &\cup \{\ell \equiv 4 \pmod{6}: 12t+4 \leq \ell \leq 18t-8\}, \\ \bar{f}(E(G_2)) &= \{6t+6i: 0 \leq i \leq t-1\} \cup \{6t+2+6i: 0 \leq i \leq t-1\} \\ &= \{\ell \equiv 0 \pmod{6}: 6t \leq \ell \leq 12t-6\} \\ &\cup \{\ell \equiv 2 \pmod{6}: 6t+2 \leq \ell \leq 12t-4\}, \\ \bar{f}(E(G_3)) &= \{4+6i: 0 \leq i \leq t-2\} \cup \{6+6i: 0 \leq i \leq t-2\} \\ &= \{\ell \equiv 4 \pmod{6}: 4 \leq \ell \leq 6t-8\} \\ &\cup \{\ell \equiv 0 \pmod{6}: 6 \leq \ell \leq 6t-6\}. \end{split}$$

Moreover, the edge labels 6t-1, 12t-3, 18t, and 18t-2 occur on the path (6t-2, 12t-3, 0, 18t, 2).

Similarly, we have
$$f(C'_{6t}) = G'_1 + G'_2 + G'_3 + (6t - 1, 18t - 3, 1)$$
, where
$$G'_1 = \hat{P}(2t, 2, 4, 1, 14t),$$

$$G'_2 = \hat{P}(2(t - 1), 2, 4, 2t + 1, 10t + 2),$$

$$G'_3 = \hat{P}(2t, 2, 4, 4t - 1, 6t).$$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1')) &= \{12t-1+6i: 0 \leq i \leq t-1\} \cup \{12t+1+6i: 0 \leq i \leq t-1\} \\ &= \{\ell \equiv 5 \pmod{6}: 12t-1 \leq \ell \leq 18t-7\} \\ &\cup \{\ell \equiv 1 \pmod{6}: 12t+1 \leq \ell \leq 18t-5\}, \\ \bar{f}(E(G_2')) &= \{6t+3+6i: 0 \leq i \leq t-2\} \cup \{6t+5+6i: 0 \leq i \leq t-2\} \\ &= \{\ell \equiv 3 \pmod{6}: 6t+3 \leq \ell \leq 12t-9\} \\ &\cup \{\ell \equiv 5 \pmod{6}: 6t+5 \leq \ell \leq 12t-7\}, \\ \bar{f}(E(G_3')) &= \{1+6i: 0 \leq i \leq t-1\} \cup \{3+6i: 0 \leq i \leq t-1\} \\ &= \{\ell \equiv 1 \pmod{6}: 1 \leq \ell \leq 6t-5\} \\ &\cup \{\ell \equiv 3 \pmod{6}: 3 \leq \ell \leq 6t-3\}. \end{split}$$

Moreover, the edge labels 12t-2 and 18t-4 occur on the path (6t-1, 18t-3, 1).

For each spoke $\{v_i, v_i'\}$, the edge label is given by $f(v_i) - f(v_i')$ if i is even and by $f(v_i') - f(v_i)$ if i is odd. Thus the labels on the spokes are given by

$$\bar{f}(\{v_i, v_i'\}) = \begin{cases} 18t - 3 & \text{for } i = 1, \\ 18t - 1 & \text{for } i = 2, \\ 18t - 3i + 3 & \text{for } 3 \le i \le 2t + 1, \\ 18t - 3i + 1 & \text{for } 2t + 2 \le i \le 4t, \\ 18t - 3i - 1 & \text{for } 4t + 1 \le i \le 6t - 1, \\ 6t - 2 & \text{for } i = 6t. \end{cases}$$

Thus the set of edge labels on the spokes is:

$$\bar{f}(E(F)) = \{\ell \equiv 0 \pmod{3} : 12t \le \ell \le 18t - 6\}$$

$$\cup \{\ell \equiv 1 \pmod{3} : 6t + 1 \le \ell \le 12t - 5\}$$

$$\cup \{\ell \equiv 2 \pmod{3} : 2 \le \ell \le 6t - 4\}$$

$$\cup \{6t - 2, 18t - 3, 18t - 1\}.$$

It is easy to verify that each label $\ell \in [0, 18t]$ occurs on exactly one edge in D_{6t} . Thus f is an α -labeling of D_{6t} with critical value $\lambda = 6t - 1$.

Now, let f' be the complementary labeling of f. The critical value of f' is $\lambda' = 18t - (\lambda + 1) = 12t$. Thus, $\lambda' > 2$. Moreover, since neither 18t - 1 nor 6t + 1 is a vertex label in $f(V(D_{6t}))$, neither 1 nor $\lambda' - 1$ is a label in $f'(V(D_{6t}))$. Therefore f' is a free α -labeling of D_{6t} . Figure 3 shows the resulting free α -labeling of D_{12} .

Figure 3: A free α -labeling of D_{12} .

Case 2 $n \equiv 2 \pmod{6}$.

Let n=6t+2. Thus, $|V(D_n)|=12t+4$ and $|E(D_n)|=18t+6$. If t=1, we let (0,22,10,20,14,18,3,24,0) denote the vertex labels of the outer cycle and let (23,5,21,12,19,16,17,4,23) denote the vertex labels of the inner cycle with spokes $\{0,23\},\{22,5\},\ldots,\{24,4\}$. It is easy to verify that yields a free α -labeling of D_8 . For $t\geq 2$, we define a one-to-one function $f:V(D_{6t+2})\to [0,18t+6]$ as follows:

$$\begin{split} f(v_i) &= i-1, & v_i \in O = \{v_i: i \text{ odd}, \ 1 \leq i < 6t+2\}, \\ f(v_2) &= 18t+6, \\ f(v_i) &= 18t-2i+7, & v_i \in W_1 = \{v_i: i \text{ even}, \ 2 < i \leq 2t\}, \\ f(v_i) &= 18t-2i+4, & v_i \in W_2 = \{v_i: i \text{ even}, \ 2t < i < 6t+2\}, \\ f(v_{6t+2}) &= 18t+3, \\ f(v_1') &= 18t+2, \\ f(v_i') &= i-1, & v_i \in W' = \{v_i: i \text{ even}, \ 1 < i \leq 6t+2\}, \\ f(v_i') &= 18t-2i+7, & v_i \in O_1' = \{v_i: i \text{ odd}, 1 < i \leq 2t+1\}, \\ f(v_i') &= 18t-2i+4, & v_i \in O_2' = \{v_i: i \text{ odd}, 2t+1 < i < 6t+2\}. \end{split}$$

Note that $W = \{v_2\} \cup W_1 \cup W_2 \cup \{v_{6t+2}\}$ and $O' = \{v'_1\} \cup O'_1 \cup O'_2$. Thus the domain of f is indeed $V(D_{6t+2})$.

Next, we confirm that f is one-to-one. We compute

$$f(O) = \{0, 2, \dots, 6t\},$$

$$f(W_1) = \{18t - 1, 18t - 5, \dots, 14t + 7\},$$

$$f(W_2) = \{14t, 14t - 4, \dots, 6t + 4\},$$

$$f(W') = \{1, 3, \dots, 6t + 1\},$$

$$f(O'_1) = \{18t + 1, 18t - 3, \dots, 14t + 5\},$$

$$f(O'_2) = \{14t - 2, 14t - 6, \dots, 6t + 2\}.$$

Note that f is piecewise strictly increasing by 2 or strictly decreasing by 4 and that all labels are distinct. Thus f is one-to-one. Moreover, $f(O \cup W') = [0, 6t + 1]$ and for $v_i \in W \cup O'$, $6t + 2 \le f(v_i) \le 18t + 6$.

To help compute the edge labels, we will describe $f(D_{6t+2})$ in terms of the paths $\hat{P}(2k, d_1, d_2, a, b)$. For convenience, we will identify the vertices of C_{6t+2} and C'_{6t+2} with their labels. We have $f(C_{6t+2}) = G_1 + G_2 + (6t, 18t + 3, 0, 18t + 6, 2)$, where

$$G_1 = \hat{P}(2(t-1), 2, 4, 2, 14t + 7),$$

 $G_2 = \hat{P}(2(2t), 2, 4, 2t, 6t + 4).$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1)) &= \{12t+7+6i: 0 \le i \le t-2\} \cup \{12t+9+6i: 0 \le i \le t-2\} \\ &= \{\ell \equiv 1 \pmod{6}: 12t+7 \le \ell \le 18t-5\} \\ &\cup \{\ell \equiv 3 \pmod{6}: 12t+9 \le \ell \le 18t-3\}, \\ \bar{f}(E(G_2)) &= \{4+6i: 0 \le i \le 2t-1\} \cup \{6+6i: 0 \le i \le 2t-1\} \\ &= \{\ell \equiv 4 \pmod{6}: 4 \le \ell \le 12t-2\} \\ &\cup \{\ell \equiv 0 \pmod{6}: 6 \le \ell \le 12t\}. \end{split}$$

Moreover, the edge labels 12t + 3, 18t + 3, 18t + 6 and 18t + 4 occur on the path (6t, 18t + 3, 0, 18t + 6, 2).

Similarly, we have $f(C'_{6t+2}) = G'_1 + G'_2 + (6t+1, 18t+2, 1)$, where

$$G'_1 = \hat{P}(2t, 2, 4, 1, 14t + 5),$$

$$G'_2 = \hat{P}(2(2t), 2, 4, 2t + 1, 6t + 2).$$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1')) &= \{12t+4+6i: 0 \leq i \leq t-1\} \cup \{12t+6+6i: 0 \leq i \leq t-1\} \\ &= \{\ell \equiv 4 \pmod{6}: 12t+4 \leq \ell \leq 18t-2\} \\ &\quad \cup \{\ell \equiv 0 \pmod{6}: 12t+6 \leq \ell \leq 18t\}, \\ \bar{f}(E(G_2')) &= \{1+6i: 0 \leq i \leq 2t-1\} \cup \{3+6i: 0 \leq i \leq 2t-1\} \\ &= \{\ell \equiv 1 \pmod{6}: 1 \leq \ell \leq 12t-5\} \\ &\quad \cup \{\ell \equiv 3 \pmod{6}: 3 \leq \ell \leq 12t-3\}. \end{split}$$

Moreover, the edge labels 12t + 1, and 18t + 1 occur on the path (6t + 1, 18t + 2, 1).

For each spoke $\{v_i, v_i'\}$, the edge label is given by $f(v_i) - f(v_i')$ if i is even and by $f(v_i') - f(v_i)$ if i is odd. Thus the labels on the spokes are given by

$$\bar{f}(\{v_i, v_i'\}) = \begin{cases} 18t + 2 & \text{for } i = 1, \\ 18t + 5 & \text{for } i = 2, \\ 18t - 3i + 8 & \text{for } 3 \le i \le 2t + 1, \\ 18t - 3i + 5 & \text{for } 2t + 2 \le i \le 6t + 1, \\ 12t + 2 & \text{for } i = 6t + 2. \end{cases}$$

Thus the set of edge labels on the spokes is:

$$\bar{f}(E(F)) = \{\ell \equiv 2 \pmod{3} : 12t + 5 \le \ell \le 18t - 1\}$$

$$\cup \{\ell \equiv 2 \pmod{3} : 2 \le \ell \le 12t - 1\}$$

$$\cup \{12t + 2, 18t + 2, 18t + 5\}.$$

It is easy to verify that each label $\ell \in [0, 18t + 6]$ occurs on exactly one edge in D_{6t+2} . Thus f is an α -labeling of D_{6t+2} . Although f is not free, it is easy to check that its complementary labeling f' is free. Figure 4 shows the resulting free α -labeling of D_{14} .

Case 3 $n \equiv 4 \pmod{6}$. Let n = 6t - 2. Thus, $|V(D_n)| = 12t - 4$ and $|E(D_n)| = 18t - 6$. A free α -labeling of D_4 is given in Table 1 (graph Bc2). For $t \geq 2$, define a

Figure 4: A free α -labeling of D_{14} .

one-to-one function $f: V(D_{6t-2}) \to [0, 18t-6]$ as follows:

$$\begin{split} f(v_i) &= i-1, & v_i \in O = \{v_i: i \text{ odd}, \ 1 \leq i < 6t-2\}, \\ f(v_i) &= 18t-2i-5, & v_i \in W_1 = \{v_i: i \text{ even}, \ 1 < i \leq 2t-2\}, \\ f(v_i) &= 18t-2i-8, & v_i \in W_2 = \{v_i: i \text{ even}, \ 2t-2 < i < 6t-2\}, \\ f(v_{6t-2}) &= 18t-8, \\ f(v_1') &= 18t-6, \\ f(v_i') &= i-1, & v_i \in W' = \{v_i: i \text{ even}, \ 1 < i \leq 6t-2\}, \\ f(v_i') &= 18t-2i-5, & v_i \in O_1' = \{v_i: i \text{ odd}, 1 < i \leq 2t-1\}, \\ f(v_i') &= 18t-2i-8, & v_i \in O_2' = \{v_i: i \text{ odd}, 2t-1 < i < 6t-2\}. \end{split}$$

Note that $W = W_1 \cup W_2 \cup \{v_{6t-2}\}$ and $O' = \{v'_1\} \cup O'_1 \cup O'_2$. Thus the domain of f is indeed $V(D_{6t-2})$.

Next, we confirm that f is one-to-one. We compute

$$f(O) = \{0, 2, \dots, 6t - 4\},$$

$$f(W_1) = \{18t - 9, 18t - 13, \dots, 14t - 1\},$$

$$f(W_2) = \{14t - 4, 14t - 8, \dots, 6t\},$$

$$f(W') = \{1, 3, \dots, 6t - 3\},$$

$$f(O'_1) = \{18t - 11, 18t - 15, \dots, 14t - 3\},$$

$$f(O'_2) = \{14t - 10, 14t - 14, \dots, 6t - 2\}.$$

Note that f is piecewise strictly increasing by 2 or strictly decreasing by 4 and that all labels are distinct. Thus f is one-to-one. Moreover, $f(O \cup W') = [0, 6t - 3]$ and for $v_i \in W \cup O'$, $6t - 2 \le f(v_i) \le 18t - 6$.

To help compute the edge labels, we will describe $f(D_{6t-2})$ in terms of the paths $\hat{P}(2k, d_1, d_2, a, b)$. For convenience, we will identify the vertices

of C_{6t-2} and C'_{6t-2} with their labels. We have $f(C_{6t-2}) = G_1 + G_2 + (6t - 4, 18t - 8, 0)$, where

$$G_1 = \hat{P}(2(t-1), 2, 4, 0, 14t - 1),$$

 $G_2 = \hat{P}(2(2t-1), 2, 4, 2t - 2, 6t)$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1)) &= \{12t+1+6i: 0 \leq i \leq t-2\} \cup \{12t+3+6i: 0 \leq i \leq t-2\} \\ &= \{\ell \equiv 1 \pmod{6}: 12t+1 \leq \ell \leq 18t-11\} \\ &\quad \cup \{\ell \equiv 3 \pmod{6}: 12t+3 \leq \ell \leq 18t-9\}, \\ \bar{f}(E(G_2)) &= \{4+6i: 0 \leq i \leq 2t-2\} \cup \{6+6i: 0 \leq i \leq 2t-2\} \\ &= \{\ell \equiv 4 \pmod{6}: 4 \leq \ell \leq 12t-8\} \\ &\quad \cup \{\ell \equiv 0 \pmod{6}: 6 \leq \ell \leq 12t-6\}. \end{split}$$

Moreover, the edge labels 12t-4 and 18t-8 occur on the path (6t-4, 18t-8, 0).

Similarly, we have $f(C'_{6t-2}) = G'_1 + G'_2 + (6t-3, 18t-6, 1)$, where

$$G'_1 = \hat{P}(2(t-1), 2, 4, 1, 14t - 3),$$

$$G'_2 = \hat{P}(2(2t-1), 2, 4, 2t - 1, 6t - 2).$$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1')) &= \{12t-2+6i: 0 \leq i \leq t-2\} \cup \{12t+6i: 0 \leq i \leq t-2\} \\ &= \{\ell \equiv 2 \pmod{6}: 12t-2 \leq \ell \leq 18t-14\} \\ &\quad \cup \{\ell \equiv 0 \pmod{6}: 12t \leq \ell \leq 18t-12\}, \\ \bar{f}(E(G_2')) &= \{1+6i: 0 \leq i \leq 2t-2\} \cup \{3+6i: 0 \leq i \leq 2t-2\} \\ &= \{\ell \equiv 1 \pmod{6}: 1 \leq \ell \leq 12t-11\} \\ &\quad \cup \{\ell \equiv 3 \pmod{6}: 3 \leq \ell \leq 12t-9\}. \end{split}$$

Moreover, the edge labels 12t-3 and 18t-7 occur on the path (6t-3, 18t-6, 1).

For each spoke $\{v_i, v_i'\}$, the edge label is given by $f(v_i) - f(v_i')$ if i is even and by $f(v_i') - f(v_i)$ if i is odd. Thus the labels on the spokes are given by

$$\bar{f}(\{v_i, v_i'\}) = \begin{cases} 18t - 6 & \text{for } i = 1, \\ 18t - 3i - 4 & \text{for } 2 \le i \le 2t - 1, \\ 18t - 3i - 7 & \text{for } 2t \le i \le 6t - 3, \\ 12t - 5 & \text{for } i = 6t - 2. \end{cases}$$

Thus the set of edge labels on the spokes is:

$$\bar{f}(E(F)) = \{ \ell \equiv 2 \pmod{3} : 12t - 1 \le \ell \le 18t - 10 \}$$

$$\cup \{ \ell \equiv 2 \pmod{3} : 2 \le \ell \le 12t - 7 \}$$

$$\cup \{ 12t - 5, 18t - 6 \}.$$

It is easy to verify that each label $\ell \in [0, 18t - 6]$ occurs on exactly one edge in D_{6t-2} . Thus f is an α -labeling of D_{6t-2} . Although f is not free, it is easy to check that its complementary labeling f' is free. Figure 5 shows the resulting free α -labeling of D_{10} .

Figure 5: A free α -labeling of D_{10} .

3.2 Free α -labelings of Bipartite Möbius Ladders

For $n \geq 3$, let v_1, v_2, \ldots, v_n and v'_1, v'_2, \ldots, v'_n denote the consecutive vertices of two disjoint paths with n vertices. We obtain the Möbius ladder M_n by joining v_i to v'_i for $i=1,2,\ldots,n$ and by joining v_1 to v'_n and v_n to v'_1 . For convenience, we let $M_n = P_n \cup P'_n \cup F \cup H$, where $P_n = (v_1, v_2, \ldots, v_n), \ P'_n = (v'_1, v'_2, \ldots, v'_n), \ F = \{\{v_i, v'_i\} : 1 \leq i \leq n\}$ and $H = \{\{v_1, v'_n\}, \{v_n, v'_1\}\}$. We shall refer to P_n as the outer path, to P'_n as the inner path, and to F as the spokes. Figure 6 shows the Möbius ladder M_9 . We note that $M_{2n+1}, n \geq 1$, is necessarily bipartite with bipartition $(O \cup W', W \cup O')$, where $O = \{v_{2i+1} : 1 \leq i \leq n\}, W' = \{v'_{2i} : 1 \leq i \leq n\}, W = \{v_{2i} : 1 \leq i \leq n\}, \text{ and } O' = \{v'_{2i+1} : 1 \leq i \leq n\}\}$. We will show that M_n admits a free α -labeling for all odd integers $n \geq 3$.

Theorem 3 The Möbius ladder M_n admits a free α -labeling for all odd $n \geq 3$.

Figure 6: The Möbius ladder M_9 .

Proof. We separate the proof into 3 cases. In each case, we give an α -labeling f such that the complementary labeling of f is free.

Case 1 $n \equiv 1 \pmod{6}$.

Let n=6t+1. Thus, $|V(M_n)|=12t+2$ and $|E(M_n)|=18t+3$, where $t\geq 1$. Define a one-to-one function $f:V(M_{6t+1})\to [0,18t+3]$ as follows:

$$\begin{split} f(v_i) &= i-1, & v_i \in O = \{v_i: i \text{ odd}, \ 1 \leq i \leq 6t+1\}, \\ f(v_i) &= 18t - \frac{i}{2} + 1, & v_i \in W_1 = \{v_i: i \text{ even}, \ 2 \leq i \leq 4t-2\}, \\ f(v_i) &= 18t - \frac{i}{2} - 2, & v_i \in W_2 = \{v_i: i \text{ even}, \ 4t-2 < i < 6t\}, \\ f(v_{6t}) &= 6t+1, & \\ f(v_1') &= 18t+3, & \\ f(v_i') &= i-1, & v_i \in W' = \{v_i: i \text{ even}, \ 1 < i \leq 6t\}, \\ f(v_i') &= 9t - \frac{i-1}{2} + 2, & v_i \in O_1' = \{v_i: i \text{ odd}, 1 < i < 6t+1\}, \\ f(v_{6t+1}') &= 18t+1. & \end{split}$$

Note that $W = W_1 \cup W_2 \cup \{v_{6t}\}$ and $O' = \{v'_1\} \cup O'_1 \cup \{v'_{6t+1}\}$. Thus the domain of f is indeed $V(M_{6t+1})$.

Next, we confirm that f is one-to-one. We compute

$$f(O) = \{0, 2, \dots, 6t\},$$

$$f(W_1) = \{18t, 18t - 1, \dots, 16t + 2\},$$

$$f(W_2) = \{16t - 2, 16t - 3, \dots, 15t - 1\},$$

$$f(W') = \{1, 3, \dots, 6t - 1\},$$

$$f(O'_1) = \{9t + 1, 9t, \dots, 6t + 3\}.$$

Note that f is piecewise strictly increasing by 2 or strictly decreasing by 1 and that all labels are distinct. Thus f is one-to-one. Moreover, $f(O \cup W') = [0, 6t]$ and for $v_i \in W \cup O'$, $6t + 1 \le f(v_i) \le 18t + 3$.

To help compute the edge labels, we will describe $f(M_{6t+1})$ in terms of the paths $\hat{P}(2k, d_1, d_2, a, b)$. For convenience, we will identify the vertices of P_{6t+1} and P'_{6t+1} with their labels. We have $f(P_{6t+1}) = G_1 + G_2 + (6t - 2, 6t + 1, 6t)$, where

$$G_1 = \hat{P}(2(2t-1), 2, 1, 0, 16t + 2),$$

 $G_2 = \hat{P}(2t, 2, 1, 4t - 2, 15t - 1).$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1)) &= \{12t+4+3i: 0 \leq i \leq 2t-2\} \cup \{12t+6+3i: 0 \leq i \leq 2t-2\} \\ &= \{\ell \equiv 1 \pmod{3}: 12t+4 \leq \ell \leq 18t-2\} \\ &\quad \cup \{\ell \equiv 0 \pmod{3}: 12t+6 \leq \ell \leq 18t\}, \\ \bar{f}(E(G_2)) &= \{9t+1+3i: 0 \leq i \leq t-1\} \cup \{9t+3+3i: 0 \leq i \leq t-1\} \\ &= \{\ell \equiv 1 \pmod{3}: 9t+1 \leq \ell \leq 12t-2\} \\ &\quad \cup \{\ell \equiv 0 \pmod{3}: 9t+3 \leq \ell \leq 12t\}. \end{split}$$

Moreover, the edge labels 3 and 1 occur on the path (6t-2, 6t+1, 6t). Similarly, we have $f(P'_{6t+1}) = (18t+3, 1) + G'_1 + (6t-1, 18t+1)$, where

$$G_1' = \hat{P}(2(3t-1), 2, 1, 1, 6t + 3).$$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1')) &= \{3i+4: 0 \le i \le 3t-2\} \cup \{3i+6: 0 \le i \le 3t-2\} \\ &= \{\ell \equiv 1 \pmod{3}: 4 \le \ell \le 9t-2\} \\ &\cup \{\ell \equiv 0 \pmod{3}: 6 \le \ell < 9t\}. \end{split}$$

Moreover, the edge labels 18t+2, and 12t+2 occur on the edge $\{18t+3,1\}$ and $\{6t-1,18t+1\}$.

For each spoke $\{v_i, v_i'\}$, the edge label is given by $f(v_i) - f(v_i')$ if i is even and by $f(v_i') - f(v_i)$ if i is odd. Thus the labels on the spokes are given by

$$\bar{f}(\{v_i,v_i'\}) = \begin{cases} 18t+3 & \text{for } i=1,\\ 18t-\frac{3i}{2}+2 & \text{for } i \text{ even, } 2 \leq i \leq 4t-2,\\ 18t-\frac{3i}{2}-1 & \text{for } i \text{ even, } 4t \leq i \leq 6t-2,\\ 9t-\frac{3(i-1)}{2}+2 & \text{for } i \text{ odd, } 3 \leq i \leq 6t-1,\\ 2 & \text{for } i=6t,\\ 12t+1 & \text{for } i=6t+1. \end{cases}$$

Thus the set of edge labels on the spokes is:

$$\bar{f}(E(F)) = \{\ell \equiv 2 \pmod{3} : 12t + 5 \le \ell \le 18t - 1\}$$

$$\cup \{\ell \equiv 2 \pmod{3} : 9t + 2 \le \ell \le 12t - 1\}$$

$$\cup \{\ell \equiv 2 \pmod{3} : 5 \le \ell \le 9t - 1\}$$

$$\cup \{2, 12t + 1, 18t + 3\}.$$

Moreover, the edge labels 18t+1, and 12t+3 occur on the edge $\{v_1, v'_{6t+1}\}$ and $\{v'_1, v_{6t+1}\}$.

It is easy to verify that each label $\ell \in [0, 18t + 3]$ occurs on exactly one edge in M_{6t+1} . Thus f is an α -labeling of M_{6t+1} . Although f is not free, it is easy to check that its complementary labeling f' is free. Figure 7 shows the resulting free α -labeling of M_7 .

Figure 7: A free α -labeling of M_7 .

Case 2 $n \equiv 3 \pmod{6}$.

Let n = 6t - 3. Thus, $|V(M_n)| = 12t - 6$ and $|E(M_n)| = 18t - 9$. A free α -labeling of M_3 (which is isomorphic to $K_{3,3}$) is given in Table 1 (graph Bc1). For $t \geq 2$, define a one-to-one function $f: V(M_{6t-3}) \to [0, 18t - 9]$

as follows:

$$\begin{split} f(v_i) &= i-1, & v_i \in O = \{v_i: i \text{ odd}, \ 1 \leq i \leq 6t-3\}, \\ f(v_i) &= 18t - \frac{i}{2} - 10, & v_i \in W_1 = \{v_i: i \text{ even}, \ 2 \leq i < 4t-2\}, \\ f(v_i) &= 18t - \frac{i}{2} - 12, & v_i \in W_2 = \{v_i: i \text{ even}, \ 4t-2 \leq i < 6t-4\}, \\ f(v_{6t-4}) &= 6t-3, & \\ f(v_1') &= 18t-9, & \\ f(v_i') &= i-1, & v_i \in W' = \{v_i: i \text{ even}, \ 2 \leq i \leq 6t-4\}, \\ f(v_i') &= 9t - \frac{i-1}{2} - 2, & v_i \in O_1' = \{v_i: i \text{ odd}, 1 < i \leq 2t-1\}, \\ f(v_i') &= 9t - \frac{i-1}{2} - 4, & v_i \in O_2' = \{v_i: i \text{ odd}, 2t-1 < i < 6t-3\}, \\ f(v_{6t-3}') &= 12t-6. \end{split}$$

Note that $W = W_1 \cup W_2 \cup \{v_{6t-4}\}$ and $O' = \{v'_1\} \cup O'_1 \cup O'_2 \cup \{v'_{6t-3}\}$. Thus the domain of f is indeed $V(M_{6t-3})$.

Next, we confirm that f is one-to-one. We compute

$$f(O) = \{0, 2, \dots, 6t - 4\},$$

$$f(W_1) = \{18t - 11, 18t - 12, \dots, 16t - 8\},$$

$$f(W_2) = \{16t - 11, 16t - 12, \dots, 15t - 9\},$$

$$f(W') = \{1, 3, \dots, 6t - 5\},$$

$$f(O'_1) = \{9t - 3, 9t - 4, \dots, 8t - 1\},$$

$$f(O'_2) = \{8t - 4, 8t - 5, \dots, 6t - 1\}.$$

Note that f is piecewise strictly increasing by 2 or strictly decreasing by 1 and that all labels are distinct. Thus f is one-to-one. Moreover, $f(O \cup W') = [0, 6t - 4]$ and for $v_i \in W \cup O'$, $6t - 3 \le f(v_i) \le 18t - 9$.

To help compute the edge labels, we will describe $f(M_{6t-3})$ in terms of the paths $\hat{P}(2k,d_1,d_2,a,b)$. For convenience, we will identify the vertices of P_{6t-3} and P'_{6t-3} with their labels. We have $f(P_{6t-3}) = G_1 + G_2 + (6t - 6,6t-3,6t-4)$, where

$$G_1 = \hat{P}(2(2t-2), 2, 1, 0, 16t - 8),$$

 $G_2 = \hat{P}(2(t-1), 2, 1, 4t - 4, 15t - 9).$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1)) &= \{12t-4+3i: 0 \leq i \leq 2t-3\} \\ &\quad \cup \{12t-2+3i: 0 \leq i \leq 2t-3\} \\ &= \{\ell \equiv 2 \pmod{3}: 12t-4 \leq \ell \leq 18t-13\} \\ &\quad \cup \{\ell \equiv 1 \pmod{3}: 12t-2 \leq \ell \leq 18t-11\}, \\ \bar{f}(E(G_2)) &= \{9t-3+3i: 0 \leq i \leq t-2\} \cup \{9t-1+3i: 0 \leq i \leq t-2\} \\ &= \{\ell \equiv 0 \pmod{3}: 9t-3 \leq \ell \leq 12t-9\} \\ &\quad \cup \{\ell \equiv 2 \pmod{3}: 9t-1 \leq \ell \leq 12t-7\}. \end{split}$$

Moreover, the edge labels 3 and 1 occur on the path (6t-6, 6t-3, 6t-4). Similarly, we have $f(P'_{6t-3}) = \{18t-9, 1\} + G'_1 + G'_2 + \{6t-5, 12t-6\}$, where

$$\begin{split} G_1' &= \hat{P}(2(t-1), 2, 1, 1, 8t-1), \\ G_2' &= \hat{P}(2(2t-2), 2, 1, 2t-1, 6t-1). \end{split}$$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1')) &= \{6t+3i: 0 \leq i \leq t-2\} \cup \{6t+2+3i: 0 \leq i \leq t-2\} \\ &= \{\ell \equiv 0 \pmod{3}: 6t \leq \ell \leq 9t-6\} \\ &\quad \cup \{\ell \equiv 2 \pmod{3}: 6t+2 \leq \ell \leq 9t-4\}, \\ \bar{f}(E(G_2')) &= \{4+3i: 0 \leq i \leq 2t-3\} \cup \{6+3i: 0 \leq i \leq 2t-3\} \\ &= \{\ell \equiv 1 \pmod{3}: 4 \leq \ell \leq 6t-5\} \\ &\quad \cup \{\ell \equiv 0 \pmod{3}: 6 \leq \ell \leq 6t-3\}. \end{split}$$

Moreover, the edge labels 18t-10, and 6t-1 occur on the edge $\{18t-9, 1\}$ and $\{6t-5, 12t-6\}$.

For each spoke $\{v_i, v_i'\}$, the edge label is given by $f(v_i) - f(v_i')$ if i is even and by $f(v_i') - f(v_i)$ if i is odd. Thus the labels on the spokes are given by

$$\bar{f}(\{v_i,v_i'\}) = \begin{cases} 18t - 9 & \text{for } i = 1, \\ 18t - \frac{3i}{2} - 9 & \text{for } i \text{ even, } 2 \le i \le 4t - 4, \\ 18t - \frac{3i}{2} - 11 & \text{for } i \text{ even, } 4t - 2 \le i \le 6t - 6, \\ 9t - \frac{3(i-1)}{2} - 2 & \text{for } i \text{ odd, } 3 \le i \le 2t - 1, \\ 9t - \frac{3(i-1)}{2} - 4 & \text{for } i \text{ odd, } 2t + 1 \le i \le 6t - 5, \\ 2 & \text{for } i = 6t - 4, \\ 6t - 2 & \text{for } i = 6t - 3. \end{cases}$$

Thus the set of edge labels on the spokes is:

$$\begin{split} \bar{f}(E(F)) &= \{\ell \equiv 0 \; (\text{mod } 3) : 12t - 3 \leq \ell \leq 18t - 12\} \\ &\quad \cup \{\ell \equiv 1 \; (\text{mod } 3) : 9t - 2 \leq \ell \leq 12t - 8\} \\ &\quad \cup \{\ell \equiv 1 \; (\text{mod } 3) : 6t + 1 \leq \ell \leq 9t - 5\} \\ &\quad \cup \{\ell \equiv 2 \; (\text{mod } 3) : 5 \leq \ell \leq 6t - 4\} \\ &\quad \cup \{2, 6t - 2, 18t - 9\}. \end{split}$$

Moreover, the edge labels 12t-6, and 12t-5 occur on the edge $\{v_1, v'_{6t-3}\}$ and $\{v'_1, v_{6t-3}\}$.

It is easy to verify that each label $\ell \in [0, 18t - 9]$ occurs on exactly one edge in M_{6t-3} . Thus f is an α -labeling of M_{6t-3} . Although f is not free, it is easy to check that its complementary labeling f' is free. Figure 8 shows the resulting free α -labeling of M_9 .

Figure 8: A free α -labeling of M_9 .

Case 3 $n \equiv 5 \pmod{6}$.

Let n = 6t - 1. Thus, $|V(M_n)| = 12t - 2$ and $|E(M_n)| = 18t - 3$. A free α -labeling of M_5 is given in Table 1 (graph Bc3). For $t \ge 2$, define a

one-to-one function $f: V(M_{6t-1}) \rightarrow [0, 18t-3]$ as follows:

$$\begin{split} f(v_i) &= i-1, & v_i \in O = \{v_i: i \text{ odd}, \ 1 \leq i \leq 6t-1\}, \\ f(v_2) &= 18t-3, \\ f(v_i) &= 9t-\frac{i}{2}+1, & v_i \in W_1 = \{v_i: i \text{ even}, \ 4 \leq i \leq 6t-4\}, \\ f(v_{6t-2}) &= 6t-1, \\ f(v_i') &= 18t-\frac{i-1}{2}-7, & v_i \in O_1' = \{v_i: i \text{ odd}, 1 \leq i \leq 4t-3\}, \\ f(v_i') &= 18t-\frac{i-1}{2}-10, & v_i \in O_2' = \{v_i: i \text{ odd}, 4t-3 < i \leq 6t-5\}, \\ f(v_i') &= i-1, & v_i \in W' = \{v_i: i \text{ even}, \ 2 \leq i \leq 6t-2\}, \\ f(v_{6t-3}') &= 6t+1, \\ f(v_{6t-1}') &= 18t-6. \end{split}$$

Note that $W = \{v_2\} \cup W_1 \cup \{v_{6t-2}\}$ and $O' = O'_1 \cup O'_2 \cup \{v'_{6t-3}\} \cup \{v'_{6t-1}\}$. Thus the domain of f is indeed $V(M_{6t-1})$.

Next, we confirm that f is one-to-one. We compute

$$f(O) = \{0, 2, \dots, 6t - 2\},$$

$$f(W_1) = \{9t - 1, 9t - 2, \dots, 6t + 3\},$$

$$f(W') = \{1, 3, \dots, 6t - 3\},$$

$$f(O'_1) = \{18t - 7, 18t - 8, \dots, 16t - 5\},$$

$$f(O'_2) = \{16t - 9, 16t - 10, \dots, 15t - 7\}.$$

Note that f is piecewise strictly increasing by 2 or strictly decreasing by 1 and that all labels are distinct. Thus f is one-to-one. Moreover, $f(O \cup W') = [0, 6t-2]$ and for $v_i \in W \cup O'$, $6t-1 \leq f(v_i) \leq 18t-3$.

To help compute the edge labels, we will describe $f(M_{6t-1})$ in terms of the paths $\hat{P}(2k, d_1, d_2, a, b)$. For convenience, we will identify the vertices of P_{6t-1} and P'_{6t-1} with their labels. We have $f(P_{6t-1}) = (0, 18t - 3, 2) + G_1 + (6t - 4, 6t - 1, 6t - 2)$, where

$$G_1 = \hat{P}(2(3t-3), 2, 1, 2, 6t+3).$$

By P3, the resulting edge label sets are:

$$\bar{f}(E(G_1)) = \{7 + 3i : 0 \le i \le 3t - 4\} \cup \{9 + 3i : 0 \le i \le 3t - 4\} \\
= \{\ell \equiv 1 \pmod{3} : 7 \le \ell \le 9t - 5\} \\
\cup \{\ell \equiv 0 \pmod{3} : 9 \le \ell \le 9t - 3\}.$$

Moreover, the edge labels 18t-3 and 18t-5 occur on the path (0, 18t-3, 2) and the edge labels 3 and 1 occur on the path (6t-4, 6t-1, 6t-2).

Similarly, we have $f(P'_{6t-1}) = (18t-7,1) + G'_1 + G'_2 + (6t-5,6t+1,6t-3,18t-6)$, where

$$G_1' = \hat{P}(2(2t-2), 2, 1, 1, 16t - 5),$$

$$G_2' = \hat{P}(2(t-1), 2, 1, 4t - 3, 15t - 7).$$

By P3, the resulting edge label sets are:

$$\begin{split} \bar{f}(E(G_1')) &= \{12t-2+3i: 0 \leq i \leq 2t-3\} \cup \{12t+3i: 0 \leq i \leq 2t-3\} \\ &= \{\ell \equiv 1 \pmod{3}: 12t-2 \leq \ell \leq 18t-11\} \\ &\quad \cup \{\ell \equiv 0 \pmod{3}: 12t \leq \ell \leq 18t-9\}, \\ \bar{f}(E(G_2')) &= \{9t-2+3i: 0 \leq i \leq t-2\} \cup \{9t+3i: 0 \leq i \leq t-2\} \\ &= \{\ell \equiv 1 \pmod{3}: 9t-2 \leq \ell \leq 12t-8\} \\ &\quad \cup \{\ell \equiv 0 \pmod{3}: 9t \leq \ell \leq 12t-6\}. \end{split}$$

Moreover, the edge labels 18t - 8 occur on the edge $\{18t - 9, 1\}$ and the edge labels 6, 4, 12t - 3 occur on path (6t - 5, 6t + 1, 6t - 3, 18t - 6).

For each spoke $\{v_i, v_i'\}$, the edge label is given by $f(v_i) - f(v_i')$ if i is even and by $f(v_i') - f(v_i)$ if i is odd. Thus the labels on the spokes are given by

$$\bar{f}(\{v_i, v_i'\}) = \begin{cases} 18t - \frac{3(i-1)}{2} - 7 & \text{for } i \text{ odd, } 1 \le i \le 4t - 3, \\ 18t - \frac{3(i-1)}{2} - 10 & \text{for } i \text{ odd, } 4t - 1 \le i \le 6t - 5, \\ 5 & \text{for } i = 6t - 3, \\ 12t - 4 & \text{for } i = 6t - 1, \\ 18t - 4 & \text{for } i = 2, \\ 9t - \frac{3i}{2} + 2 & \text{for } i \text{ even, } 4 \le i \le 6t - 4, \\ 2 & \text{for } i = 6t - 2. \end{cases}$$

Thus the set of edge labels on the spokes is:

$$\bar{f}(E(F)) = \{\ell \equiv 2 \pmod{3} : 12t - 1 \le \ell \le 18t - 7\}$$

$$\cup \{\ell \equiv 2 \pmod{3} : 9t - 1 \le \ell \le 12t - 7\}$$

$$\cup \{\ell \equiv 2 \pmod{3} : 8 \le \ell \le 9t - 4\} \cup \{2, 5, 12t - 4, 18t - 4\}.$$

Moreover, the edge labels 18t-6, and 12t-5 occur on the edge $\{v_1, v'_{6t-1}\}$ and $\{v'_1, v_{6t-1}\}$.

It is easy to verify that each label $\ell \in [0, 18t - 3]$ occurs on exactly one edge in M_{6t-1} . Thus f is an α -labeling of M_{6t-1} . Although f is not free, it is easy to check that its complementary labeling f' is free. Figure 9 shows the resulting free α -labeling of M_{11} .

Figure 9: A free α -labeling of M_{11} .

3.3 Free α -labelings of Bipartite Cubic Graphs of Small Order

According to the book An Atlas of Graphs [13], there are 22 connected bipartite cubic graphs of order at most 14. Each of these graphs admits a free α -labeling (see Table 1). We referenced these graphs in the same way they are referenced in [13]. Thus we have the following.

Theorem 4 Every bipartite cubic graph of order at most 14 admits a free α -labeling.

Corollary 5 Let G be a cubic bipartite graph such that each component of G is either a prism, a Möbius ladder, or has order at most 14. Then G admits a free α -labeling.

4 Concluding Remarks

Based on our investigation, we believe that all bipartite cubic graphs admit free α -labelings.

Conjecture 6 Every bipartite cubic graph admits a free α -labeling.

Table 1: Connected bipartite cubic graphs: 6-14 vertices

Table 1 (cont.): Connected bipartite cubic graphs: 6-14 vertices

References

- [1] J. Abrham and A. Kotzig, All 2-regular graphs consisting of 4-cycles are graceful, *Discrete Math.*, 135 (1994) 1-14.
- [2] J. Abrham and A. Kotzig, Graceful valuations of 2-regular graphs with two components, *Discrete Math.*, 150 (1996) 3-15.
- [3] P. Adams, D. Bryant and M. Buchanan, A survey on the existence of G-designs, J. Combin. Des. 16 (2008), 373-410.
- [4] D. Bryant and S. El-Zanati, "Graph decompositions," in Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (Editors), 2nd ed., Chapman & Hall/CRC, Boca Raton, 2007, pp. 477-485.
- [5] S. El-Zanati and C. Vanden Eynden, Decompositions of $K_{m,n}$ into cubes, J. Combin. Designs, 4 (1996), 51-57.
- [6] S. El-Zanati and C. Vanden Eynden, On α -valuations of disconnected graphs, Ars Combin., **61** (2001), 129–136.
- [7] S.I. El-Zanati and C. Vanden Eynden, On Rosa-type labelings and cyclic graph decompositions, *Mathematica Slovaca* 59 (2009), 1–18.
- [8] K. Eshghi, The Existence and Construction of α -valuations of 2-Regular Graphs with 3 Components, Ph. D. Thesis, Industrial Engineering Dept., University of Toronto, 1997.
- [9] R. Frucht and J. Gallian, Labeling prisms, Ars Combin. 26 (1988), 69-82.
- [10] J. Gallian, Labeling prisms and prism related graphs, Congr. Numer. 59 (1987), 89-100.
- [11] J. A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, Dynamic Survey DS6, http://www.combinatorics.org.
- [12] A. Pasotti, Constructions for cyclic Moebius ladder systems, Discrete Math. 310 (2010), 3080-3087.
- [13] R.C. Read, R.J. Wilson, An Atlas of Graphs, Oxford, 1998.
- [14] A. Rosa, On certain valuations of the vertices of a graph, in: Théorie des graphes, journées internationales d'études, Rome 1966 (Dunod, Paris, 1967) 349-355.