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Abstract

For a connected graph G of order 3 or more and an edge coloring
¢: E(G) = Zi (k > 2) where adjacent edges may be colored the
same, the color sum s(v) of a vertex v of G is the sum in Zx of the
colors of the edges incident with v. The edge coloring ¢ is a modular
k-edge coloring of G if s(u) # s(v) in Zj for all pairs u, v of adjacent
vertices in G. The modular chromatic index x},(G) of G is the
minimum k for which G has a modular k-edge coloring. It is shown
that X(G) < xm(G) < x(G)+1 for every connected graph G of order
at least 3, where x(G) is the chromatic number of G. Furthermore,
it is shown that x;,(G) = x(G) + 1 if and only if x(G) = 2 (mod 4)
and every proper x(G)-coloring of G results in color classes of odd
size.

1 Introduction

There have been numerous studies using a variety of methods for the pur-
pose of uniquely distinguishing every two adjacent vertices of a graph. Many
of these methods have involved graph colorings. The most studied colorings
are proper vertex colorings and proper edge colorings. A proper vertex col-
oring of a graph G is an assignment of colors to the vertices of G such that
adjacent vertices are assigned distinct colors and the minimum number of
colors in a proper vertex coloring of G is the chromatic number x(G) of
G. A proper edge coloring of a graph G is an assignment of colors to the
edges of G such that adjacent edges are assigned distinct colors and the
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minimum number of colors in a proper edge coloring of G is the chromatic
indez X'(G) of G.

A coloring that provides a method of distinguishing every two adja-
cent vertices is said to be neighbor-distinguishing. Thus a proper vertex
coloring of a graph is itself neighbor-distinguishing. A number of neighbor-
distinguishing vertex colorings other than the standard proper colorings
have been introduced (see [4, 5, 6, 7], for example). Furthermore, edge
colorings (proper or nonproper) have also been introduced to distinguish
every pair of adjacent vertices in a graph (see [1, 2, 9, 12] or (8, p. 385], for
example).

Another neighbor-distinguishing vertex coloring was introduced in [11].
For a vertex v of a graph G, let N(v) denote the neighborhood of v (the
set of vertices adjacent to v). For a graph G without isolated vertices let
c: V(G) = Z (k = 2) be a vertex coloring of G where adjacent vertices
may be colored the same. The color sum of a vertex v of G is defined as the
sum in Z; of the colors of the vertices in N(v). The coloring c is called a
modular k-coloring of G if every pair of adjacent vertices of G have different
color sums in Z;. The modulaer chromatic number of G is the minimum k&
for which G has a modular k-coloring.

A neighbor-distinguishing edge coloring that is closely related to the
modular vertex colorings was introduced in [10]. For a graph G without
isolated vertices, let ¢ : E(G) = Z; (k = 2) be an edge coloring of G where
adjacent edges may be colored the same. The color sum s(v) of a vertex v
of G is defined as the sum in Z; of the colors of the edges incident with v,
that is, if E, is the set of edges incident with v in G, then

s(v) = ) cle).

ecE,

An edge coloring c is a modular k-edge coloring of G if s(u) # s(v) in Zi
for all pairs u, v of adjacent vertices of G. An edge coloring c is a modular
edge coloring if c is a modular k-edge coloring for some integer k > 2. The
modular chromatic indez x/,(G) of G is the minimum k for which G has a
modular k-edge coloring. Note that the modular chromatic index x;,(G) of
a graph G exists only when G contains no components isomorphic to K.
Hence, we only consider connected graphs of order 3 or more in this work.
Among the results obtained in [10] are the following.

Theorem 1.1 For each integer n > 3,

n+1 ifn=2(mod 4)

Xm(Kn) = n other(*wz'se. |
/ _J 2 in=0(mod4
Xm(Cn) = 3 otherwise.
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Theorem 1.2 If G is a connected bipartite graph of order at least 3 with
partite sets U and W, then

' (G) = 2 if at least one of |U| and |W| is even
Xm\&) =13 if both |U| and |W| are odd.

Theorem 1.3 For every connected graph G of order at least 3, x,,(G) >
X(G). Furthermore, if x(G) = 2 (mod 4) and each color class in every
proper X(G)-coloring of G consists of an odd number of vertices, then

Xm(G) > x(G).
The following questions were posted in [10].

Question 1.4 For a connected graph G of order at least 3, is it true that
Xm(G) < x(G) +17

Question 1.5 Let G be a connected graph of order n > 3. If x..(G) =
X(G) + 1, then is it always the case that n is even, x(G) = 2 (mod 4) and
every proper x(G)-coloring of G results in color classes of odd size?

By Theorems 1.1 and 1.2, it follows that Questions 1.4 and 1.5 have an
affirmative answer when G is a complete graph, a cycle or a bipartite graph.
In this paper, we show that each of these two questions has an affirmative
answer for all connected graphs of order at least 3. In Section 2, we show
that x;,(G) < x(G) + 1 for all connected graphs G of order at least 3
and x7,.(G) = x(G) if x(G) is odd; while in Section 3, we characterize all
connected graphs G of order at least 3 for which x!,(G) = x(G) +1. We
refer to the books (3, 8] for graph theory notation and terminology not
described in this paper.

2 Chromatic Number and Modular Chromatic
Index

In this section, we present an affirmative answer to Question 1.4. By The-
orem 1.2, if G is a connected bipartite graph of order at least 3, then
Xm(G) < x(G) + 1. Thus we need only consider connected graphs that
are not bipartite. For an integer k¥ > 2, a graph G is modular k-edge col-
orable if there is a modular k-edge coloring of G. It is clear that if G is a
k-chromatic graph of order n, then a proper k-coloring of G can induce a
proper k’-coloring of G for each integer k' with k < k' < n by introducing
a new color to a vertex of G.
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Theorem 2.1 Let G be a nontrivial connected graph that is not bipartite.
For a positive integer k, if G is (2k+1)-colorable, then G is modular (2k+1)-
edge colorable. Furthermore, for a given proper (2k + 1)-vertex coloring
¢ : V(G) = {1,2,...,2k + 1}, there is a modular (2k + 1)-edge coloring
¢: E(G) = Zag41 such that sc(v) = ¢/ (v) for every v € V(G).

Proof. Let V(G) = {v1,v2,...,un} (n > 3) and let
d: V(@)= {1,2,...,2k+1}

be a proper (2k + 1)-vertex coloring of G. We define recursively a sequence
of n+1 edge colorings cg, ¢1,...,¢n, Where ¢; : E(G) = Zggq for0<i<n
such that (i) s, (v;) =c/(v;) if 1 < j <iand (ii) s¢,(v;) =0ifi+1 <35 <
n. This will imply that ¢ = ¢, is a modular (2k + 1)-edge coloring with
sc(v) = ¢ (v) for every v € V(G).

First, we define the edge coloring ¢y : E(G) = Zak4+1 by co(e) = 0 for
every e € E(G). Thus s.,(v) = 0 for every v € V(G). Next, we define the
edge coloring ¢ : E(G) = Zak41 of G from ¢g such that s¢,(v1) = ¢/(v1)
and s.,(v) = 0 for v € V(G) — {v1} as follows. Suppose that ¢/(v;1) = a.
Since ged(2,2k + 1) = 1, it follows that 2 | @ in Zgk4; and so a = 2b
for some b € Zgkyy. Since G is not bipartite, G contains an odd cycle
C = (u3,ug,...,Up, Ups1 = 1), Where p > 3 is an odd integer. We consider
two cases.

Case 1. vy belongs to C. Without loss of generality, assume that vy =
uy. The coloring ¢; : E(G) = Zok41 is then defined by

co(e) ife¢ E(C)
ci(e) =< co(e)+b ife=wujuiy),iisoddand1<i<p (1)
co(e) —b ife=1wuujp1,iisevenand2<i<p-—1.

Observe that sc,(v1) = 2b = a = ¢/(v1) and s¢,(vi) = s¢o(vi) = 0 for
2<i<n.

Case 2. v, does not belong to C. Since G is connected, there is a path
P connecting v; and a vertex on C, say P = (v = w;,w2,...,Wq = u1)
is a v; — u; path, where ¢ > 2. We consider two subcases, according to
whether q is even or g is odd.

Subcase 2.1. q is even. The coloring ¢; : E(G) — Zag4, is defined by

co(e) ife¢ E(C)UE(P)
co(e) +a ife=wwiy,iisoddand 1 <i<qg-1
ci(e) =< co(e) —a ife=wjwiyy, iisevenand2<i<g—-2  (2)

cole) —b ife=uuipq,iisoddand 1 <i<p
co(e) +b ife=wuuiqy,tisevenand2<i<p-—-1.

298



Then s¢, (v1) = a = ¢/(v1) and s, (vi) = 8¢, (v;) =0 for 2<i < n.
Subcase 2.2. q is odd. The coloring ¢, : E(G) = Zgy; is defined by

co(e) ifeg¢ E(C)UE(P)
co(e)+a ife=wywiy),iisoddand1<i<qg—1
cife)=¢ cole)—a ife=wyw;y;,iisevenand 2<i<q-—2 (3)

cole) +b ife=ujuiy;,iisoddand1<i<p
co(e) —b ife=wuiuip1,tisevenand2<i<p~1.

Then s, (v1) = a = c'(v1) and s, (v;) = 8¢o(v;) =0for2<i< n.

In each case, s, (v1) = ¢/(v1) and s, (v) = sc(v) = 0 for all v €
V(G) — {v1}. (The coloring ¢, is neither a proper edge coloring nor a
modular edge coloring of G.) In general, for an integer i with 1 < i <
n — 1, suppose that the coloring ¢; : E(G) = Zgk41 is defined such that
8c;(vj) = c(v;) for 1 < j < iand s, (vj)) =0fori+1 < j<n. Then
the coloring ¢;1+) : E(G) — Zak41 is defined from c; in the same fashion
as described in (1) - (3), namely by replacing ¢; and ¢; in (1) - (3) by ¢
and ¢;y1, respectively. An argument similar to the one used in the case
dealing with co and c; shows that s, (v;) = s¢,(v;) =¢'(vj) for 1 < j <4,
Scipr(Vi41) = /(vi41) and s, (v;) =0 for i + 2 < j < n. In particular,
¢n : E(G) = Zgk4y has the property that s. (v;) = s,_, (v;) = ¢'(v;) for
1<i<n-1and s, (vn) =c/(vs). Therefore, ¢, is a modular (2k+1)-edge
coloring of G and so G is modular (2% + 1)-edge colorable. »

The following corollaries are consequences of Theorems 1.3 and 2.1.
Corollary 2.2 If G is a connected graph of order at least 3, then
X(G) £ Xm(G) < x(G) + 1.
Furthermore, if x(G) is odd, then x,(G) = x(G).

Proof. We have seen that x;,(G) 2 x(G) in Theorem 1.3. For the upper
bound, let G be a connected graph of order n > 3. If G is bipartite, then
the result follows by Theorem 1.2 and so assume that G is not bipartite.
If x = x(G) is even, then G is (x + 1)-colorable and so G is modular
(x + 1)-edge colorable by Theorem 2.1. Thus x/,(G) € x(G) + 1. If x is
odd, then G is modular x-edge colorable again by Theorem 2.1. Therefore,
Xm(G) < x(G) and so x;,(G) = x(G)- .

By Corollary 2.2, if G is a connected graph of order at least 3 such that
xm(G) = x(G) + 1, then x(G) is even and so either x(G) = 0 (mod 4)
or x(G) = 2 (mod 4). By Theorem 1.3 and Corollary 2.2, we have the
following result for connected graphs G with x(G) = 2 (mod 4).
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Corollary 2.3 Let G be a connected graph of order at least 3 such that
X(G) = 2 (mod 4). If each color class in every proper x(G)-coloring of G
consists of an odd number of vertices, then x,,(G) = x(G) + 1.

3 A Characterization of Type 1 Graphs

As a consequence of Corollary 2.2, the modular chromatic index x;,,(G) of a
graph G is either x(G) or x(G)+1. Graphs G for which x/,(G) = x(G) are
called type 0 graphs and graphs G for which x/,(G) = x(G) + 1 are called
type 1 graphs. So every connected graph of order at least 3 is either type 0
or type 1. This gives rise to a natural question: Which graphs are type 0
and which graphs are type 1? By Theorems 1.1 and 1.2 and Corollary 2.2,
if G= K, or G = C,, then G is type 1 if and only if n = 2 (mod 4), while
if G is bipartite, then G is type 1 if and only if each partite set of G has
an odd number of vertices. Furthermore, if G is type 1, then x(G) must be
even. In this section, we characterize all connected type 1 graphs. In order
to do this, we first determine all type 1 complete multipartite graphs.

3.1 Complete Multipartite Graphs

For positive integers ny,na,...,ne (€ > 2), let G = Kp, n,,....n, be a com-
plete ¢-partite graph of order n; + ng + .- + ng whose partite sets are
Vi, Va,..., Ve where |Vij| = n; for 1 <i < € If £ = 2 or £ is odd, then
X (G) is determined by Theorem 1.2 and Corollary 2.2. Thus, we may
assume that £ > 4 is an even integer. For even integers £ > 4, we first
determine a class of complete ¢-partite graphs G for which x/,(G) = x(G).

Theorem 3.1 Let G = Ky, n,,....n, be a complete €-partite graph where
£ >4 is even. If there exists a set S C {ny,ng,...,ne} such that |S| = £/2
and the sum of the integers in S is even, then x),(G) = x(G).

Proof. Let Vi, V5,...,V; be the partite sets of G where |V;| = n; for 1 <
i < ¢. We may assume that S = {n;,ns,...,ng2} and ny +ng+---+nyyy
is even. Furthermore, let V =V, UV, U..-UVys. Let u € V; and define
an edge coloring ¢y : E(G) = Z, by

(e) = 1 ife=wuv whereveV
) =1 0 otherwise.

It follows that s.,(v) =1if v € V, s.,(v) =0 if v € V(G) — (VU {u}) and
S¢o(u) =0 (mod 2).

Let vy, v2,...,v, = u be an ordering of the vertices of G. We define a
sequence ¢1,Ca, . . ., ¢, of edge colorings of G recursively such that for each
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i with 1 < 4 < n the edge coloring ¢; : E(G) — Z; induces a vertex coloring
S¢; : V(G) — Z, for which

o () = 2j—1 ifv;eVyand V;CV R
VT 25-2 ifveVyandV;CV(G) -V (

Se;,(v) = sc_,(v) ifveV(G)— {v} (5)

We begin with the coloring c;. Suppose that v; € V; for some j with
1 <j < { Since £ > 4, the vertex v; lies on a triangle C in G, say
C= (v,,ul,wl,vl). Define cy . E(G) - Zg by

co(e) ife ¢ E(C)
cife) =4 cole)+(i—1) ifee {viug,viw}

cole)—(i—1) ife=uww.

If vy € V, then s¢,(v1) = 1; while if v; € V(G) — V, then sc,(v1) = 0. This

implies that

)= 142(j-1)=2j—-1 ifvyeV;andV;CV
8¢, (v1) = 04+2(j—-1)=2—-2 ifvueV;andV;CV(G) -V
Se, (V) = 8¢ (v) ifv e V(G)—{wm}.

Thus s, satisfies (4) and (5).

For an integer 7 with 1 < ¢ < n — 1, suppose that the edge colorings
¢1,C2,...,¢ have been defined, all of which satisfy (4) and (5). We now
define the coloring c;4; from ¢; in the same fashion as we defined ¢; from
co. More precisely, assume that v;41 € V; for some j with 1 < j < ¢

and that v;; lies on a triangle C = (Vi41,%is1, Wit1,%i+1). Then define
cit1: E(G) = Z¢ by

ci(e) ife ¢ E(C)
cit1(e) = { ci(e) + (7 —1) if e € {viy1uis1, vip1Wita}
q(e) - (_7 - 1) ife= Ui41 Wit

We now consider the induced vertex coloring s, : V(G) — Z,. Since
Sc;(Vit1) = Sciy (Vip1) = -+ = Seo(Vit1),

it follows that sc,(vit1) = 1 if viy1 € V; while s, (vit1) = 0 if v;41 €
V(G) — V. Therefore,

= { 1F2-D =21 upeVadVcV
U=\ 0493 —1)=2-2 vy eVadV,CV(G) -V

Sciqr (‘U) = S¢ (v) ifve V(G) - {vi+1}'
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Thus s.,,, satisfies (4) and (5). Continuing in this manner, we obtain the
edge coloring ¢, : E(G) — Z, that induces a vertex coloring s., : V(G) —
Z, such that

5o, (v3) = 2j—-1 fviaeVyandV;CV
VT 25—2 ifvip €Vyand V; CV(G)-V.

This implies that s, is a proper vertex £-coloring of G using the £ colors
in Z¢. Thus ¢, is a modular £-edge coloring of G. Therefore, x;,(G) < ¢
and so x,,(G) = £ = x(G). n

We are now prepared to determine all complete multipartite graphs that
are type 1.

Theorem 3.2 Let G = Ky, n,,....n, be a complete L-partite graph where
£>2. Then x,(G) = x(G)+ 1 if and only if £ = 2 (mod 4) and each n;
is odd for 1 < i< £.

Proof. If £=2 (mod 4) and each n; is odd for 1 < i < £, then x/,.(G) =
x(G) + 1 by Corollary 2.3. It remains to verify the converse. If £ is odd,
then x,(G) = x(G) by Corollary 2.2. Thus, we may assume that £ is
even and so either £ = 0 (mod 4) or £ = 2 (mod 4). Consider the set
N = {ny,na,...,n¢}. If N contains an even integer or £ = 0 (mod 4), then
there is a subset S C N with |S| = ¢/2 such that the sum of the integers
in S is even. It then follows by Theorem 3.1 that x;,(G) = x(G). ]

3.2 Type 1 Graphs

If G is a connected graph with x(G) = ¢, then the vertex set of G can be
partitioned into £ independent sets Vi, V5,...,V,, where say |V;| = n; for
1 <i < ¢ Thus, G is a subgraph of Ky, n,,...,n,-

Lemma 3.3 For an integer £ > 4, let Ky, n,,...n, be a complete {-partite
graph whose partite sets are V1,Va,... Vo with |Vi| =n; for 1 <i < ¢ If
G is a connected graph with x(G) = £ > 4 such that

(i) G g Kn;,ng,...,n, and

(ii) for each pair u,v of vertices of G whereu € V;, v € V; and i # j, we
have uv € E(G) whenever G contains a u — v path of odd length,

then G = K| ns,...,ne-

Proof. For each vertex v of G, where say v € V; for some i with1 < ¢ < ¥,
we show that v is adjacent to every vertex in V(G) — V;. Without loss of
generality, suppose that v € V.
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We first claim that dg(u,v) < 2 for every u € V(G) — V;. If this
is not the case, then suppose that v € V; and dg(v,u) = d > 3. Let
(v = vo,v1,v2,...,v4 = v) be a u — v geodesic in G. If v3 ¢ V3, then there
is a u — vz path of length 3 and so wwvs € E(G), creating a u — v path of
length d — 2. Hence, d > 4 and u,v3 € V5 while vy,v2 ¢ V,. If d > 5, then
it can be similarly shown that vs € V; since uvs ¢ E(G). However then,
vavs € E(G), which cannot occur. Therefore, d = 4 and v;,v € V3. Assume
further that vy € V3, say. Now consider the partite set V. If w € V4 and
is adjacent to va, then w must be adjacent to both u and v since there is a
path of length 3 from w to each of u and v. However, this creates a v — v
path of length 2, which is impossible. Therefore, we may assume that there
is a vertex w’ € V3 ~ {vz} such that ww’ € E(G) or otherwise V3 UV, is
independent, which contradicts the fact that x(G) = ¢. Now, since G is
connected, let P be a u — w path of length ¢. If ¢ is odd, then uw € E(G)
and so there is a v—w path of length 5. On the other hand, if ¢ is even, then
there exists a « —w' path of length either ¢ —1 or t + 1 and so uw' € E(G),
which in turn implies that there is a v — w’ path of length 5. However then,
either w or w’ is adjacent to both u and v, contradicting the assumption
that dg(u,v) = 4. Thus dg(u,v) < 2, as claimed.

Let

X = {z € V(G) - Vi : do(v,) = 1} = N(v)
Y = {y € V(G) - Vi : do(v,v) = 2}.

We show that Y = . Assume, to the contrary, that Y # 0. If Y is not
independent, say y,y’ € Y and yy’ € E(G), then there is either a v — y
path or a v — 3’ path of length 3, which cannot occur since vy, vy’ ¢ E(G).
Therefore, Y is an independent set. Then X cannot be independent since
{V1,X,Y} is a partition of V(G) and x(G) > 4. Let z,z’ € X and zz’ €
E(G). Without loss of generality, we may assume that z € V3 and 2’ € V5.
Let y € Y. If y is adjacent to either z or z’, then there is a v — y path of
length 3, which is again a contradiction. Therefore, yz,yz’ ¢ E(G). Then
there exists a vertex z” € X — {z,2’} so that (v,z",y) is a v — y geodesic.
However, this implies that zy € E(G) if y ¢ V2 and 2’y € E(G) otherwise,
neither of which can occur. Thus Y = @ and v is adjacent to every vertex
in V(G) — V;. This completes the proof. (]

Recall that for an integer £ > 2, a graph G is modular k-edge colorable
if G has a modular k-edge coloring.

Lemma 3.4 Let G be a connected graph of order at least 3 containing two
nonadjacent vertices u and v that are connected by a path of odd length. Let
k > 2 be an integer. Then G+ uv is modular k-edge colorable if and only if
there is a modular k-edge coloring of G with respect to which s(u) # s(v).
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Proof. If there is a modular k-edge coloring ¢ : E(G) — Z; such that
sc(u) # sc(v), then the coloring ¢ : E(G + wv) — Z defined by ¢/(uv) =0
and c'(e) = c(e) for e € E(G) is a modular k-edge coloring of G +wv. Thus
G + wv is modular k-edge colorable.

For the converse, assume that G + uv is modular k-edge colorable and
let ¢ be a modular k-edge coloring of G + uv. Suppose that Pisa u — v
path of odd length in G, say P = (u = vy,v2,...,v = v) where p > 4 is
even. Then the k-edge coloring ¢’ of G defined by

c(e) ife¢ E(P)
de)=1{ cle)+c(uwv) ife=vwiqy1,1 <i<p—1andiisodd
cle) —c(uv) ife=1vwi41,2<i<p—2andiiseven

is a modular k-edge coloring of G with the property that s.(u) # s (v). m

The following is an immediate consequence of Lemma 3.4.

Corollary 3.5 Let G be a connected graph of order at least 3 containing
two nonadjacent vertices u and v that are connected by a path of odd length.
If G4 uv is modular k-edge colorable for some integer k > 2, then G is also
modular k-edge colorable.

By Corollary 3.5, if G is a connected graph of order at least 3 containing
two nonadjacent vertices © and v that are connected by a path of odd
length, then the fact that G' 4 uv is modular k-edge colorable implies that
G is modular k-edge colorable. This motivates the next definition. Let G
be a connected graph with x(G) = £ > 4. Suppose that the vertex set of
G can be partitioned into £ independent sets V1, V3,..., Ve with |V;| = n;
for 1 < i < £. Then G is a subgraph of a complete ¢-partite graph K =
Kn, na,...n.- Define the odd path closure of G with respect to K, denoted
by C(G; K), to be the graph obtained from G by recursively joining pairs
of nonadjacent vertices that belong to different partite sets in K and are
connected by a path of odd length in G. Thus, we have the following result
as a consequence of Lemma 3.3 and Corollary 3.5.

Corollary 3.6 Let G be a connected graph of order at least 3 with x(G) =
£> 4. Then G C K for some complete £-partite graph K and x.,(G) <
xm(C(G; K)) = xpn(K).

We are now prepared to present a characterization of type 1 graphs,
which provides an affirmative answer to Question 1.5.

Theorem 3.7 Let G be a connected graph of order at least 3. Then
Xn(G) = x(G) + 1 if and only if x(G) = 2 (mod 4) and every proper
x(G)-coloring of G results in color classes of odd size.
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Proof. By Corollary 2.3, if x(G) = 2 (mod 4) and every proper x(G)-
coloring of G results in color classes of odd size, then x.,(G) = x(G) + 1.
Thus, it remains to verify the converse. Let x(G) = £ and suppose that
Xm(G) = £+ 1. Consider a proper ¢-coloring of G and let V1, V5,...,V; be
the resulting color classes, where say |V;| = n; for 1 <i < ¢ Then Gis a
subgraph of Ky, n,....n, and so

£+1=xm(G) < X (Knynay.one) S €+1

by Corollaries 2.2 and 3.6. The result now follows by Theorem 3.2. n
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