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Abstract

It is known that an a-labeling of a bipartite graph G with n edges
can be used to obtain a cyclic G-decomposition of K2nz+1 for every
positive integer . It is also known that if two graphs G and H admit
a free a-labeling, then their vertex-disjoint union also admits a free
a-labeling. We show that if G is a bipartite prism, a bipartite Mébius
ladder or a connected cubic bipartite graph of order at most 14, then
G admits a free a-labeling. We conjecture that every bipartite cubic
graph admits a free a-labeling.

1 Introduction

Let N denote the set of nonnegative integers, and denote the set of integers
{m,m+1,...,n} by [m,n]. For any graph G we call an injective function
h:V(G) = N a labeling (or a valuation) of G. If v € V(G), we call h(v)
the label of v. If W C V(G), we let (W) = {h(v) : v € W)}. Ifhis a
labeling of G, we define a function k : E(G) — Z* by h(e) = |f(x) — f(v)],
where e = {u,v} € E(G). The number |h(u)—h(v)| is called the label of the
edge {u,v}. If F C E(G), then h(F) = {h(e) : e € F}. For convenience,
we will often let 2(G) denote the labeled graph G; that is, h(G) is the
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graph with vertex set h(V(G)) and edge set {{h(u), h(v)}; {u,v} € E(G)}.
Rosa [14] called a labeling h of a graph G with ¢ edges a B-valuation of
G if (V(G)) C [0,9] and R(E(G)) = [1,g]. A B-valuation is now more
commonly called a graceful labeling. An o-labeling is a graceful labeling
having the additional property that there exists an integer A such that if
{u,v} € E(G), then {u,v} = {a,b}, where h(a) < A < h(b). The number
A, which is unique, is called the critical value of the a-labeling. Note that
necessarily 0, A, A + 1, and |E(G)| are in h(V(G)). Moreover, G must be
bipartite.

If h is an a-labeling of G, then A’ = |E(G)| — h is also an a-labeling
of G with critical value M’ = |E(G)| — (A + 1). We shall refer to &' as the
complementary labeling of h.

Numerous large classes of bipartite graphs have a-labelings; examples
include complete bipartite graphs, caterpillars, d-cubes, bipartite prisms,
and cycles of length 4k (see Gallian [11] for a survey). Labelings of graphs
are particularly interesting because of their applications to graph decompo-
sitions. It is well known that if a graph G with ¢ edges admits an a-labeling,
then the edge-sets of Kaqz41, K2gz+2 —I (Where I is a 1-factor), and Kz oy
can be partitioned into subgraphs isomorphic to G for all positive integers
z and y (see [14] and [5]). One may not be able to obtain these same results
with the the less restrictive graceful labelings of G.

Let G be a bipartite graph on p vertices and with ¢ edges. We list some
known necessary conditions for G to admit an a-labeling:

I) The Order-Size Condition: ¢ > p—1.

II) The Parity Condition: If every vertex of G has even degree, then we
must have ¢ =0 (mod 4).

III) Wu’s Condition: If dy,ds, . ..,d, is the degree sequence of G, then we
must have ged(d,, ds, ..., dp, q) divides q(g —1)/2.

This last condition is unpublished and is due to Wu according to Gallian
(see [11])). Numerous graphs satisfy these conditions, but do not admit
a-labelings.

The conditions above can help decide which regular bipartite graphs G
might admit o-labelings. For example, 7K> admits an a-labeling if and
only if r = 1 (since |V(rK3)| > |E(rK2)| + 1 for r > 2). Half of the
2-regular bipartite graphs cannot admit an a-labeling by the parity con-
dition. The graph 3Cj is the only 2-regular bipartite graph that satisfies
the parity condition and is known not to admit an o-labeling. All other 2-
regular bipartite graphs that satisfy the parity condition and have at most
3 components admit a-labelings (see [2] and [8]). Moreover, Abrham and
Kotzig [1] proved that 7C4 admits an a-labeling for all 7 # 3.
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As for 3-regular graphs, it is known that K3 3, the 3-cube, and all bipar-
tite prisms [10, 9] and bipartite M6bius ladders [12] admit a-labelings. We
note that none of the three forbidding conditions above apply to 3-regular
graphs. The parity condition does not apply to 4-regular bipartite graphs;
however, Wu'’s condition does. For example, the graph K s — I, where I is
a l-factor does not admit an a-labeling.

In [6], El-Zanati and Vanden Eynden introduced the concept of a free
a-labeling as follows. Let G be a graph with a-labeling £ and critical
value A\. We say that h is free if A > 2, and neither 1 nor A — 1 is in
h(V(G)). They showed that if both G; and G, admit free a-labelings,
then the vertex-disjoint unions of G} and G, also admits a free a-labeling.

Theorem 1 Let G; be a graph with a free a-labeling h; and critical value
Ai for i = 1,2. Then the vertez-disjoint union G, |JG2 is a graph with a
free a-labeling h with critical value Ay + Az — 1.

We illustrate how Theorem 1 works by showing how the labeling of
G = G1 U G; is obtained. Let V(G;) = X; UY;, where if v € X;, then
hi(v) < Ai, and if v € ¥}, then hi(v) > Aiy ¢ = 1,2. Define h on V(G) to be
hy on X3, ho + Ay —1on X, UYs, and hy + |E(G3)| on Y;. Then A is an
a-valuation for G with critical value A=A; + A3 =1 > 2.

In this article, we show that if G is a bipartite prism, a bipartite Mobius
ladder or a connected cubic bipartite graph of order at most 14, then G
admits a free a-labeling. We also conjecture that every bipartite cubic

graph admits a free a-labeling.

2 Additional Notation and Terminology

We denote the path with vertices xg,zy,...,zk, where z; is adjacent to
Ziy1, 0 < ¢ < k-~ 1, by (z0,21,..-,Z%). In using this notation, we are
thinking of traversing the path from z¢ to z\ so that x¢ is the first vertex,
z; is the second vertex, and so on. Let Gy = (zo,z;,...,%;) and G2 =
(¥0,%1,---,¥k). If G1 and G are vertex-disjoint except for z; = yo, then
by G + G2 we mean the path (zo,z1,-..,Zj,¥1,¥2,...,yx). If the only
vertices they have in common are zo = yix and z; = yo, then by G; + G;
we mean the cycle (2o, Z1,...,%5,¥1,¥2; - - -, Yk—1,Z0)-

Let P(2k) be the path with 2k edges and 2k + 1 vertices 0,1,...,2k
given by (0,2k,1,2k - 1,2,2k - 2,...,k — 1,k + 1, k). Note that the set of
vertices of this graph is AU B, where A = [0,k], B = [k + 1, 2k], and every
edge joins a vertex from A to one from B. Furthermore the set of labels of
the edges of P(2k) is (1, 2k].

Let @ and b be nonnegative integers and k, d1, and d be positive integers
such that a + kd) < b. Let P(2k,d;,ds,a,b) be the path with 2k edges and
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2k+1 vertices given by (a,b+(k—1)dz,a+dy, b+ (k—2)dz,a+2d;,...,a+
(k—1)d1,b,a+kd;). Note that P(2k,1,1,0,k+1) is the graph P(2k). Note
that this graph P(2k dy,d3,a,b) has the following properties:

Pl P(2k, dy,da,a,b) is a path with first vertex a, second vertex b+ (k —
1)dq, and last vertex a + kd;.

P2: Each edge of P(2k,d;,dz,a,b) joins a vertex from A = {a+1id; : 0 <
i < k} to a vertex with a larger label from B = {b+idy : 0 < ¢ < k—1}.

P3: The set of edge labels of 15(2k, dy,ds,a,b) is {b—a—kd; +i(d; +ds) :
0<i<k—-1}u{b—a—(k—1)d1+i(d)1+d2): 0<i<k—1}.

The path 15(10, 2, 4, 14, 40) is shown in Figure 1 below.

14 16 18 20 22 24

56 52 48 44 40
Figure 1: The path P(10,2, 4, 14, 40).

3 Free a-labelings of Some Cubic Graphs

We will show that bipartite prisms, bipartite Mobius ladders, and bipartite
cubic graphs of order at most 14 admit free a-labelings.

3.1 Free a-labelings of Bipartite Prisms

By a prism D, (n 2 4) we mean the cartesian product C, x P, of a
cycle with n vertices and a path with 2 vertices. For convenience, we let
D,, = C,UC,UF, where C, = (v1,v2,...,%n,v1), Ch = (v1,v5,...,v5,v1),
and F = {{v;,v{} : 1 < i < n}. We shall refer to C,, as the outer cycle, to
C} as the inner cycle, and to F' as the spokes. Figure 2 shows the prism
Dg. We note that Dy,,n > 2, is necessarily bipartite with bipartition
(OUW', WUO'), where O = {vgi-1:1 <i <n}, W ={v);:1<i<n},
W= {vg;:1<i<n}, and O = {v3;_, : 1 <i < n}. We will show that
D,, admits a free a-labeling for all even integers n > 4.

Theorem 2 The prism D, admits a free a-labeling for all even n > 4.
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Figure 2: The prism Dsg.

Proof. We separate the proof into 3 cases. In each case, we give an a-labeling
f such that the complementary labeling of f is free.

Case 1 n =0 (mod 6).

Let n = 6t. Thus, |V(D,)| = 12t and |E(D,)| = 18t. A free a-labeling of
Dg is given in Table 1 (graph Bc7). For t > 2, define a one-to-one function
f : V(Dgt) — [0,18t] as follows:

flo) =i-1, v €0 ={v;:iodd, 1<i<6t},
f('vz) = 18t,

f(vi) =18t - 2i + 2, v; € Wy = {v; :ieven, 2 <i<2t},
f(vi) =18t — 2, v; € Wo = {v; : i even, 2t <i < 4t},
f(v)) =18t —2i -2, v; € W3 ={v; : i even, 4t < i < 6t},

f(ver) =12t -3,
f(vi) =18t -3,

flv)=1i-1, v; € W = {v; :ieven, 1 <i<6t},
f(h) =18t — 2i + 2, v; €07 ={v;:i0dd,1 <i<2t+1},
f(v}) =18t — 2i, vi €0y ={vi:iodd,2t+1<i<4t—1},
f(vf) =18t -2 -2, v; € 0 = {v; 11 0odd, 4t — 1 < i < 6t}.

Note that W = {vJUW, UWoUW3 U {ve:} and O’ = {vj} UO; UO, U O04.
Thus the domain of f is indeed V (Dgy).
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Next, we confirm that f is one-to-one. We compute

F(0) ={0,2,...,6t -2},

FOV,) = {18t - 6,18t — 10,..., 14t + 2},

F(Wy) = {14t — 4,14¢ — 8,...,10t},

F(W3) = {10t — 6,10t — 10,...., 6t + 2},

FW') ={1,3,...,6t -1},

F(O)) = {18t — 4,18t — 8, ..., 14t},

f(03) = {14t — 6,14t — 10,...,10t + 2},

f(03) = {10t — 4,10t - 8, ..., 6t}.
Note that f is piecewise strictly increasing by 2 or strictly decreasing by
4 and that all labels are distinct. Thus f is one-to-one. Moreover, f(OU
W') = [0,6t — 1] and for v; € WU O/, 6t < f(v;) < 18¢.

To help compute the edge labels, we will describe f(Deg:) in terms of
the paths P(2k,d;,d2,a,b). For convenience, we will identify the vertices
of Cg; and C§, with their labels. We have f(Cg:) = G1 + G2 + G3 + (6t —
2,12t — 3,0,18¢,2), where

G, = P(2(t — 1),2,4,2,14t + 2),
Gy = P(2t,2,4,2t,10t),
Gs = P(2(t - 1),2,4,4t,6t + 2).

By P3, the resulting edge label sets are:

F(E(G1)={12t+2+46i:0<i<t—-2}U{12t+4+6i:0<i<t—2}
={{=2(mod 6):12t +2 < ¢ < 18t - 10}
U{f=4 (mod 6):12t+4 < €< 18t -8},
F(E(G2)) = {6t +6i:0<i<t—1}U{6t+2+6i:0<i<t—1}
= {£=0 (mod 6) : 6t < £ <12t — 6}
U{f=2(mod 6):6t+2<£<12t -4},
F(E(G3) ={4+6i:0<i<t—2}U{6+6i:0<i<t—2}
={f{=4(mod 6):4 << 6t—8}
U{£=0 (mod 6):6 < ¢< 6t—6}.

Moreover, the edge labels 6t — 1,12t — 3, 18t, and 18t — 2 occur on the path
(6t — 2,12t — 3,0, 18t,2).
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Similarly, we have f(C§,) = G| + G4 + G4 + (6t — 1,18t — 3,1), where

G} = P(2t,2,4,1,14t),
Gy =P(2(t-1),2,4,2t + 1,10t + 2),
Gy = P(2t,2,4,4t — 1,61).

By P3, the resulting edge label sets are:

fEGY))={12t-1+6i:0<i<t—-1}U{12t+1+6i:0<i<t—1}
={{=5(mod 6):12t—1<£<L18 -7}
U{€=1 (mod 6):12t +1 < £ < 18t — 5},
F(E(G3))={6t+3+6i:0<i<t-2}U{6t+5+6i:0<i<t—2}
={{=3(mod 6):6t+3 << 12t -9}
U{f=5(mod6):6t+5<£<12t—T7},
fEGE)={1+6i:0<i<t—-1}U{8+6i:0<i<t—1}
={{=1(mod 6):1<¢<L6t-5}
U{£=3(mod6):3 << 6t-3}.

Moreover, the edge labels 12¢ —2 and 18¢ —4 occur on the path (6t —1,18¢—
3,1).

For each spoke {v;,v}}, the edge label is given by f(v;) — f(v!) if i is
even and by f(v}) — f(v:) if 7 is odd. Thus the labels on the spokes are
given by

(18t - 3 for i=1,

18t -1 for i =2,

18t —3i+3 for 3<i<2t+1,
18t —-3i+1 for 2t4+2<1i<4t,
18t —3i—1 for 4t+1<i<6t-—1,
|6t — 2 for i = 6t.

f({vi’vz,'}) = J

Thus the set of edge labels on the spokes is:
F(E(F)) = {¢£=0 (mod 3): 12t < ¢ < 18t — 6}
U{f=1(mod3):6t+1<¢<12t —5}
U{f=2(mod 3):2< ¢ < 6t—4}
U {6t — 2,18t — 3,18t — 1}.

It is easy to verify that each label £ € [0,18¢t] occurs on exactly one
edge in Dg;. Thus f is an a-labeling of Dg; with critical value A = 6t — 1.

275



Now, let f’ be the complementary labeling of f. The critical value of f’ is
A =18t — (A +1) = 12t. Thus, X' > 2. Moreover, since neither 18¢ — 1
nor 6t + 1 is a vertex label in f(V(Ds:)), neither 1 nor A’ — 1 is a label in
f'(V(Det)). Therefore f' is a free a-labeling of Dg;. Figure 3 shows the
resulting free a-labeling of Djs.

Figure 3: A free a-labeling of D,.

Case 2 n =2 (mod 6).

Let n = 6t + 2. Thus, |V(D,)| = 12t + 4 and |E(D,)| = 18t +6. If
t =1, we let (0,22,10,20,14,18,3,24,0) denote the vertex labels of the
outer cycle and let (23,5,21,12,19,16,17,4, 23) denote the vertex labels of
the inner cycle with spokes {0,23}, {22,5},...,{24,4}. It is easy to verify
that yields a free a-labeling of Dg. For ¢t > 2, we define a one-to-one
function f : V(Dg42) — (0,18t + 6] as follows:

f(vi) =1 -1, v;€0={v;:i0dd, 1 <i<6t+2},
f(vz) =18t + 86,
flv) =18t —2i 4+ 7, v; € Wy = {v; : i even, 2 < i< 2t},

F(v) =18t — 2i + 4, v € Wo = {v; 1 i even, 2t <1< 6t+2},
fvery2) = 18t + 3,

f(vy) =18t +2,

f)=i-1, v; €W = {v;:ieven, 1<i<6t+2},

f(v}) =18t -2i +7, v; €01 ={v;:i0dd,1 <i<2t+1},

f())=18t-2i+4, v, €0)={v;:i0dd,2t+1<i<6t+2}.

Note that W = {ve} U W1 UW, U {vge+2} and O’ = {v1} U O] U Oj. Thus
the domain of f is indeed V{(Dgs42).
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Next, we confirm that f is one-to-one. We compute

F(0) = {0,2, ...,6t},

W) = {18t — 1,18t —5,..., 14t + 7},
F(Wa) = {14¢,14¢ — 6t +4},
FW') ={1,3,. 6t+1}
f(O)—{18t+1 18t - 3,...,14t + 5},
F(04) = {14t — 2,14t —6,..., 6t + 2}.

Note that f is piecewise strictly increasing by 2 or strictly decreasing by
4 and that all labels are distinct. Thus f is one-to-one. Moreover, f(O U
W’) =[0,6t + 1] and for v; e WU O, 6t +2 < f(v;) < 18t + 6.

To help compute the edge labels, we will describe f(Det42) in terms of
the paths P(2k d1,ds,a,b). For convenience, we will identify the vertices of
Cét+2 and C§, o with their labels. We have f(Cet42) = G1+G2+(6t,18t+
3,0,18t + 6,2), where

G, =P(2(t-1),2,4,2,14t + 7),
G, = P(2(2t),2,4,2t,6t + 4).

By P3, the resulting edge label sets are:

FE(G1)={12t+7+6i:0<i<t—2}U{12t+9+6i:0<i<t—2}
={f=1(mod 6):12t+7 < £ <18t -5}
U{£=3 (mod 6):12t+9<£<18t -3},
f(E(Gg))={4+6i:0<i<2t—1}U{6+6i:0<i<2t~1}
={f{=4(mod 6):4<£< 12t -2}
U{f{=0(mod 6):6 <¢<12t}.
Moreover, the edge labels 12¢ + 3,18t + 3,18t 4+ 6 and 18t + 4 occur on the

path (6¢,18t + 3,0,18¢t + 6, 2).
Similarly, we have f(Cg,,,) = G} + G5 + (6t + 1,18t + 2, 1), where

G, = P(2t,2,4,1,14t + 5),
= P(2(2t),2,4,2t + 1,6t + 2).
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By P3, the resulting edge label sets are:

FE(G)={12t+4+46i:0<i<t—-1}U{12t +6+6i:0<i <t —1}
={f=4(mod 6):12t+4 <2< 18t -2}
U{€=0 (mod 6) : 12t + 6 < ¢ < 18t},
FE(GS)={1+6i:0<i<2t—1}U{3+6i:0<i<2—1}
={f=1(mod 6):1<¢<12t -5}
U{f{=3(mod 6):3<¢<12t-3}.

Moreover, the edge labels 12t 4 1, and 18t 4+ 1 occur on the path (6t +
1,18t +2,1).

For each spoke {v;,v}}, the edge label is given by f(v;) — f(v]) if ¢ is
even and by f(v]) — f(v;) if 7 is odd. Thus the labels on the spokes are
given by

18t +2 for i=1,

18t +5 for i =2,
F{vi,vj}) =< 18t -3i+8 for 3<i<2+1,

18 —-3i+5 for 2t+2<i<6t+1,

12t + 2 for i =6t + 2.

Thus the set of edge labels on the spokes is:

f(E(F))={¢=2(mod 3): 12t +5< £< 18t -1}
U{{=2(mod 3):2<£<12t -1}
U {12t + 2,18t + 2,18t + 5}.

It is easy to verify that each label £ € [0, 18t + 6] occurs on exactly one
edge in Dggqo. Thus f is an a-labeling of Dg¢y2. Although f is not free, it
is easy to check that its complementary labeling f’ is free. Figure 4 shows
the resulting free a-labeling of Dj,.

Case 3 n =4 (mod 6).

Let n = 6t — 2. Thus, [V(Dy,)| = 12t — 4 and |E(D,)| = 18t — 6. A
free a-labeling of D, is given in Table 1 (graph Bc2). For t > 2, define a
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Figure 4: A free a-labeling of Dy4.

one-to-one function f : V(Det—2) — [0, 18t — 6] as follows:

flo)=i—1, v €0 ={v;:iodd, 1<i<6t—2},
f(vi) =18t - 2 - 5, v; €Wy ={v;:ieven, 1<i<2t—2},
fi)=18t—-2i -8, vieWo={vi:ieven, 2t —2<i<6t—2},
f(ver—2) = 18t — 8,
F(vh) = 18t — 6,
f()=i-1, v; EW' ={v;:ieven, 1 <i<6t—2},
f(v}) =18t - 2i -5, v;€0] ={v;:i0dd,1<i<2t—1},
f(v]) =18t —2i -8, v, €0, ={v;:{0dd,2t -1 < i< 6t—2}.
Note that W = W, U W, U {ve;—2} and O’ = {v{} U O} U O). Thus the
domain of f is indeed V' (Dg—2).
Next, we confirm that f is one-to-one. We compute
f(0)=10,2,...,6t—4},
F(Wy) = {18t — 9,18t — 13,...,14¢ — 1},
f(W,) = {14t — 4,14t - 8,...,6t},
F(W')={1,3,...,6t -3},
F(0)) = {18t—11 18t — 15,..., 14t — 3},
F(O}) = {14t - 10,14t — 14,.. .,6t —2}.
Note that f is piecewise strictly increasing by 2 or strictly decreasing by
4 and that all labels are distinct. Thus f is one-to-one. Moreover, f(O U
W') =[0,6t — 3] and for v; e WU O’, 6t —2 < f(v;) < 18t —6

To help compute the edge labels, we will describe f (Deg_z) in terms of
the paths P(2k d1,dz,a,b). For convenience, we will identify the vertices
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of Cgt—2 and C§,_, with their labels. We have f(Cgt—2) = G1 + Ga + (6t —
4,18t - 8,0), where

Gy = P(2(t — 1),2,4,0,14t — 1),
G, = P(2(2t — 1),2,4,2t — 2, 6t).

By P3, the resulting edge label sets are:

F(EG1)={12t+1+6i:0<i<t—-2}U{12t+3+6:i:0<i<t—2}
={f=1(mod 6):12t+1< €< 18t —11}
U{f=3(mod6):12t+3<£<L18t -9},
F(E(G2)={4+6i:0<i<2t—2}U{6+6i:0<i<2t—2}
={f=4(mod 6):4<£<12t-8}
U{f=0(mod 6):6 <¢<12t—6}.
Moreover, the edge labels 12t —4 and 18t —8 occur on the path (6t —4, 18—

8,0).
Similarly, we have f(Cg,_,) = G} + G5 + (6t — 3,18t — 6, 1), where

G| = P(2(t - 1),2,4,1,14t - 3),
L= P(2(2t —1),2,4,2t — 1,6t — 2).

By P3, the resulting edge label sets are:

FIEG))={12t —2+6i:0<i<t—2}U{12t+6i:0<i<t—2}
={¢=2 (mod 6):12t—2< ¢ <18t — 14}
U{£=0 (mod 6) : 12t < £ < 18t — 12},
f(BE(GY))={1+6i:0<i<2t—-2}U{3+6i:0<i<2~2}
={¢=1(mod6):1<¢<12t—11}
U{€=3 (mod 6) :3<¢<12t -9}

Moreover, the edge labels 12¢ ~3 and 18t —7 occur on the path (6¢t—3,18t—
6,1).

For each spoke {v;,v!}, the edge label is given by f(v;) — f(v}) if i is
even and by f(v!) — f(v:) if ¢ is odd. Thus the labels on the spokes are
given by

18t -6 for i=1,

18t —3i—4 for 2<i<2t—1,
18t —3:—7 for 20 <i<6t-—3,
12t -5 for i=6t-2.

f({vi’v;{}) =
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Thus the set of edge labels on the spokes is:

F(E(F))={¢=2 (mod 3): 12t — 1 < ¢ < 18t — 10}
U{€=2(mod3):2<£<12t -7}
U {12t — 5,18t — 6}.

It is easy to verify that each label £ € [0, 18t — 6] occurs on exactly one
edge in Dg;—5. Thus f is an a-labeling of Dg;—s. Although f is not free, it
is easy to check that its complementary labeling f’ is free. Figure 5 shows
the resulting free a-labeling of Dyg.

Figure 5: A free a-labeling of Dyg.

3.2 Free a-labelings of Bipartite Mobius Ladders

For n > 3, let vy,vs,...,v, and v1,v3,...,v,, denote the consecutive ver-
tices of two disjoint paths with n vertices. We obtain the Mabius lad-
der M,, by joining v; to v} for ¢ = 1,2,...,n and by joining v; to v/,

and v, to vj. For convenience, we let M, = P, U P, U F U H, where
P, = (v,v2,...,%), P, = (v},v5,...,v,), F = {{v;,v{} : 1 < i < n} and
H = {{v1,v,,},{vn,v1}}. We shall refer to P, as the outer path, to P/, as
the inner path, and to F' as the spokes. Figure 6 shows the Mébius ladder
Msy. We note that Ms,41,n > 1, is necessarily bipartite with bipartition
(OUW’', W UOQ'), where O = {vg441: 1 <i<n}, W = {v); : 1 <i < n},
W = {vg:1<i<n},and O = {vy,;,, : 1 <1 < n}). We will show that
M,, admits a free a-labeling for all odd integers n > 3.

Theorem 3 The Mébius ladder M, admits a free a-labeling for all odd
n>3.
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Figure 6: The Mé&bius ladder Ms.

Proof. We separate the proof into 3 cases. In each case, we give an a-
labeling f such that the complementary labeling of f is free.

Case 1 n=1 (mod 6).

Let n = 6t + 1. Thus, |[V(M,)| = 12t + 2 and |E(M,)| = 18t + 3, where
t > 1. Define a one-to-one function f : V(Mge41) — [0, 18t + 3] as follows:

fy)=1i-1, v;€0={v;:i0dd, 1<i<6t+1},
flu) =18t -3 +1, v; €W, = {v;:ieven, 2<i<4t—2},
flui)=18t—% -2, v;€Wy={v;i:ieven, 4 —2<i<6t},
flugt) =6t +1,
f(vy) =18t +3,
f)=i-1, v; € W = {v; :i even, 1 <i<6t},
f)=9t-51 42 v; €0} ={vi:io0dd,1<i<6t+1)},

f(vgeq1) = 18t + 1.

Note that W = W3 U W5 U {vg,} and O’ = {v]} U O] U {vg;;,}- Thus the

domain of f is indeed V/(Mg41).
Next, we confirm that f is one-to-one. We compute

f(0)={0,2,...,6t},
Ff(Wy) = {18¢,18¢t —1,...,16t + 2},
f(W3) = {16t — 2,16t - 3,...,15t — 1},
fWH)=1{1,3,...,6t -1},
f(0O1) = {9t +1,9¢,...,6t + 3}.
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Note that f is piecewise strictly increasing by 2 or strictly decreasing by
1 and that all labels are distinct. Thus f is one-to-one. Moreover, f(O U
W’) = [0,6t] and for v; e WUO’, 6t +1 < f(v;) < 18t + 3.
To help compute the edge labels, we will describe f(Mg:41) in terms of the
paths P(2k,d;,ds,a,b). For convenience, we will identify the vertices of
Psyy1 and Pj,,, with their labels. We have f(Pety1) = Gy + G2 + (6t —
2,6t + 1, 6t), where

G, = P(2(2t - 1),2,1,0,16¢ + 2),

Ga = P(2t,2,1,4t — 2,15t — 1).
By P3, the resulting edge label sets are:

f(E(G1)={12t +4+3i:0<i<2t—2}U{12t+6+3i:0< i <2t -2}
={f=1(mod 3):12t +4<£ <18t -2}
U{£=0 (mod 3) : 12¢t + 6 < £ < 18t},
fEG)={%+1+3i:0<i<t—-1}U{9%+3+3i:0<i<t~1}
={f=1(mod3):9t+1<£<12t—2}
U{€=0 (mod 3):9t+3 < £<12t}.

Moreover, the edge labels 3 and 1 occur on the path (6¢ — 2,6t + 1, 6¢).
Similarly, we have f(Pg,,,) = (18t +3,1)+ G} + (6t — 1,18t + 1), where

G, = P(2(3t — 1),2,1,1, 6t + 3).
By P3, the resulting edge label sets are:

FIE(G))={3i+4:0<i<3t-2}U{3i+6:0<i<3t—2}
={{=1(mod3):4<£< 9 -2}
U{€=0(mod 3):6 <¢<9t}.
Moreover, the edge labels 18¢+2, and 12t +2 occur on the edge {18t+3,1}
and {6t — 1,18 + 1}.
For each spoke {v;,v;}, the edge label is given by f(v;) — f(v{) if i is
even and by f(v}) — f(v;) if ¢ is odd. Thus the labels on the spokes are
given by

18t +3 for i=1,

18t — 3 42 for i even, 2 <i < 4t — 2,

- 18t — 3 _1 for i even, 4t <i < 6t —2
o) = 2 A ’

f({w,vil) Jgt-ﬂi;—‘lw for i odd, 3<i < 6t—1,

2 for i =6t,

(12t +1 for i=6t+1.
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Thus the set of edge labels on the spokes is:

FE(F)={¢{=2(mod 3):12t +5<£< 18t — 1}
U{f{=2(mod 3): 9t +2<£<12t -1}
U{€=2(mod 3):5<£<9t—1}
u{2,12t + 1,18t + 3}.

Moreover, the edge labels 18t +1, and 12t 4+ 3 occur on the edge {v1,vg, 1}
and {UL 'UGt+1}'

It is easy to verify that each label £ € [0, 18t + 3] occurs on exactly one
edge in Mg¢+1. Thus f is an a-labeling of Mge+1. Although f is not free, it
is easy to check that its complementary labeling f’ is free. Figure 7 shows
the resulting free a-labeling of M.

Figure 7: A free a-labeling of Mj7.

Case 2 n =3 (mod 6).

Let n = 6t — 3. Thus, |V(M,)| = 12t - 6 and |[E(M,)| = 18t — 9. A free
a-labeling of M3 (which is isomorphic to K3 3) is given in Table 1 (graph
Bcl). For t > 2, define a one-to-one function f : V(Mpg,—3) — [0,18t — 9]
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as follows:

flv)=i-1, v; €0 ={v;:io0dd, 1<i<6t—3},
flvi) =18t — & — 10, v; E W) = {v;:ieven, 2<i<4t—2}
fw;)=18t— % —12, v;e Wo={vi:ieven, 4 —2<i <6t —4},

f(vet-a) = 6t — 3,
f(vy) =18t -9,
f)=1i-1, vi € W = {v; :i even, 2 <i<6t—4},
flv) = t——— ) % €0;={v;:i0dd,1<i<2t~1},
fv)=9t— 52 —g, v; €05 ={v;:40dd,2t — 1< i< 6t—3},
F(vge—3) = 12t — 6.

Note that W = W) U W, U {vg:—a} and O’ = {v]} U O, U O4 U {v§,_3}.
Thus the domain of f is indeed V(Me;—_3).
Next, we confirm that f is one-to-one. We compute

0) ={0,2,...,6t — 4},

f(Wh) = {18t — 11,18t — 12,...,16¢ — 8},

F(Wa) = {16t — 11,16t — 12,...,15¢ — 9},

FW')={4,3,...,6t -5},

f(O1) ={9t 3,9t —4,...,8t -1},

F(O}) = {8t —4,8t—5,...,6t—1}.
Note that f is piecewise strictly increasing by 2 or strictly decreasing by
1 and that all labels are distinct. Thus f is one-to-one. Moreover, f(O U

= [0,6t — 4] and for v; e WU O, 6t — 3 < f(v;) < 18t — 9.

To help compute the edge labels, we will describe f(Me;—3) in terms of
the paths P(2k dy,ds,a,b). For convenience, we will identify the vertices
of Ps—3 and Pg,_5 with their labels. We have f(Ps;—3) = Gy + G3 + (6t —
6,6t — 3,6t — 4), where

= P(2(2t - 2),2,1,0,16t — 8),
G2 = P(2(t —1),2,1,4t — 4,15t — 9).
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By P3, the resulting edge label sets are:

f(E(G1))={12t —4+3i:0< i< 2t-3}
u{12t—-2+3i:0<i<2t -3}
={{=2(mod 3):12t -4 < £ <18t - 13}
U{f=1(mod 3):12t -2 <£<18t— 11},
f(E(G2)={9t—-3+3i:0<i<t-2}U{9t—1+3i:0<i<t-2}
={£{=0(mod 3): 9 -3<£<L12t -9}
U{f=2(mod3):9t-1<£<12t-T7}.

Moreover, the edge labels 3 and 1 occur on the path (6t — 6, 6t — 3, 6t — 4).
Similarly, we have f(P§,_3) = {18t-9,1} + G} + G5 + {6t — 5,12t — 6},
where

G| =P((t-1),2,1,1,8t - 1),
t = P(2(2t — 2),2,1,2t — 1,6t — 1).

By P3, the resulting edge label sets are:

f(E(G))={6t+3i:0<i<t—-2}U{6t+2+3i:0<i<t—2}
={€=0 (mod 3) : 6t < €< 9t—6}
U{f=2(mod 3):6t+2<¢<9t—4},
f(E(GY)={4+3i:0<i<2t-3}u{6+3i:0<i<2t-3}
={f=1(mod3):4<£<L6t-5}
U{£=0(mod 3):6 <2< 6t—3}

Moreover, the edge labels 18¢ — 10, and 6t — 1 occur on the edge {18t —9,1}
and {6t — 5,12t — 6}.

For each spoke {v;,v!}, the edge label is given by f(v;) — f(v}) if i is
even and by f(v]) — f(v;) if ¢ is odd. Thus the labels on the spokes are
given by

(18t — 9 for i=1,

18t—%— forieven, 2 <i <4t —14,
18t— % —11 forieven, 4—-2<i<6t—6,
Fvi,vi}) = {0t — 21 2 foriodd, 3<i<2t—1,

ot — 21 _ 4 foriodd, 2t+1<i<6t—5,
2 for i =6t -4,

(6t — 2 for i =6t —3.
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Thus the set of edge labels on the spokes is:

F(B(F))={£=0 (mod 3):12t —3 < £ < 18t — 12}
U{f=1(mod3):9t-2<¢<12t—8}
U{f=1(mod3):6t+1<¢<9t—5}
U{f=2(mod 3):5< < 6t—4}

U {2,6t— 2,18t — 9}.

Moreover, the edge labels 12t — 6, and 12t — 5 occur on the edge {v1, v§;_3}
and {v},vet—3}-

It is easy to verify that each label £ € [0, 18t — 9] occurs on exactly one
edge in Me;—3. Thus f is an a-labeling of Mg,_3. Although f is not free, it
is easy to check that its complementary labeling f’ is free. Figure 8 shows
the resulting free a-labeling of Ms.

Figure 8: A free a-labeling of Mj.

Case 3 n =5 (mod 6).
Let n = 6t — 1. Thus, |[V(M,)| = 12t — 2 and |E(M,)] = 18t - 3. A
free a-labeling of M5 is given in Table 1 (graph Bc3). For t > 2, define a
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one-to-one function f: V(Mg,—;) — [0,18t — 3] as follows:

flui)=1i-1, v; €0 ={v;:i0dd, 1<i<6t~1},

flvg) =18t -3,

flo)=9t—3+1, v; €Wy ={vi:ieven, 4<i<6t—-4},
f(vet—2) = 6t —1,

flv)) =18t -5 -7, v; €0} = {v; :i0dd,1 <i<dt—3},

f(v}) =18t — 51 —10, v € Oy ={vi:iodd,4t -3 <i<6t-5),

f)=i-1, v; € W ={v; :ieven, 2<i<6t—2},

f(vét_a) = 6t + 1,
f(vfe—y) = 18t — 6.
Note that W = {v} U W) U {vet—2} and O’ = O] U O3 U {v§,_3} U {vg,—. }-

Thus the domain of f is indeed V(Msg:—1).
Next, we confirm that f is one-to-one. We compute

F(0)=1{0,2,...,6t -2},

FOV) = {9t —1,9t—2,...,6¢t+3},
FW) =1{1,3,.. 6t—3}

F(0,) = {18t—7 18t —8,...,16t — 5},
F(O%) = {16t — 9,16t — 10,...,15¢t — 7}.

Note that f is piecewise strictly increasing by 2 or strictly decreasing by
1 and that all labels are distinct. Thus f is one-to-one. Moreover, f(O U
W') =[0,6t — 2] and for v; e WU O’ 6t — 1 < f(v;) < 18t — 3.

To help compute the edge labels, we will describe f(Me¢—1) in terms of
the paths P(2k dy,d3,a,b). For convenience, we will identify the vertices
of Pgt—y and P§,_, with their labels. We have f(Pg:—1) = (0,18t — 3,2) +
Gy + (6t — 4,6t — 1,6t — 2), where

= P(2(3t — 3),2,1,2,6t + 3).
By P3, the resulting edge label sets are:

FE(G)={7+3i:0<i<3t—-4}U{9+3i:0<i<3t—4}
={f=1(mod3):7<¢{<L9t—-5}
U{€=0(mod 3):9<£<9t-3}.

Moreover, the edge labels 18t —3 and 18t—5 occur on the path (0,18t—3,2)
and the edge labels 3 and 1 occur on the path (6t — 4,6t — 1,6t — 2).
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Similarly, we have f(Pg,_;) = (18t—7,1)+ G| + G4+ (6t —5,6t+1,6t —
3,18t — 6), where
Gy = P(2(2t - 2),2,1,1,16¢t — 5),
L= P(2(t-1),2,1,4t — 3,15t — 7).

By P3, the resulting edge label sets are:

F(EG))={12t—2+3i:0<i<2t~3}U{12t+3i:0< i < 2t — 3}
={f=1(mod3):12t-2<£< 18 -11}
U {£=0 (mod 3): 12t < £ < 18t — 9},
FE(GY)={9t—2+3i:0<i<t—2}U{9t+3i:0<i<t—2}
={f=1(mod 3):9t-2<£<12t -8}
U{£=0 (mod 3):9t < £< 12t - 6}.

Moreover, the edge labels 18t — 8 occur on the edge {18¢ — 9,1} and the
edge labels 6, 4,12t — 3 occur on path (6t — 5,6t + 1,6t — 3,18t — 6).

For each spoke {v;,v}}, the edge label is given by f(v;) — f(v!) if i is
even and by f(v}) — f(v;) if ¢ is odd. Thus the labels on the spokes are
given by

(18t — AL 7 foriodd, 1 <i<4t—3,
18t — 22U 10 for i odd, 4t — 1 < i < 6t —5,
5 for i =6t -3,

f{vi,vi}) = J 12t — 4 for i=6t-1,
18t — 4 for i =2,
9t—-:’2—‘+2 for i even, 4 < i < 6t — 4,
(2 for i =6t—2.

Thus the set of edge labels on the spokes is:

f(E(F)={¢=2(mod 3):12t -1 <£<18t -7}
U{f=2(mod3):9%-1<£<12t -7}
U{f=2(mod 3):8<£<9t—4}U {2,512t — 4,18t — 4}.

Moreover, the edge labels 18t — 6, and 12t — 5 occur on the edge {v1,v§,_;}
and {v},vet—1}

It is easy to verify that each label £ € [0,18¢ — 3] occurs on exactly one
edge in Mgi—1. Thus f is an a-labeling of Mg;_;. Although f is not free, it
is easy to check that its complementary labeling f’ is free. Figure 9 shows
the resulting free a-labeling of Mj;.
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Figure 9: A free a-labeling of Mj;.

3.3 Free a-labelings of Bipartite Cubic Graphs of Small
Order

According to the book An Atlas of Graphs [13], there are 22 connected
bipartite cubic graphs of order at most 14. Each of these graphs admits a
free a-labeling (see Table 1). We referenced these graphs in the same way
they are referenced in [13]. Thus we have the following.

Theorem 4 FEvery bipartite cubic graph of order at most 14 admits a free
a-labeling.

Corollary 8§ Let G be a cubic bipartite graph such that each component of
G is either a prism, a Mébius ladder, or has order at most 14. Then G
admits a free a-labeling.

4 Concluding Remarks

Based on our investigation, we believe that all bipartite cubic graphs admit
free a-labelings.

Conjecture 6 Every bipartite cubic graph admits a free a-labeling.
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Table 1: Connected bipartite cubic graphs: 6-14 vertices
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Table 1 (cont.): Connected bipartite cubic graphs: 6-14 vertices

Bcl4
21
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