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Abstract

Decompositions of complete or near-complete graphs into
spanning trees have been widely studied, but usually in the
homogeneous case, where all component trees are isomorphic. A
spanning tree decomposition T = (T, ..., T,) of such a graph is
purely heterogeneous if no two trees T; are isomorphic. We show
existence of such decompositions with the maximum degree
condition A(T}) = i+1 for each i € [1..n], for every largest possible
graph of odd order, and every even order graph which is the
complement of a spanning tree satisfying a necessary maximum
degree condition.

1. Introduction

We discuss the possibility that a graph G of order n and
size m has a purely heterogeneous spanning tree decomposition, that
is, a partition of the edges of G into spanning trees, no two of
which are isomorphic. This contrasts with the more familiar
problem of finding a homogeneous spanning tree decomposition,
where all the trees are isomorphic. To admit any spanning tree
decomposition, it is clear that G must satisfy the size constraint:
m =0 (mod n-1). When m is as large as possible, consistent
with the size constraint, we shall show that G has a purely
heterogeneous spanning tree decomposition — indeed, it has
such a decomposition in which no two trees have the same
maximum degree.
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A key result for purely heterogeneous decompositions is
Wallis’s theorem [4] for even order complete graphs (the parity
forced by the size constraint):

Theorem 1 (Wallis) If n = 3, the complete graph K,, has a purely
heterogeneous spanning tree decomposition.

The odd order complete graph K,,,, has size n(2n+1),
and its spanning trees have size 2n, so its largest subgraphs
which meet the size constraint have size 2n2. Hence we shall
consider heterogeneous spanning tree decompositions of
G = K,,., - E(H), formed from K,,., by deleting the edge set E(H)
of an arbitrary subgraph H of size n. It will be shown in all
cases that G does have a purely heterogeneous spanning tree
decomposition.

The even order complete graph K,, has size n(2n-1), and
its spanning trees have size 2n-1, so it satisfies the size
constraint. In this case we shall choose a spanning tree T in
advance, and consider spanning tree decompositions of K,,
constrained to include T in the decomposition. Thus, for even
order we shall actually study decompositions of G = K,, — E(T),
formed from K,, by deleting the edge set of the prescribed tree
T. With mild constraints on the choice of T, it will be shown that
G has a purely heterogeneous spanning tree decomposition.

The odd order case is treated first. The theorem and an
outline of its proof are given in Section 2, a relevant
generalization of Hall’s theorem is proved in Section 3, and
applied to complete proof details in Sections 4 and 5, in two
parts which depend on particular features of the subgraph H.
The even order case is then treated in similarly paced stages. In
Section 6 necessary constraints on T are established, the
theorem is then stated and its proof outlined, a relevant lemma
is proved in Section 7, and proof details are completed in
Section 8.

Let [a..b] denote the integer set {i € Z: a <i < b}, for any a4,
b € Z. Spanning tree decompositions are a sequence
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T=(T,, ..., T,) of n spanning trees; typically we impose further
conditions on T for each i € [1..n].

2. Decompositions for odd order

First consider the odd order case. Withn>1, let G be
any graph of order 2n+1 and size 2n*. Thus G =K,,,, — E(H),
where H is a size n subgraph of K,,,;. We show that G can be
decomposed into n spanning trees, no two of which have the
same maximum degree:

Theorem 2. For n 21, let G = K,,,, - E(H), where H is any
subgraph of size n in K,,,,. Then G has a purely heterogeneous
spanning tree decomposition T = (T,, ..., T,) which satisfies the
maximum degree condition A(T) = i+1 for each i € [1..n).

Proof. The theorem is immediate when n = 1. Fix an integer

k = 1 and suppose the theorem holds when n =k. Letn = k+1,
and consider G = K,,,, - E(H), where H is any spanning (for
convenience) subgraph of size n in K,,,,. We consider two
cases, simply outlining here the construction for each case, and
reserving full details till later, after obtaining a relevant
extension of Hall’s Theorem.

Case 1: H has a degree 1 vertex, x. Since H has order 2n+1 =
2k+3 and size k+1, it has at least one degree 0 vertex, y.
Deleting vertices x, y from H yields the graph H’ = H - {x, y},

of order 2k+1 and size k. Thus G’'=G - {x, y} = Ky, - E(H"{
satisfies the induction hypothesis, and so it has a
decomposition 77 = (T, ..., T;’) into k spanning trees with the
maximum degree property A(T;) = i+1 for each i € [1..k]. From
this we build an appropriate decomposition 7= (T, ..., T,.,) of
G. From the spanning path T," in G’ we form a spanning path
T, = Ty’U{wx, xy} in G, where w is a suitable endpoint of T;’.
Similarly, for each i € [2..k] we form a spanning tree T; by
adding two edges to T;, one incident with x and the other
incident with y, taking care not to change the maximum degree.

19



The edges used are chosen in such a way that the remaining
2k+2 edges of G form a spanning tree T,,, of maximum degree
k+2. The construction details are fully described and verified in
Section 4.

Case 2: No vertex of H has degree 1. In this case no H
component of order greater than 1 is a tree, so each such
component has order at most equal to its size. Hence H has at
least n+1 = k+2 degree 0 vertices. Select vertices x and y of
degree 0 in H, and select any edge e = uv in H. Note that u and
v each have degree at least 2 in H. Deleting the edge uv and
vertices x and y from H yields the graph H' = H - {uv} - {x, y},
of order 2k+1 and size k, so G’ = GU{uv} - {x, y} = Ky, - E(H")
satisfies the induction hypothesis. Thus G’ has a spanning tree
decomposition T =(T/, ..., T,') which satisfies the maximum
degree condition. In particular, T,” has order 2k+1 and
maximum degree k+1, so it has a unique vertex w of maximum
degree. Note w must have degree 1in each T; withi € [1.k-1],
since its degree in G’ cannot exceed 2k. Thus w has degree 2k in
G’, so is distinct from u and v, each of which has degree at most
2k-1in G".

We extend 77 to a suitable decomposition T = (T}, ..., Ti,,)
of G, the details of our construction depending on where the

selected edge e = uv occurs in 77. Ifeisin Ty’ then T, =T, —uv
+ ux + vx + wy, so T, does not contain ¢, and is a Hamilton path
in G since w is an endpoint of T,". Otherwise e is in T, for some
r € [2..k]. Then T, = T,’U{wy, xy} is a spanning pathin G, and T,
= T,'U{ux, vx, yz} — {uv), for a suitable vertex z not of maximum
degree in T,, so T, is a spanning tree that does not contain e,
and A(T,) = A(T,) =r+1. Asin Case 1, for every otheri € [2..]
we form a tree T; by adding two edges to T; without changing
the maximum degree, in such a way that the remaining 2k+2
edges form a tree T},; with maximum degree k+2. The details
are given in Section 5.

Thus, subject to details pending in Sections 4 and 5, in every
case G has a suitable decomposition, and the theorem follows
by induction on n.
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3. An extension of Hall’s Theorem

Let A = (4, ..., A,) be a sequence of n sets and
m = (m,, ..., m,) be a sequence of n positive integers. A
sequence B = (B,, ..., B,) of n pairwise disjoint sets is a system of
distinct representatives of A with multiplicity sequence m if B; C
A;and |B;| =m, for eachi € [1..n]. The sequence Bisa

standard system of distinct representatives when m = (1, ..., 1).
We shall apply the following modest generalization of Philip
Hall’s Theorem [3]:

Theorem 3. A sequence A =(A,, ..., A,) of n sets has a system of
distinct represent-atives with multiplicity sequence m = (m,, ..., m,)
if and only if '

|Uie; Al 2Z,0,m;  for every I C [1..n]).

Proof. Necessity of the inequalities is clear. Now to see the
sufficiency, suppose all the inequalities hold. For eachi €

[1..n], let A, be a constant sequence of m; sets, each equal to 4,
and let X = (X, ..., X,,) be the sequence of M == _;_, m;sets,
formed by concatenating the sequences A, Note that we are
seeking a standard system of distinct representatives for the
sequence X. With any subset ] C [1..M], associate the subset
Q()) =i €[1..n): X; € A, for some j €]}. Since all m;, sets in A,
are equal to A, we have

Ui X1 = 1Vjeagy Al 2 Zjeaymi 2251 = 1],
Now Hall’s Theorem ensures that X has a system of distinct
representatives. [ ]

Our construction for Theorem 2 uses a twofold system of
distinct representatives, corresponding to the constant

multiplicity sequence m = (2, ..., 2).
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4, Case 1 construction for Theorem 2

We now describe in detail and verify the construction for
Case 1 of the proof of Theorem 2, when H has vertices x and y of
degree 1 and 0, respectively. Then H'=H -{x, y}and G’'=G -
{x, y} = Ky., — E(H’) has a spanning tree decomposition T = (T,
.eo TY) with A(T/) = i+1 for each i € [1..k]. We build the
decomposition T= (T, ..., T;,;) of G. Let z be the neighbor of x
in H. Since x is adjacent in G to all vertices except z, at least one
endpoint w of the path T,’ is adjacent in G to x, so w and z are
distinct, T, = T,'U{wx, xy} is a spanning path in G, and A(T,) = 2.

For each i € [2..k], let A; be the set of vertices of degree less
than i+1 in T/, and put A/ = A;\{w, z}. Suppose A’ =(4,), ...,
A/) has a twofold system of distinct representatives B = (B,, ...,
By, say B; = {u;, v} for eachi € [2.k]. Then T,=T/U {ux, vy}isa
spanning tree in G with A(T)) = A(T;) = i+1. In G the k edges
{wx}U{ux : i € [2..k]} incident with x but not y are distinct from
the k edges {xy}U{vy : i € [2..k]} incident with y, so the k trees {T;
: 1€ [1..k]} are edge-disjoint. Since G’ has order 2k+1, and the
set {u;, v; : 1 € [2..k]}U{w, z} comprises 2k of its vertices, there is a
unique remaining vertex v in G’. The remaining edges in G
form two stars: the set {vx}U{vx : i € [2..k]} forms S,,,, of order
k+1 with center x, and the set {vy, wy, yz}U{uy : i € [2..k]} forms
Sia of order k+3 with center y. These two stars share the single
vertex v, so together they form a diameter 4 spanning tree T},
of G with maximum degree A(T,,) = k+2 aty. The details of the
construction will now be verified.

When k =1 the graph H must have a vertex x of degree 1, so
is necessarily in Case 1. Then 7? = (T), so A’ is empty and T,
has edge set {vx}U{vy, wy, yz}. When k = 2 we must confirm
that A’ = (4,, ..., A/) does have a twofold system of distinct
representatives. By Theorem 3, it suffices to show 1U;,; A/l =
2111 for every I C [2..k]. Any tree T of order 2k+1 has degree
sum 4k, so if T has maximum degree A = 3 then it has at least
k+2 vertices of degree less than A, otherwise its degree sum
would be at least kA+k+1 = 4k+1, a contradiction. Hence | A/ |
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=1A\{w, z}| 21 A;1-2 >k for everyi € [2..k]. Thus |1U;.; A/ | =
k holds for every nonempty index set I C [2..k], so the inequality
|U;e; A/ | 22111 certainly holds whenever |1l < [k/2]. In
particular, it follows that A’ has a twofold system of distinct
representatives when k = 2, so we may suppose k > 3.

We now show that the required inequality also holds when
Il = [(k+2)/2]. Now |1l 22, and the two largest members s, ¢
of I are at least as large as the two largest members of
[2..|(k+4)/2]], so s+t = | (k+2)/2] + | (k+4) /2] = k+2. We claim
that 1 A/UA, | =2k-1. Then {U;; A/ | 22k-1>2(k-1) 22111,
so the required inequality certainly holds. To verify the claim,
suppose a vertex # has maximum degree in two different trees
in 7%, say T/ and T;'. Treesin T are edge-disjoint, and u has
degree at most 2k in G’, so its degree sum over all members of
T yields 2k = (i+1) + (j+1) + (k-2), whence i+j < k. Therefore no
vertex of G” has maximum degree in two different trees T, and
T; with index sum i+j > k+1, so in that case AJUA; contains all
vertices of G". Then |A/UA/| = [{(AUA)\{w, 2} | = 1A UA;I-2
= 2k-1 whenever i+j = k+1. The claim follows with {i,j}=1s t}.
Thus A’ always has a twofold system of distinct
representatives, as required. [ ]

5. Case 2 construction for Theorem 2

To complete the proof of Theorem 2 we now describe and
verify the details of the construction for Case 2, when H has no
vertices of degree 1. In this case H has order 2k+3 and size k+1,
where k > 2. Select vertices x and y of degree 0 and any edge e
=wuvin H. Then H' = H- {uv} - {x, y} and G’ = GU{uv} - {x, y} =
Ky, — E(H) has a spanning tree decomposition T? = (T, ...,
T/) with A(T/) = i+1 for each i € [1..k]. As noted earlier, T, has
a unique vertex w of degree n, and w has degree 1 in T for each
i € [1.k-1]. We build the decomposition T = (T, ..., T}.,) of G.

Since ¢ = uv is an edge of G’, it belongs to a unique tree in T,
say T, for some r € [1..k]. Buteis notin G, so it must be
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deleted to produce 7. This results in two variants to the
construction, depending upon the index r.
For each i € [2..k], let A; be the set of all vertices of degree

less than i+1 in T}, and put A/ = A;\{u, v, w}. Suppose that

A’ =(4), ..., A) has a twofold system of distinct
representatives B = (B,, ..., B)), say B; = {u, v} for each i € [2..k].
Ifr =1, put T, = (T,'-{uv})U{ux, vx, wy}, and T; = T/ U{u;x, vy} for
eachi€[2.k]. If r>1, put T, = Ty U{wx, xy}, T, = (T, -{uv})U{ux,
vx, vy} and T; = T/ U{uyx, vy} for each i € [2..k]\{r}. Since we
have deleted e = uv, and added edges incident with x and y, in
every instance we have produced a spanning tree of G. In both
cases T, is a path, since w is an endpoint of T, so A(T,) = 2.
Also A(T) = A(T;) = i+1 for each i € [2..k]. Since T” isa
decomposition of G’, clearly the trees in {T;: { € [1..k]} are edge-
disjoint. Let E be the set of 2k+2 edges remaining in G. Whenr
=1, the set E comprises {wx}U{vx : i € [2..k]}, forming a star S,,,
with center x, and the set {uy, vy, xy}U{uy : i € [2..k]}, forming a
star S,,, with center y. These stars are edge-disjoint, and x is the
single vertex they have in common, so they form a diameter 4
spanning tree T,,, of G with maximum degree A(T,,,) = k+2 aty.
When r > 1, the set E comprises {ux}U{vx : i € [2..k]}, forming a
star S,,, with center x, and the set {uy, vy, wy)U{uy : i € [2..k]},
forming a star S,,; with center y. Again these stars are edge-
disjoint, but now they have the single vertex u, in common, so
they form a diameter 4 spanning tree T,,, of G with maximum
degree A(T,,;) =k+2 aty.

Again, it remains to confirm that A’ = (4, ..., A/) hasa

twofold system of distinct representatives. It suffices to show
[U;e A’ 22111 for every I C[2.k]. Asw is the unique vertex
of maximum degree in T/, so | A/l =1 A\ u, v, w}| = 1A \{u,
v}l =1 A, 1-2=2k-2. In particular, if k =2 then A’ = (4,)

and | A, 1=2, so A’ certainly has a twofold system of distinct
representatives. Now take k > 3. As noted in Case 1, a tree of
order 2k+1 and maximum degree A = 3 has at least k+2 vertices
of degree less than A, so 1A/ | =1A\{u, v, w}| 2| A;1-3=2k-1
for every i € [2.k]. Therefore |U,.; A/ | = k-1 holds for every



nonempty set I C [2..k], so | U;.; A | 22111 certainly holds
whenever |11 <|(k-1)/2].

We must show 1U;.; A/ | 22111 also holds if 11l =
[(k+1)/2]). Then |1l =2, and the two largest members s, t of I
are at least as large as those of [2..[(k+3)/2]], so s+t = | (k+1)/2]
+ | (k+3)/2] = k+1. As noted in Case 1, no vertex can attain
maximum degree in two trees T, and T; with index sum i+j 2
k+1, so in that case A{UA; contains all vertices of G’. With {i, j} =
{s, t} in particular, |U;.; A1 2 | A/UA/ | = | (AUA)\{u, v, w} |
= |AJUA, | -3 =2k-2 = 2(k-1) 2 2111, so the desired inequality
certainly holds. Hence A’ always has a twofold system of
distinct representatives, as required. |

The proof of Theorem 2 is now complete. It is worth
remarking that, with greater attention to the structural details
of the decomposition 7 of G’, in both Case 1 and Case 2 it can
be shown that | A/ | = 2(i-1) for every i € [2..k]. Thus the
sequence of sets A’ = (4, ..., A/) has a triangular structure

which ensures that when building 7 from 77 we can simply
proceed in order, choosing in each T; with i € [2..k] any two
unused vertices not of maximum degree in T and not in the
set S, where S = {w, z} in Case 1, and S = {1, v, w} in Case 2.

6. Decompositions for even order

With n = 2, now let T be a given tree of order 21, and
consider spanning tree decompositions of the graph G = K, -
E(T), of order 2n and size (n—lI;(Zn—l). Thus G meets the size
constraint for decomposition into spanning trees. However, if
such a decomposition is to be possible we must further restrict
T; in particular, its maximum degree A(T) cannot be too large.
For instance, G has no spanning tree decomposition when T is a
star, since G then has a degree 0 vertex.
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Lemma 1. Let T be a spanning tree of K,, and let G = K,, = E(T). If
n =2 and G has a spanning tree decomposition T= (T, ..., T,;) of
any kind, then A(T) < n. Moreover, if n =23 and G has a spanning
tree decomposition T with A(T,) = 2 and A(T,_,) = n, then T has at
most one vertex of degree n.

Proof. Suppose G = K,, - E(T) has a spanning tree
decomposition T = (T}, ..., T,;) of any kind. Each vertex of G
must have degree at least n-1 since it contributes at least one
edge to each of n—1 edge-disjoint spanning trees, so A(T) < n.
Suppose A(T) = n. Then some vertex v has degree n in T, and
degree at least 1 in T; for each i € [1..n-1]; but its degree is 2n-1
in K,,, so its degree in each T;is exactly 1. Now suppose further
that A(T,) = 2 and A(T,_;) = n. There is a vertex w of degree n in
T,., and, by the previous argument, w has degree 1 in T, for
each i € [1..n-2] and also in T. Hence v and w are distinct, and
both have degree 1in T,. But T, is a path because A(T,) = 2, and
T, is distinct from T,_, when n = 3, so in that case v and w are
the two endpoints of T;. But v and w are any vertices of degree
nin T and T,_, respectively, so neither tree can have more than
one vertex of degree n. The lemma follows. [ ]

When n = 3 and G = K,, - E(T) has a spanning tree
decomposition T with A(T) =n, A(T,) =2 and A(T,,) = n, we
have just shown that T and T, each have exactly one vertex of
degree n. Butif A(T) <n, then T, , can have two vertices of
degree n. For example, K, can easily be decomposed into two
Hamilton paths and a double star S,, with two vertices of
degree 3; taking T to be one of the Hamilton paths yields an
instance.

The degree sum immediately shows that any tree of order
2n has at most two vertices of degree n. If two vertices do have
degree n then all others have degree 1, so the tree is the double
star S,, with adjacent vertices of degree n. Thus Lemma 1
allows T to be any tree of maximum degree A(T) < n except S, .
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Theorem 4. Let T be a spanning tree of K, and let G = K,,, — E(T),
withn 22. Then G has a purely heterogeneous spanning tree
decomposition T = (T,, ..., T,.,) which satisfies the maximum degree
condition A(T)) = i+1 for each i € [1..n-1] if and only if A(T) < n, and
T is not the double star S, ,, when n = 3.

Proof. The stated conditions are necessary, by Lemma 1. When
n = 2 their sufficiency is shown by the decomposition of K, into
two complementary Hamilton paths. We now outline the
construction showing their sufficiency when n > 3, but another
structural lemma will be required to complete the proof.

We proceed by induction on n. For a fixed integer k> 2,
assume the theorem holds when n = k; now let n = k+1. The
construction begins with two vertices x and y of degree 1in T,
chosen so that the tree T = T - {x, y} of order 2k has maximum
degree A(T") < k and at most one vertex of degree k. The
induction hypothesis applies to the graph G’ = K, ~ E(T"), so G’
has a spanning tree decomposition T* = (T, ..., T,.,") which
satisfies the maximum degree condition A(T}) = i+1 for eachi €
[1.k-1]. From T’ we build an appropriate decomposition T =
(T, ..., T) of G, beginning with the path T, = T,'U{xy, yz},
where z is a suitable endpoint of T,". Next, the trees T; with i €
[2..k=1] are constructed from the corresponding trees T/ by
adding two edges to each, one incident with x and the other
incident with y, in such a way that the maximum degree of
each tree is preserved, and all vertices of attachment are
distinct. Moreover, the added edges are chosen so that the
remaining 2k+1 edges incident with x or y form a tree T, with a
unique vertex of maximum degree k+1. Subject to verification
of details pending in the next two sections, it follows that G
does always have a suitable decomposition, so the theorem
follows by induction.

7. A pruning property of trees

We now establish the pruning property of T used in the
proof of Theorem 4.
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Lemma 2. For n = 2, let T be any tree of order 2n with maximum
degree A(T) < n. Then T has two leaves x, y with no common
neighbor, such that T' = T ~ {x, y} has maximum degree A(T") < n-1.
Further, if n =4 and T is not the double star S,,,, then x, y can be
chosen so that T' has at most one vertex of degree n—1.

Proof. When T is a path the claim is immediate, so suppose n =
3 and 3 < A(T) < n. If T has a vertex of degree n, that vertex is
incident with more than half the edges in T, so it is adjacent to
at least one leaf. The degree sum of T shows that it has at most
two vertices of degree n, and this maximum occurs only when
all other vertices are leaves, so when T=S,,. Thus in all cases
we can choose two leaves ¥, y with no common neighbor such
that T" = T - {x, y} satisfies A(T") < n-1.

Now suppose n =4 and T is not S,,,. Then T satisfies the
lemma if T" is not the double star S, ;. So consider the case T’
= 5,11 and let u, v be the two vertices of degree n-1in T".

Since T is not S, , it follows that at least one of x, y is adjacent to
neither  nor v in T: without loss of generality, suppose x has
this property, and is at distance 2 from u in T. Ify is adjacent to
neither u nor v in T, choose a leaf w adjacent to v in T, and
replace T' by T* = T - {w, y}. Then the lemma is satisfied, since
u has degree n-1 and v has degree n-2 in T*. If y is adjacent to
either u or vin T, there is a leaf w at distance 3 fromy in T. In
that case, replace T' by T* = T - {w, y} and the lemma is
satisfied, since in T* one of u, v has degree n-1, the other n-2.[ ]

8. Construction details for Theorem 4

For n = 3 we now show that a spanning tree decomposition
T =(T,, ..., T,) which satisfies the maximum degree
condition A(T;) = i+1 for each i € [1..n-1] of G’ = K,,, - E(T")
extends to a corresponding decomposition of G = K,,,, - E(T),
provided the tree T of order 2n+2 satisfies A(T) < n+1 and is not
S.m- Butin fact there is a potential technical hitch that could
prevent the final set of 2n+1 edges from forming a tree. To
overcome this difficulty we shall prove a stronger, more
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technical result which always lets us select a spanning tree
decomposition that does extend as required (and has two
extensions in which the Hamilton pat%s do not have the same
pair of endpoints).

Claim. For n = 3, if T is any tree of order 2n satisfying A(T) < n,
excluding S, , there are always two spanning tree decompositions T

and T* of G = K,, — E(T) that satisfy the maximum degree condition
and include Hamilton paths T, and T,* which do not have the same
pair of endpoints.

Proof of claim. When n = 3 choose any tree T of order 6 with
A(T) < 3, except S;5. Lemma 2 ensures that T has two leaves x, y
with no common neighbor, such that T = T — {x, y} has
maximum degree A(T") <2. Thus T = P, =abcd. Since T is not
S, 3 without loss of generality x is adjacent to a in T. Theny is
adjacent to exactly one of b, ¢, d; in each case take T, = P;: ac, ad,
bd, xy, xz with z = ¢, b, b respectively, and let T, comprise the
remaining edges of G = Ky~ E(T). Then T={T,, T,}isa
spanning tree decomposition of G in which x is an interior
point and y is an endpoint of the Hamilton path T,, and y is the
unique vertex of degree 3 in T,. If xz is replaced by yz in this
construction, yielding trees and T,* and T, then T* = {T,*, T,*}
is also a spanning tree decomposition of G, where x is an
endpoint and y is an interior point of the Hamilton path T,*,
and x is the unique vertex of degree 3 in T,*. Thus tﬁe claim
holds when n =3.

For a fixed integer k = 3, assume the claim holds when n = k;
now let n = k+1. Fix any spanning tree T of K,, with A(T) <
k+1, excluding S,,,,.,. Choose vertices x, y of Ky, which are
leaves of T satisfying the full n = 4 conditions in Lemma 2, and
put T’ =T -{x, y}. Let T* = (T, ..., Ty, ) and T" =(T,", ..., T,
,") be two spanning tree decompositions of G’ = K, — E(T")
satisfying the maximum degree condition and such that T, and
T,"” do not have the same pair of endpoints. At least one of T?

and 7" is such that one endpoint of its Hamilton path is
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adjacent in T to neither x nor y. Assume 77 has this property,
and z is an endpoint of T,” adjacent to neither x nor yin T. Let
T, = Ty'U{xy, yz} and T,* = T,'U{xy, xz}: these are two Hamilton
paths in K,,,, and they do not have the same pair of endpoints,
since each has a different vertex of xy as an endpoint.

We now build a spanning tree decomposition T = (T}, ..., T))
of G = Ky, — E(T) which includes the Hamilton path T, just
constructed; a second decomposition, T* = (T}* ..., T,*), which
includes the Hamilton path T*, arises in essentially the same
way. Letu, v be the neighborsof x, yin T. ThenS={u, v, x,y,
z} is a set of five distinct vertices in G, exactly three of which are
inG".

For each i € [2..k-1], let A; be the set of vertices of degree less
than i+1 in T/, and put A/ = A\S. Suppose that A’ = (4, ...,
A.;) has a twofold system of distinct representatives B = (B,,
...s By), say B; = {u, v} for each i € [2.k-1]. Put T; =T/ U {u;x,
vy}). Then T;is a spanning tree of G with maximum degree
A(T) = A(T/) = i+1. Now let T, be the subgraph of G induced by
the edges not included in any T, with i € [1..k-1]. Then T, has
2k+1 edges. It does not include any edge in G’, nor does it
include xy or yz, so T, is bipartite with {x, y} as one independent
set and the other 2k vertices as the other independent set. The
degree of x and y in G is degree 2k, so in T, they have degree
k+1 and k respectively. Again, z has degree 2 in T, while all
other vertices have degree 1. Thus T, is acyclic, so is a spanning
tree with maximum degree A(T,) = k+1 achieved by a unique
vertex, x. Hence T =(T,, ..., T,) is an appropriate
decomposition of G.

It remains to show that A’ = (4, ..., A.,") has a twofold
system of distinct representatives. For k =3 we have A’ = (4,")
and T, is a tree of order 6 with maximum degree 3. If 1A, | 22
then trivially A’ has a twofold system of distinct
representatives: this certainly occurs when T, has exactly one
vertex of degree 3. However, it is possible that T,” has exactly
two vertices of degree 3: this occurs precisely when T" is a
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Hamilton path and 77 = {P,, S,;}. Butin that case z is an
endpoint of T, = P, and has degree at most 2 in T”, so z must
have degree 3in T,’ = S,,. Thenzis notin A, so |A,’| =2 as
before.

When k = 4, the degree sum guarantees that any tree of order
2k and maximum degree A = 3 has at least k+1 vertices of
degree less than A, so | A/ | = k-2 for each i € [2..k-1). Suppose
IU;e; A/ 1 <2111 for some subset I C [2..k-1]. Then we have
2111 >k-2;butk=4,s0l1l 2 [(k-1)/2] = 2. Let the two highest
indices in I be s, t. Then s+t = [(k~1)/2] + [(k+1)/2] = k. Suppose
has a vertex w of K, is notin A,/UA,U{u, v, z}. Then w has
degree s+1 in T, and degree t+1 in T, and has positive degree
in T’ and in the k-3 trees T; with i € [1..k-1]\{s, #}, so the total
degree of w would be at least (s+1) + (t+1) + (k=2) = 2k. But this
is too large for any vertex in Ky so, by contradiction,
A/UA/U{u, v, z} contains every vertex of K. It follows that

|A/UA/ |=2k-3 > 211l for every subset I C [2..k-1]. Therefore
1U;e; A | 22111 for every subset I C [2..k-1], so A’ always has
a twofold system of distinct representatives, by Theorem 3.
Thus the construction of T and T* from 77 is always possible,
and the claim follows by induction on n. Clearly theorem
follows. []

9. Conjecture

A much stronger constraint than that specified in
Theorem 4 for spanning tree decompositions of K,, is proposed
in the following conjecture.

Conjecture. For n 22, let T=(T,, ..., T,,) be any sequence of n-1
trees of order 2n which satisfies the maximum degree condition A(T))
=1i+1 for each i € [1..n-1]. Then there exists a tree T of order 2n such

that, with a suitable labeling of vertices, T is a purely heterogeneous
spanning tree decomposition of G = K, — E(T).
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Note that all but one of the n trees are specified (up to
isomorphism). The conjecture is easily checked for n =2 and 3.
We thank Angela McCombs for verifying the far more
complicated case n =4. Other than the freedom to choose one
tree, this conjecture is similar in several respects to the well-
known elegant conjecture of Gy4rfds & Lehel [2]:

Tree Packing Conjecture (Gyéarfds & Lehel). For any given
positive integer n, and any sequence T = (T, ..., T,) of n trees in
which T; has order i for each i € [1..n], there is a suitable labeling of
vertices so that ‘T forms a decomposition of K.

In recent joint work, as yet unpublished, Abueida, Blinco,
Clark, Daven and Eggleton have obtained results on
heterogeneous spanning tree decompositions of uniform
complete multigraphs. Close in spirit to the present paper is

their theorem that K,® has a purely heterogeneous spanning
tree decomposition exactly when n = 6. This generalizes a

result of Eggleton [1], showing that K¢ has a spanning tree
decomposition into one copy of every tree of order 6.
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