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Abstract

Let G be the one-point union of two cycles and suppose G has n
edges. We show via various graph labelings that there exists a cyclic
G-decomposition of Kane41 for every positive integer t.

1 Introduction

If a and b are integers we denote {a,a+1,...,b} by [a,}] (ifa > b, [a,b] =
Let N denote the set of nonnegative integers and Z, the group of integers
modulo ¢. For a graph G, let V(G) and E(G) denote the vertex set of G
and the edge set of G, respectively. The order and the size of a graph
G are |V(G)| and |E(G)|, respectively. If G; and G2 are vertex-transitive
graphs, G | G2 denotes the one-point union of G; and Gs.

Let V(K:) = {0,1,...,t — 1}. The length of an edge {i,j} in K, is
min{[i — j|,t — i — j]}. Note that if ¢ is odd, then K, consists of ¢ edges of
length i for i = 1,2,. —2—

Let V(K:) = Z, and let G be a subgraph of K,. By clicking G, we
mean applying the permutation i — i 41 to V(G). Note that clicking an
edge does not change its length. Let H and G be graphs such that G is a
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subgraph of H. A G-decomposition of H is a set A = {G1,Gy,...,G.} of
pairwise edge-disjoint subgraphs of H each of which is isomorphic to G and
such that E(H) = ., E(G:). A G-decomposition of K is also known as a
(K, G)-design. A (K, G)-design A is cyclic if clicking is an automorphism
of A. The study of graph decompositions is generally known as the study
of graph designs, or G-designs. For recent surveys on G-designs, see [1]
and [6].

Let G be a graph of size n. A primary question in the study of graph
designs is: for what values of k does there ezist a (Ki,G)-design? For most
studied graphs G, it is often the case that if £ = 1 (mod 2n), then there
exists a (K, G)-design. A common approach to finding these designs is
through the use of graph labelings.

In this paper, we will show via various graph labelings that if G of
size n is the one-point union of two cycles, then there exists a cyclic G-
decomposition of Koni+1 for every positive integer ¢.

1.1 Graph Labelings

For any graph G, a one-to-one function f : V(G) — N is called a labeling
(or a valuation) of G. In [12], Rosa introduced a hierarchy of labelings. Let
G be a graph with n edges and no isolated vertices and let f be a labeling
of G. Let f(V(G)) = {f(u) : u € V(G)}. Define a function f : E(G) — Z*
by f(e) = |f(u) — f(v)|, where e = {u,v} € E(G). We will refer to f(e) as
the label of e. Let f(E(G)) = {f(e) : e € E(G)}. Consider the following
conditions:

(e1) f(V(G)) < [0,2n],
(£2) f(V(G)) < [0,n],

(£3) f(E(G)) = {z1,%2,...,ZTn}, where for each i € [1,n] either z; =i or
z;=2n+1-—4,

(¢4) F(E(G)) = [L,m].
If in addition G is bipartite with bipartition {4, B} of V(G) consider also
(#5) for each {a,b} € E(G) with a € A and b € B, we have f(a) < f(b),

(£6) there exists an integer A such that f(a) < A foralla € A and f(b) > A
for all b€ B.

Then a labeling satisfying the conditions:
(£1),(£3) is called a p-labeling;
(£1), (£4) is called a o-labeling;
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(€2),(€4) is called a B-labeling.

A B-labeling is necessarily a o-labeling which in turn is a p-labeling. Sup-
pose G is bipartite. If a p, o, or B-labeling of G satisfies condition (£5),
then the labeling is ordered and is denoted by p*, o+ or A%, respectively. If
in addition (£6) is satisfied, the labeling is uniformly-ordered and is denoted
by p*+, ot* or B+, respectively.

A B-labeling is better known as a graceful labeling and a uniformly-
ordered S-labeling is an a-labeling as introduced in [12]. Labelings of the
types above are called Rosa-type because of Rosa’s original article [12] on the
topic. (See [9] for a recent comprehensive survey of Rosa-type labelings).
A dynamic survey on general graph labelings is maintained by Gallian [11].

Call a connected graph G Eulerian if every vertex of G has even degree.
If a graph G with Eulerian components admits a o-labeling, then we have
the following well-known restriction on |E(G)|.

Theorem 1 (Parity Condition in [12]) If a graph G with Eulerian compo-
nents and n edges has a o-labeling, then n =0 or 3 (mod 4). If in addition
G is bipartite, then n =0 (mod 4).

Labelings are critical to the study of cyclic graph decompositions as
seen in the following two results from [12].

Theorem 2 Let G be a graph with n edges. There erists a cyclic G-
decomposition of Kont1 if and only if G admits a p-labeling.

Theorem 3 Let G be a bipartite graph with n edges that admits an a-
labeling. Then there exists a cyclic G-decomposition of Konsy1 for all pos-
itive integers t.

It is easy to see how Theorem 3 works. Let G have bipartition {4, B}
and let h be an o-labeling for G with h(A) < h(B). Let By, B,,...,B; be
t vertex-disjoint copies of B. The vertex in B; corresponding to b € B will
be called b;. Let B* = U§=1 B;. We define a new graph G* with vertex set
Al B* and edges {a,b;}, 1 < i <t, whenever a € A and {a, b} is an edge
of G. Clearly G* has nt edges and G divides G*. Define a labeling h* on

G* by
. _ h(‘U) ve A7
h(v)_{h(b)-i-(i—l)n v=1b; € B;.

The labeling h* is an a-labeling of G* (which is also a p-labeling) and thus
the result follows by Theorem 2.

From a graph decompositions perspective, Theorem 3 offers a great
advantage over Theorem 2. However, there are many classes of bipartite
graphs (see [9]) that do not admit a-labelings. Theorem 3 was extended to
cover graphs that admit p*-labelings in [8].
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Theorem 4 Let G be a bipartite graph with n edges that admits an p*-
labeling. Then there exists a cyclic G-decomposition of Kopsy1 for all pos-
itive integers t.

Theorem 4 is set up in exactly the same way as Theorem 3 except that
now we let h*(v) = h(b) + (i — 1)2n for v = b; € B;. It is conjectured by
El-Zanati and Vanden Eynden (see [9]) that every bipartite graph admits
a p*-labeling.

Labelings that lead to results similar those of Theorem 4 have now
been introduced for almost-bipartite graphs [4] and for tripartite graphs in
general (7).

A non-bipartite graph G is said to be almost-bipartite if G—e is bipartite
for some e € E(G). Note that if G is almost-bipartite with e = {b, ¢}, then
G is necessarily tripartite and V(G) can be partitioned into three sets A,
B and C = {c} such that b € B and e is the only edge joining an element
of Btoc.

Let G be an almost-bipartite graph with n edges with vertex tripartition
A, B, C as above. A labeling h of the vertices of G is called a v-labeling of
G if the following conditions hold:

(g1) The function h is a p-labeling of G.
(g2) If {a,v} is an edge of G with a € A, then h(a) < h(v).
(g3) We have h(c) — h(b) = n.
Several classes of almost-bipartite graphs have been shown to have

v-labelings (see [9]). It was shown in [4] that 4-labelings yield results similar
to pt-labelings.

Theorem 5 Let G be an almost-bipartite graph with n edges that admits
a y-labeling. Then there exists a cyclic G-deomposition of Kaneir for all
positive integers t.

We illustrate how Theorem 5 works. Let G have n edges and let h be
a vy-labeling for G, with A, B, C, ¢, and b as in the above definition. Let
B4,Bs,...,B; be t vertex-disjoint copies of B, and let ¢;,¢2,...,¢ be t
new vertices. The vertex in B; corresponding to b € B will be called b;.
Let B* = |Ji_, Bi and C* = {c1,¢c2,...,¢:}. We define a new graph G*
with vertex set A|JB*|JC* and edges {a,v;},1 < i < t, whenevera € A
and {a, v} is an edge of G, and {b;,¢;}, 1 <i < t. Clearly G* has nt edges
and G divides G*. Define a labeling h* on G* by

h(v) v E A,
h*(v) = { h(b)+ (i —1)2n v =0b; € B;,
h(ey+(t—-i)2n v=gc.
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The labeling h* is a p-labeling of G* and thus the result follows by Theo-

rem 2.
The concept of a y-labeling was generalized in [7] to cover tripartite

graphs that are not necessarily almost-bipartite. Let G be a tripartite
graph with n edges having the vertex tripartition {4, B,C}. A o-tripartite
labeling of G is a one-to-one function h : V(G) — [0, 2n] that satisfies

(s1) h is a o-labeling of G.
(s2) If {a,v} € E(G) with a € A, then h(a) < h(v).

(s3) If e= {b,c} € E(G) with b € B and c € C, then there exists an edge
e = {V',c'} € E(G) with ' € B and ¢’ € C such that

Ih(c') = h(¥)| + [h(c) — A(b)| = n.

(s4) If a € A and v € BUC, then h(a) — h(v) #n.
(s5) If b€ B and c € C, then |h(b) — h(c)| € {n,2n}.

A o-tripartite labeling of G is necessarily a g-labeling of G. Thus the parity
condition must be satisfied in order for G to admit a o-tripartite labeling.

Also, a p-tripartite labeling of G is a one-to-one function h : V(G) —
[0,2n) that satisfies

(r1) his a p-labeling of G.
(r2) If {a,v} € E(G) with a € A, then h(a) < h(v).

(r3) If e= {b,c} € E(G) with b € B and c € C, then there exists an edge
e = {V,d} € E(G) with ¥’ € B and ¢’ € C such that

[(c') = h(6')] + [R(c) — h(b)| = 2n.

(r4) If b€ B and c € C, then |h(b) — h(c)| # 2n.

We note that a v-labeling of a graph G is necessarily a p-tripartite
labeling of G. For the purposes of this manuscript, we will consider almost-
bipartite graphs separately from general tripartite graphs.

The following theorem shows that the above tripartite labelings yield
results similar to y-labelings:

Theorem 6 If a tripartite graph G with n edges has a o-tripartite or a
p-tripartite labeling, then there exists a cyclic G-decompositition of Konstq
for all postitive integers t.
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Theorem 6 works in a similar way to Theorem 5. Let G have n edges
and let i be a o-tripartite or a p-tripartite labeling for G, with A, B,
and C as in the above definitions. Let B, Bs,...,B; be t vertex-disjoint
copies of B, and let Cy,C5,...,C; be t vertex-disjoint copies of C. The
vertex in B; corresponding to b € B will be called b;. Similarly, the vertex
in C; corresponding to ¢ € C will be called ¢;. Let B* = U:=1 B; and
C* =i, C:. We define a new graph G* with vertex set A|J B*|JC* and
edges {@,v;}, 1 < i < t, whenever a € A and {a,v} is an edge of G, and
{bi,ci}, 1 < i < t, whenever {b,c} is an edge of G with b€ Band ce C.
Clearly G* has nt edges and G divides G*. Define a labeling h* on G* by

h(v) v € A,
h*(v) = { h(b) + (1 — 1)dn v =0b; € B;,
h(c)+ (t—i)én v=c;€C;.

We use § = 1 if h is a o-tripartite labeling of G and 6 = 2 if h is a p-
tripartite labeling. Either way, the labeling k* is a either a o-labeling or a
p-labeling of G* and the result follows by Theorem 2.

Let 7 > 3 and s > 4 be integers and let G = C;. | Cs. We will show that
G admits: an a-labeling if r = s = 0 (mod 4), a p*-labeling if r = s =2
(mod 4), a «-labeling if 7+ s = 1 or 3 (mod 4) and G # C3l¢JCy, a o-
tripartite labeling if » and s are both odd and r + s = 0 (mod 4), and
a p-tripartite labeling if  and s are both odd and r + s = 2 (mod 4) or
G =C3lCs.

1.2 Some Known Results

Several authors have investigated labelings of the one-point union of var-
ious graphs. We direct the interested reader to Gallian’s graph labelings
survey [11] for a detailed list of results. We will only cite the most relevant
results for our problem. Most of the previous investigations have focused
on graceful and a-labelings of one-point union graphs.

Bodendiek, Schumacher, and Wegner (5] proved that the one-point union
of any two cycles is graceful when the number of edges is congruent to 0 or
3 modulo 4. Figueroa-Centeno, Ichishima, and Muntaner-Batle [10] have
shown that if m =0 (mod 4) then the one-point union of 2, 3, or 4 copies
of C,, admits an a-labeling, and if m = 2 (mod 4) then the one-point
union of 2 or 4 copies of C,, admits an a-labeling. They conjecture that
the one-point union of n copies of C,, admits an a-labeling if and only
if mn = 0 (mod 4). Let ) denote the one-point union of ¢ cycles of
length n. Bermond, Brouwer, and Germa [2] and Bermond, Kotzig, and

Turgeon (3] proved that C$ is graceful if and only if t = 0 or 1 (mod 4).
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1.3 Additional Notation and Definitions

For ease of notation, we will henceforth consider graphs whose vertices are
(distinct) nonnegative integers. Each vertex will be its own label, so the
label of the edge {z, y} in such a graph will be simply |z — y|.

We denote the directed path with vertices zg,z,,...,zx, where z; is
adjacent to 241, 0 < ¢ < k -1, by (zo,71,...,2k). The first vertez
of this path is zo, the second verter is x;, and the last vertex is z;. If
G1 = (zo,21,...,2;) and G2 = (yo,¥1,-.-,yx) are directed paths with
V(G1) NV (G2) = {z; = yo}, then by G1 + G2 we mean the directed path
(1‘0,151: oy Ti Y1, Y2, .- ,yk)-

Let P(k) be the path with k edges and k + 1 vertices 0,1,...,k given
by (0,k,1,k — 1,2,k —2,...,[k/2]). Note that the set of vertices of this
graph is AU B, where A = [0, |k/2]], B = [|k/2] + 1,k], and every edge
joins a vertex of A to one of B. Furthermore the set of labels of the edges
of P(k) is [1,k].

Now let @ and b be nonnegative integers with @ < b and let us add
a to all the vertices of A and b to all the vertices of B. We will denote
the resulting graph by P(a,b, k). Note that this graph has the following
properties.

Pl P(a,b, k) is a path with first vertex a and second vertex b+ k. If k is
even, its last vertex is a + k/2.

P2 Each edge of P(a, b, k) joins a vertex of A’ = [a, |k/2| + a] to a larger
vertex of B’ = [|k/2| + 1+ b,k + b].

P3 The set of edge labels of P(a,b,k)is b~a+1,b—a+k].

Figure 1 shows examples of this path notation.

Figure 1: The paths P(6) and P(4,7,6).

2 Main Results

Lemma 7 If a graph G is the one-point union of even cycles Cr and C,
where 7 = s (mod 4), then G has an a-labeling.

Proof. We will consider two cases.

Case 1 7 = s =0 (mod 4).
Let G = Cyz lo) Cyy where z,y > 1. Let Cy, = Gy +Go + (22— 1,51,0) and
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qu = Gs+Gq+(2fB+2y—2, ba, 2$—1) where by = 2z+4y, by = 2x+4y—-1,
and
G, = P(0,2z + 4y, 2z),
Go = P(z,z + 4y + 1,2z — 2),
Gs = P(2z - 1,2z + 2y,2y — 2),
Gy=P2z+y—2,2z+y—2,2).

(Note: In the case when z = 1, the path G, is empty, and when y = 1, the
path G3 is empty. However, this does not change the proof in any way.)

Figure 2: An a-labeling of Cg ¢ Cs.

First, we show that G; + G2 + (22 — 1,b1,0) is a cycle of length 4z,
and G3 + G4 + (2 + 2y — 2,b2, 2z — 1) is a cycle of length 4y. Note that
by P1, the first vertex of G; is 0, and the last is z; the first vertex of
G4 is z, and the last is 22 — 1; the first vertex of G3 is 2= — 1, and the
last is 2z + y — 2; and the first vertex of G4 is 2z + y — 2, and the last is
2z + 2y —2. For 1 < <4, let A; and B; denote the sets labeled A’ and
B’ in P2 corresponding to the path G;. Then using P2, we compute

Ay = [0,2], By = [3z +4y + 1,4z + 4y,
Ay = [z,2z — 1], By =2z +4y+ 1,3z + 4y — 1},
Az=[2z-1,2z+y—-2], B3 = [2z + 3y,2z + 4y — 2},

Ay=2z4+y-2,22+2y-2], By=[2z+2y—1,2z+3y—2|.

Thus,

A <Ay <A3<A; <By<By<by<b < By < B,. (1)
Note that V(G,)NV(G2) = {z}, V(G2) NV (G3) = {2z — 1}, and V(G3)N
V(G4) = {2z + y — 2}; otherwise, G; and G; are vertex-disjoint for ¢ # j.
Therefore, G1+G2+(2z—1, by, 0) is a cycle of length 4z, and G3+G4+(2z+
2y — 2,ba, 2z — 1) is a cycle of length 4y. Furthermore, V(C4:) NV (Cyy) =
{2z —1}; therefore, G is a graph composed of two cycles that share a single

vertex.
Next, let E; denote the set of edge labels in G; for 1 < i < 4. By P3,

we have edge labels

E, =2z + 4y + 1,4z + 4y},
E,=[4y+2,2z+ 4y — 1],
Es =[2y+2,4y - 1],

E4 = [1,2y].



Moreover, the path (2z — 1,b;,0) consists of edges with labels 4y + 1 and
2z + 4y, and the path (2z + 2y — 2, by, 2z — 1) consists of edges with labels
2y +1 and 4y. Thus, the edge set of G has one edge of each label i where
1 <1 < 4z + 4y, and condition (¢4) for an a-labeling is satisfied.

Finally, let A = Jj_; 4; and B = Ui_, B; U {b1,b;}. Then, {A, B} is
a bipartition of V(G). Conditions (£2) and (£6) for an a-labeling are clear
from (1). Thus, we have an a-labeling of G.

Case 2 r =s=2 (mod 4).
Let G = Cyz42¢) Cay42 where 7,y > 1. Let Cypip = Gy + G2 + (27, b1,0)
and Cyyy2 = G3 + G4 + (2 + 2y, b2, 2) where by = 2z + 4y + 2, by =
2z +4y + 3, and
G, = P(0,2z + 4y + 2,2z + 2),
Gy=P(z+1,z+4y+4,2z - 2),
Gs = P(2z,2z + 2y + 3,2y — 2),
Gy=PQ2x+y—1,2x+y—1,2y+2).
(Note: In the case when x = 1, the path G; is empty, and when y = 1, the
path Gs is empty. However, this does not change the proof in any way.)
If we proceed as in Case 1, it is easy to verify that we have an a—labelini
of G.

Figure 3: An o-labeling of Cyg (o) Co.

It is necessary here to define a new operator on the edge label values and
sets. Let G be a graph with n edges. If m is the label of an edge, let m* =
min{m, 2n + 1 — m} be the length of the edge, and let S* = {m* : m € S}
be the corresponding set of edge lengths. Thus if the set of vertices of G
is a subset of [0, 2n] and the set E of edge labels of G satisfies E* = [1,n],
then G has a p-labeling.

Lemma 8 If a graph G is the one-point union of even cycles C, and C,
where r #Z s (mod 4), then G has a uniformly-ordered p-labeling.

Proof. Let G = Cyzy2leJCyy where z,y > 1. Let Cypye = G1 + G2 +
(2x,b,,0) and Cay = G3+ G+ (22 + 2y — 1, by, 2z) where by = 4z + 4y + 3,
by = 2z + 2y, and

G, = P(0,2z + 4y + 3,2z — 2),

Gya=Plz—l,z+4y—1,2z+2),

G3 = P(2z,2z + 2y, 2y),

Gy= P2z +y,2z+y+1,2y —2).
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(Note: In the case when = = 1, the path G; is empty, and when y = 1, the
path G4 is empty. However, this does not change the proof in any way.)

Figure 4: A uniformly-ordered p-labeling of Cigle) Cs.

First, we show that G; + G2 + (2z, b, 0) is a cycle of length 4z + 2, and
G3+Ga+ (2 42y —1, by, 2z) is a cycle of length 4y. Note that by P1, the
first vertex of G) is 0, and the last is £ — 1; the first vertex of Gy is z — 1,
and the last is 2z; the first vertex of G3 is 2z, and the last is 2z + y; and
the first vertex of G4 is 2x + y, and the last is 2z + 2y — 1. For 1 <17 < 4,
let A; and B; denote the sets labeled A’ and B’ in P2 corresponding to the
path G;. Then using P2, we compute

A =0,z -1], By =[3z+4y+ 3,4z + 4y + 1],
Ay =[z-1,2z], By =[2z+4y+1,3z+ 4y + 1),
Az = [2z,2z + 9], B3 =2z 4+ 3y + 1,2z + 4y],

Ay =2z 4y, 2z +2y - 1], By=[2z+2y+1,22+3y—1].
Thus,
A1 A3 <A3<A;<by<By<Bs<By< By <bh. 2)

Note that V(G,) NV (G) = {z — 1}, V(G2)NV(G3) = {2z}, and V(G3) N
V(G4) = {2z + y}; otherwise, G; and G; are vertex-disjoint for ¢ # j.
Therefore, G1+G2+(2z, b1, 0) is a cycle of length 4x+2, and G3+G4+(2z+
2y — 1, by, 2z) is a cycle of length 4y. Furthermore, V(Cyz42) NV (Cyy) =
{2z}; therefore, G is a graph composed of two cycles that share a single

vertex.
Next, let E; denote the set of edge labels in G; for 1 < i < 4. By P3,
we have edge labels

E, =2z + 4y + 4,4z + 4y + 1),

E;,=[4y+1,2z+ 4y +2),

E3 = [2y+ 1,4y],

E4 = [2, 2y - 1]
yielding edge lengths of the same values. Moreover, the path (2z,b;,0)
consists of edges with lengths 22+4y+-3 and (4z+4y+3)* = dz+4y+2, and
the path (2z + 2y — 1, by, 2z) consists of edges with lengths 1 and 2y. Thus,
the edge set of G has one edge of each length i where 1 <7 < 4z + 4y + 2,
and condition (£3) for a p**-labeling is satisfied.

Finally, let A = J}_, Ai, B = U}{_, Bi U {b1,b2}. Conditions (¢1) and

(£6) of a p**-labeling are clear from (2). Thus, we have a uniformly-ordered
p-labeling of G. |

42



Lemma 9 If a graph G is the one-point union of C, and C, where r # s
(mod 2) and {r, s} # {3,4}, then G has a v-labeling.

Proof. We will consider four cases.

Case 1 7 =0 (mod 4) and s =1 (mod 4).
Let G = Ciyz lo) Cay+1 where z,y > 1. We will consider two subcases.

Case 1.1z =1. .
Let C4 = (a1,b1,a2,b2,a;1) and Cyyy1 = G1 + G2 + (2y — 1,b,¢,01, b3, 1)
where a; =0, by =2y + 4, as = 2y, by =2y+5,3=4y+5, c =8y + 10,
b3 =8y +9, and

G, = P(1,6y + 8,2y — 2),
G2 = P(y,5y + 6,2y — 2).

(Note: In the case when y = 1, the paths G; and G are empty. However,
this does not change the proof in any way.)

Figure 5: A v-labeling of Cy ¢ Cy.

First, we show that G; + Gy + (2y — 1, b,c, a1, bs, 1) is a cycle of length
4y + 1. Note that by P1, the first vertex of G is 1, and the last is y; and
the first vertex of Gs is y, and the last is 2y — 1. For 1 < i < 2, let A; and
B; denote the sets labeled A’ and B’ in P2 corresponding to the path G;.
Then using P2, we compute

Al = [lyy]) Bl = [7y+818y+6],
Ap =[y,2y — 1], By =[6y+6,7y +4].
Thus,
a1 <A <Ap<ap<b <b<b<B,<B <bi<ec (3)

Note that V(G1) N V(G2) = {y}; otherwise, G; and G are vertex-disjoint.
Therefore, G + G2 + (2y — 1,b, ¢, a1, b3, 1) is a cycle of length 4y + 1. Fur-
thermore, V(C4) NV (C4y41) = {a1 = 0}; therefore, G is a graph composed
of two cycles that share a single vertex.

Next, let E; denote the set of edge labels in G; for 1 < i < 2. By P3,

we have edge labels

El = [6y+818y+5]:
E; =[4y+7,6y+4),
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yielding edge lengths

Ef={8y+11—-¢:£€c E\} =[6,2y+ 3,
Es={8y+11-¢:0€ B} =2y +7,4y +4].

Moreover, the path (a1, b1, as, b2, a1) consists of edges with lengths 2y + 4,
4, 5, and 2y + 5; and the path (2y — 1, b, c,ay,bs, 1) consists of edges with
lengths 2y + 6, 4y + 5, (8y + 10)* = 1, (8y + 9)* = 2, and (8y + 8)* = 3.
Thus, the edge set of G has one edge of each length i where 1 <7 < 4y+5.
1t is clear from (3) that V(G) C [0, 8y + 10]. Hence, the defined labeling is
a p-labeling, and condition (gl) for a vy-labeling is satisfied.

Finally, let A = A; U Az U {a1,a2}, B = By U By U {b,b1,b2,b3}, and
C = {c}. Then, {A, B,C} is a tripartition of V(G). Condition (g2) of a
~-labeling is clear from (3). Note that c—b = (8y+10) — (4y +5) = 4y +5,
the number of edges of G. Thus, condition (g3) is satisfied, and we have a
v-labeling of G.

Case 1.2z > 1.

Let Cyp = G1+G2+(22+2y—2,b1,01,b2,2y) and Cyy41 = G3+G4+(2y—
1,5,c,a1,b3,1) where by = 4z+2y,a; =0, bs = 4z +2y+1, b= 4z +4y+1,
c=8z+8y+2, b =4z + 8y + 4, and

Gy = P(2y,2x + 2y + 2,2z — 4),
G2 =P(z+2y -2,z + 2y —1,2z),
G5 = P(1,4z + 6y + 4,2y — 2),

G4 = P(y,4z + 5y + 2,2y — 2).

(Note: In the case when z = 2, the path G is empty, and when y = 1, the
paths G3 and G4 are empty. However, this does not change the proof in
any way.)

Figure 6: A v-labeling of Cj2 e Co.

First, we show that G; + G2 + (2z + 2y — 2, b1, a1, b2, 2y) is a cycle of
length 4z, and G3 + G4 + (2y — 1, b, e, a1, b3, 1) is a cycle of length 4y + 1.
Note that by P1, the first vertex of G is 2y, and the last is z + 2y — 2; the
first vertex of G is = + 2y — 2, and the last is 2z + 2y — 2; the first vertex
of G3 is 1, and the last is y; and the first vertex of G4 is y, and the last is
2y — 1. For 1 < i < 4, let A; and B; denote the sets labeled A’ and B’ in



P2 corresponding to the path G;. Then using P2, we compute

A =2y,z+2y -2, By =[83z+2y+1,4z+ 2y - 2],

A =[r+2y—-2,204+2y—2, Byx=[2z+2y3z+2y-1],

As = [1,y], B3 =[4z + Ty + 4,4z + 8y + 2],

As=[y,2y - 1], B, = [4z + 6y + 2,4z + Ty).
Thus,

a1 <A3S A< A1 <A <Ba<Bi<bi<bi<b<Bs<Bi<bi<e (4)

Note that V(G1)NV(G2) = {z+2y —2} and V(G3) NV (G4) = {y}; other-
wise, G; and G; are vertex-disjoint for i # j. Therefore, G1+G2+(2z+2y—
2,by,a1,b2,2y) is a cycle of length 4z, and G3 + G4 + (2y — 1, b, ¢, ay, bs, 1)
is a cycle of length 4y + 1. Furthermore, V(C4z) N V(Cay41) = {a1 = 0};
therefore, G is a graph composed of two cycles that share a single vertex.

Next, let E; denote the set of edge labels in G; for 1 < i < 4. By P3,
we have edge labels

Ey = [2z + 3,4z — 2],

E; = [2, 2$+1],

E3 = [4z 4 6y + 4,4z + 8y + 1),
Ey = |4z + 4y + 3,4z + 6y]

yielding edge lengths

E} = E) =2z + 3,4z - 2),

E} =FE; =[2,2z+1),

B ={8c+8y+3—£:0€ Es}=[4z +2,4z + 2y — 1],
Ef ={82+8y+3-(:Lc By} =4z +2y+3,4z + 4y).

Moreover, the path (2z+ 2y — 2, by, a1, b, 2y) consists of edges with lengths
2z +2, 4z + 2y, 4z +2y + 1, and 4z + 1; and the path (2y — 1,b, ¢, ay, b3, 1)
consists of edges with lengths 4z + 2y + 2,4z + 4y + 1, (8z+ 8y +2)* =1,
(4x + 8y + 4)* =4z — 1, and (4z + 8y + 3)* = 4x. Thus, the edge set of G
has one edge of each length i where 1 < ¢ < 4r+4y+ 1. It is clear from (4)
that V(G) C [0,8z + 8y + 2]. Hence, the defined labeling is a p-labeling,
and condition (gl) for a v-labeling is satisfied.

Finally, let A = |Ji_, 4; U {a1}, B = Ui_, B: U {b,by,bs,b3}, and C =
{c}. Then, {A,B,C} is a tripartition of V(G). Condition (g2) of a 7-
labeling is clear from (4). Note that ¢ —b = (8z + 8y + 2)—(4z+4y+1) =
4r + 4y + 1, the number of edges of G. Thus, condition (g3) is satisfied,
and we have a v-labeling of G.
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Case 2 r =0 (mod 4) and s =3 (mod 4).
Let G = Cyz43le) Cyy where z > 0 and y > 1 but (z,y) # (0,1). We will
consider two subcases.
Case 2.1 x=0and y > 1.
If y =2 let C3 = (0,3,14,0) and Cs = (1,8,4,10,5,7,6,14,1). It is
easily checked that this is a v-labeling with A = {0,1,4,5,6}, B = {3 =
3}u {7,8,10}, and C = {14}.

Ify >3, let C3 = (0, S,C,O) and C4y =G +Ge + (2y — 2,by,a3,b,0)
where b=4y +1, c=8y+4, by =2y, a1 =2y — 1, by =4y + 5 and

Gl =P(012y+6$2y_6)1
Gy = P(y —3,y,2y + 2).

(Note: In the case when y = 3, the path G is empty. However, this does
not change the proof in any way.) If we proceed as in Case 1, it is easy to
verify that we have a «-labeling of G.

Figure 7: A v-labeling of C3l¢) Ci6.

Case 2.2 z > 0. .

Let Cyzy3 =Gy + Gy + (2$ +1,b1,a1,b,¢,2) and C4y =G3+Gs+ 2z +
2y,ba, 2z + 1) where b, = 2z + 4y + 3, a3 =0,5= 1, ¢ = 4z + 4y + 4,
b =2x+4y+2, and

G, = P(2,2z + 4y + 5,2z - 2),
Gs = P(z + 1,z + 4y + 3,2z),
Gs = P2z + 1,2z + 2y + 3,2y — 2),
Gy =P(2r+y,2c+y+1,2y).

(Note: In the case when z = 1, the path G| is empty, and when y = 1, the
path G3 is empty. However, this does not change the proof in any way.) If
we proceed as in Case 1, it is easy to verify that we have a y-labeling of G.

Figure 8: A v-labeling of Ci; | Cs.

Case 3 r =2 (mod 4) and s =1 (mod 4).

Let G = Cyz4+1 U Cay+2 where z,y > 1. Let Cyzqy1 = G1 + G2+ (22, ¢, 5, ay,
b1,2) and Cyyt2 = G3 + G4+ (2x + 2y, bg, 2z) where ¢ = 4z + 4y + 4, b=1,
a1 =0,b =8z +4y +4, by =2z + 4y + 4, and



G1 = P(2,6z + 4y + 5,2z — 2),
Gy = P(z +1,5z + 4y + 5,2z — 2),
G3 = P(2z,2z + 2y + 4,2y — 2),
Gs=P2x+y—1,2z+y,2y+2).
(Note: In the case when = = 1, the paths G and G5 are empty, and when
y = 1 the path G3 is empty. However, this does not change the proof in

any way.) If we proceed as in Case 1, it is easy to verify that we have a
v-labeling of G.

Figure 9: A ~-labeling of Cy l¢) Cio.

Case 4 r =2 (mod 4) and s =3 (mod 4).
Let G = Cyz42ls)Cyys+3 where z > 1 and y > 0. We will consider three
subcases.

Case 4.1y =0. .
Let Cyz42 = Gy + G2 + (22, bl,q,l,bz,l) and C3 = (2z,b,¢,2z) where
by=6z+4+7a,=0,b=82+10,b=2z+3,c=6z+8, and

G, = P(1,6z + 8,2z),
Go=P(z+1,5z + 9,2z - 2).
(Note: In the case when z = 1, the path G; is empty. However, this does

not change the proof in any way.) If we proceed as in Case 1, it is easy to
verify that we have a ~v-labeling of G.

Figure 10: A +-labeling of Cygle) C3.

Case 4.2y>0and z<y+2. .
Let Cyz42 = G1 +(2%,b1,0) and Cyyi3 = G2 + G3 + G4 + (22 + 2y, b, ¢, 22)
where by =6z +6y +5,b=2z+2y+1, c =6z 4 6y + 6, and

G1 = P(0,4z + 8y + 9,4zx),

G2 = P(2z,6z + 2y + 6,2y — 2),
G3=PQ2z+y—1,4z + 3y + 5,2z - 2),
Gy=PBz+y—2,7z+y—1,-2z+ 2y +4).

(Note: In the case when z = 1, the path G3 is empty; when y = 1, the
path G2 is empty; and when z = y + 2, the path G4 is empty. However,
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Figure 11: A ~-labeling of Cjp o) C11.

this does not change the proof in any way.) If we proceed as in Case 1, it
is easy to verify that we have a ~-labeling of G.

Case 4.3y>0and z > y+2. .
Let Cyzqo = G1+ G2+ (2z,b,,0) and C4y+3 = G3+G4+(2x+2y,b,c,2x)
where by = 6z + 6y +5, b=2z+ 2y + 1, ¢ = 6z + 6y + 6, and

G = P(0,6z + 6y + 5,2z + 2y + 4),

Gy = P(z +y + 2,5z + 9y + 10, 2z — 2y — 4),
G3 = P(2z,6z + 2y + 6,2y — 2),
Gy=PQ2z+y—-1,6z+y+1,2y+2).

Figure 12: A v-labeling of Caz ¢/ C1;.

(Note: In the case when y = 1, the path G3 is empty. However, this
does not change the proof in any way.) If we proceed as in Case 1, it is
easy to verify that we have a «-labeling of G. l

Lemma 10 If a graph G is the one-point union of odd cycles C,. and Cj
where r # s (mod 4), then G has a o-tripartite labeling.

Proof. Let G = Cyz4118JCay+3 where > 1 and y > 0. We will consider
four cases.

Case 1 y=0.
Let Cyz41 = G1 + G2 + (22 — 1,b1,61,0) and C3 = (ay,b2,c2,a1) where
bh=2z+1,c1=4z+4,a1=3z+3,b2=3x+4,cp =5z +5, and

G = P(0,2z + 3,2z),
Gy = P(z,z + 2,2z — 2).

(Note: In the case when z = 1, the path G is empty. However, this does
not change the proof in any way.)

Figure 13: A o-tripartite labeling of Cy l¢) Cs.

First, we show that G, + G2+ (2z—1, b;,¢1,0) is a cycle of length 4z +1.
Note that by P1, the first vertex of G; is 0, and the last is z; and the first
vertex of Gg is z, and the last is 2z —1. For 1 < ¢ < 2, let A; and B; denote



the sets labeled A’ and B’ in P2 corresponding to the path G;. Then using
P2, we compute

Al = [0, :z:], B, = [31‘+4, 4$+3],
Ag =z,2z - 1], By = [2z + 2, 3z].
Thus,
Ay Ay <by<By<a; <by<B; <e; <cs. (5)

Note that V(G,) N V(G2) = {z}; otherwise, G; and G, are vertex-disjoint.
Therefore, G1+Ga+(2z—1, by, ¢1,0) is a cycle of length 4x+1. Furthermore,
V(Caz4+1) N V(C3) = {ba = 3z + 4}; therefore, G is a graph composed of
two cycles that share a single vertex.

Next, let E; denote the set of edge labels in G; for 1 < i < 2. By P3,
we have edge labels

E, =2z + 4,4z + 3],
E; = (3, 2z].

Moreover, the path (2z — 1, b3, ¢;,0) consists of edges with labels 2, 2z + 3,
and 4z + 4; and the path (a;,bs,c2,0;) consists of edges with labels 1,
2z + 1, and 2z + 2. Thus, the edge set of G has one edge of each label i
where 1 < i < 4z + 4. It is clear from (5) that V(G) C [0, 8z + 8]. Hence,
the defined labeling is a o-labeling, and condition (s1) for a o-tripartite
labeling is satisfied.

Now, let A=A4; UA U {al}, B=BUBU {bl,bz}, and C = {C]_,Cz}.
Then, {A, B,C} is a tripartition of V(G). Since a, is only adjacent to by
and ¢z, condition (s2) of a o-tripartite labeling is clear from (5). Note that
|b1 — c1] + |b2 — c2| = (22 + 3) + (2 + 1) = 4z + 4, the number of edges of
G. Thus, condition (s3) is satisfied. Also, a = v + (4z + 4), wherea € A
and v € BUC, is impossible, since by (5) we have

v+ (4dx+4) 2 b +4x+4=6x+5> 3z 4 3 = max A.

Thus, condition (s4) holds.

Finally, suppose b € B and ¢ € C. The equation |[b —¢| = 8z + 8
is impossible since all vertices are in [0,8z + 8] and {0} € A. Likewise,
|b —c¢1| = 4z + 4 is impossible since ¢; =4z +4 and 0 < B < 8z + 4. The
case remains that ¢; — b = 4z + 4, which gives b = = + 1. This contradicts
(8), since £+1 < by. Thus, condition (s5) holds, and we have a o-tripartite
labeling of G.

Case21<y<z.
Let Cyz41 =G1 + G2 + G3 + (4z + 4y + 2, ¢, bl,2x+4y+3) and C4y+3 =
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G4 + G + (2y,b2,¢,a1,b3,1) where ¢ = 4z + dy + 4, by = 4z + 6y + 5,
bo=2y+1,a; =0, bs =4z + 4y + 3, and

Gy = P(2z + 4y + 3,6z + 6y + 6,2y — 2),
G2 = P2z + 5y + 2,4z + Ty + 4, 2z),

G3 = P(3z + 5y + 2,3z + 9y + 3,2z — 2y),
G4 = P(1,2y + 2,2y),
Gs=P(y+1,y+3,2y —2).

(Note: In the case when y = 1, the paths G; and G5 are empty. However,
this does not change the proof in any way.)

Figure 14: A o-tripartite labeling of Cj3le) C11.

First, we show that G, + G2 +G3 + (dz+ 4y +2,¢,b1,2z +4y+ 3) is a
cycle of length 4z + 1, and G4 + G5 + (2y, ba, ¢, a1, b3, 1) is a cycle of length
4y +3. Note that by P1, the first vertex of G, is 2z +4y+ 3, and the last is
2z + 5y + 2; the first vertex of G; is 2z + 5y +2, and the last is 3z + 5y + 2;
the first vertex of G3 is 3z + 5y + 2, and the last is 4z + 4y + 2; the first
vertex of G4 is 1, and the last is ¥ + 1; and the first vertex of Gg is y + 1,
and the last is 2y. For 1 <7 < 5, let A; and B; denote the sets labeled A’
and B’ in P2 corresponding to the path G;. Then using P2, we compute

Ay =[2z+4y+3,2z+5y+2], By=I[6x+Ty+6,6z+8y+4],
Ap=[2z+5y+2,3z+5y+2], By=[5z+Ty+56z+Ty+4],
A3 =3z +5y+2,4z+4y+2], Bz=[{4z+8y+4,5z+Ty+3|,

A= [1sy+1]» By = [3y+3,4y+2],
As = [y +1,2y], Bs = [2y+3,3y +1].
Thus,

a1 < Ag < As<by < Bs < By <A1 <A< A3 <bz<e<b <B3s< Bz < Bi. (6)

Note that V(G1)NV(G2) = {2z+5y+2}, V(G2)NV(G3) = {3z +5y+2},
and V(G4) NV (Gs) = {y + 1}; otherwise, G; and G; are vertex-disjoint for
i # j. Therefore, G1 + G2+ Gz + (4z+4y+2,¢,b1,2z+ 4y +3) is a cycle of
length 4z + 1, and G4 + Gs + (2y, b2, ¢, a1, b3, 1) is a cycle of length 4y + 3.
Furthermore, V(Cyr4+1) N V(Cayt3) = {c = 4z + 4y + 4}; therefore, G is a
graph composed of two cycles that share a single vertex.

Next, let E; denote the set of edge labels in G; for 1 < i < 5. By P3,
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we have edge labels

Ey=[4z+2y+4,4x+4y+1},
E; = 2z + 2y + 3,4z + 2y + 2],
Es =[4y + 2,2z + 2y + 1],

Ey =2y +2,4y+1],

E5 = [3,2y]

Moreover, the path (4z+4y+2, ¢, b1, 2z+4y +3) consists of edges with edge
labels 2, 2y + 1, and 2z + 2y + 2; and the path (2y, bs, ¢, a1, b3, 1) consists
of edges with edge labels 1, 4z + 2y + 3, 4z + 4y + 4, 4z + 4y + 3, and
4z + 4y + 3. Thus, the edge set of G has one edge of each length i where
1 <i<4z+4y+4. It is clear from (6) that V(G) C [0,8z + 8y +8]. Hence,
the defined labeling is a o-labeling, and condition (s1) for a o-tripartite
labeling is satisfied.

Now, let A = J>_, 4; U {a1}, B = U_, B: U {b1,b2,b3}, and C = {c}.
Then, {A, B,C} is a tripartition of V(G). Since all vertices in A; UAsU A3
are only adjacent to vertices in {c,b;} U B3 U By U By, condition (s2) of
a o-tripartite labeling is clear from (6). Note that |b; — ¢| + |bs — ¢| =
(2y + 1) + (4= + 2y + 3) = 4z + 4y + 4, the number of edges of G. Thus,
condition (s3) is satisfied. Also, a = v + (4z + 4y + 4), where a € A and
v € BUC, is impossible, since by (6)

v+(4z+4y+4)>bot+dr+4y+4=4c+6y+5>4x+ 4y +2 = max A.

Thus, condition (s4) holds.

Finally, suppose b € B and ¢ € C. The equation |b — c| = 8z + 8y + 8
is impossible since all vertices are in [0,8z + 8y + 8] and 0 € A. Likewise,
|b—c| = 4z+4y+4 is impossible since ¢ = 4z+4y+4 and 0 < B < 8z+8y+8.
Thus, condition (s5) holds, and we have a o-tripartite labeling of G.

Case 3 z <y < 2z.

Let Cyzy1 = G1 + G2 + (4z + 4y + 2,¢, 51,22 + 4y + 3) and C4y+3 =
G3+ G4+ Gs + (2y,by,¢,01,b3,1) where c =4z + 4y + 4, by = 4 + 6y + 5,
bp=2y+1,a,=0, b3 =4z + 4y + 3, and

G, = P2z + 4y + 3,6z + 6y + 6,2y — 2),
Gy = P(2z + 5y + 2,2z + Yy + 4,4z — 2y),
G3 = P(1,2z + 2y + 3, -2z + 2y),
Gy=P(—z+y+1,—z+3y+2,2z7),
Gs=P(y+1,y+3,2y—2).
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(Note: In the case when y = 1, the paths Gy, G3, and Gj are empty, and
when y = z, the path G35 is empty. However, this does not change the proof
in any way.) If we proceed as in Case 2, it is easy to verify that we have a
o-tripartite labeling of G.

Figure 15: A o-tripartite labeling of Cy l¢) Cs.

Case 4 y > 2z.

Let Capy1 =G1 + (4x+4y+2,c,b1,2x+4y+3) and C4y+3 =G+ Gz +
G4 + Gs + (2y,b2,¢,a;,b3,1) where ¢ = 4z + 4y + 4, by = 4z + 6y + 5,
bo=2y+1,a;=0,bz3=4zx+4y+ 3, and

G, = P2z +4y+3,2z + 8y + 6,4z — 2),
Ga = P(l,4z + 2y + 4, —4z + 2y),

G3 = P(-2z+y+1,3y+3,2z),
Gy=P(—z+y+1,-z+3y+2,2),
Gs=P(y+1,y+3,2y—2).

If we proceed as in Case 2, it is easy to verify that we have a o-tripartite
labeling of G.

Figure 16: A o-tripartite labeling of Cs l¢) C;s.

Lemma 11 If a graph G is the one-point union of C3 and Cy4 or if G is
the one-point union of odd cycles C, and C, where r = s (mod 4) and
(r,8) # (3,3), then G has a p-tripartite labeling.

Proof. 1t is easy to verify that C3|¢J C3 does not admit a p-tripartite label-
ing. If G = C3 ¢ Cy, let C3 = (0,4,13,0) and C4 = (0,1, 8, 3,0). It is easily
checked that this is a p-tripartite labeling with A = {0}, B = {1, 3,4}, and
C = {8,13}.

For the remainder of this proof, assume that G is the one-point union
of odd cycles C, and C, where r = s (mod 4) and (r,s) # (3,3). We will
consider two cases.

Case 1 r=s=1 (mod 4).
Let G = Cyz41le) Cay41 where z > y > 1. We will consider two subcases.

Case 1.1 y=1.
Let C4:z:+1 = Gl + G2 + (2x - 1,b1,01,0) and C5 = (alib21a2sb3162$al)
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where by =2x,¢1 =6z +7,a; =0,by =27+ 4, a3, =2 + 1, b3 = 22 + 3,
¢z =6z +8, and

G, = P(0,6z + 9, 2z),
Gg = P(z,3z + 6,2z — 2).

(Note: In the case when 2 = 1, the path G, is empty. However, this does
not change the proof in any way.)

Figure 17: A p-tripartite labeling of Cy o) Cs.

First, we show that G; + G2+ (221, by, ¢;,0) is a cycle of length 4z +1.
Note that by P1, the first vertex of G; is 0, and the last is z; and the first
vertex of Gz is z, and the last is 2z —1. For 1 < i < 2, let A; and B; denote
the sets labeled A’ and B’ in P2 corresponding to the path G;. Then using
P2, we compute

A; =[0,2], By =[72 4+ 10,8z + 9),
Ag = [z,2z - 1], B, = [4z + 6,52 + 4].
Thus,
a1 SA) SA2<b <ap<bi<by<By<e¢ <cz < By )

Note that V(G1) NV (G,) = {z}; otherwise, G; and G, are vertex-disjoint.
Therefore, G1+G2+(22—1, by, ¢1,0) is a cycle of length 4z+1. Furthermore,
V(Caz+1) N V(Cs) = {a1 = 0}; therefore, G is a graph composed of two
cycles that share a single vertex.

Next, let E; denote the set of edge labels in G; for 1 < < 2. By P3,

we have edge labels

E, = [6z + 10,8z + 9],
E, = [211:+7,4.’L‘+4]

yielding edge lengths

Eif ={8z+13—e:ec E 1} =[4,2z+ 3],

E;={e:e€ Ey} =2z + 7,4z + 4].
Moreover, the path (2z — 1, by, ¢, 0) consists of edges with lengths 1, (4z +
7)* = 4z + 6, and (6z + 7)* = 2z + 6, and the path (a, ¢z, b3, a2, b2,a;)

consists of edges with lengths (6x + 8)* = 2z + 5, 4z + 5, 2, 3, and 2z + 4.
Thus, the edge set of G has one edge of each length i where 1 < i < 4z +6.
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It is clear from (7) that V(G) C {0, 8z + 12]. Hence, the defined labeling is
a p-labeling, and condition (rl) for a p-labeling is satisfied.

Finally, let A = A U AU {al,ag}, B=B,UByU {bl,bz,bg}, and
C = {c1,¢c2}. Then, {4, B,C} is a tripartition of V(G). Condition (r2) of
a p-tripartite labeling is clear from (7). Note that |by — ¢1| + b3 — c2| =
4z + 7) + (4= + 5) = 8z + 12, twice the number of edges of G. Thus
condition (r3) is satisfied. Also, |b—c| =8z+12, wherebe Bandce C,is
impossible since all vertices are in [0,8z + 12} and 0 € A. Thus, condition
(r4) holds, and we have a p-tripartite labeling of G.

Case 1.2 y > 1.

Let Cyz41 = G1 +G2+G3+(2x—1,bl,c1,0) and C4y+1 = G4+(2x+4y—
3, by, a1, 2, b3, a2, by, 22+ 2y) where by = 2z, ¢; = 6z +4y+3, by = 2z +4y,
a1 =0,c0=06z+4y+4,b3=2x+3,a=2z+1, by =2z + 6y — 2, and

G, = P(0,8z + 2y + 8,2y — 2),

Gy, =P(y—1,6z+5y+4,2x — 2y + 2),
G3 = P(z,3z + 4y + 2,2z — 2),

G4 = P(2z + 2y,2z + 2y + 3,4y — 6).

Figure 18: A p-tripartite labeling of Cy l¢) Co.

First, we show that G; + G2+ G3 + (22 — 1, by, 1, 0) is a cycle of length
4z +1, and G4+ (2z+4y — 3, b2, a1, c2, b3, az, by, 22 +2y) is a cycle of length
4y + 1. Note that by P1, the first vertex of G, is 0, and the last is y — 1;
the first vertex of Gs is y — 1, and the last is z; the first vertex of G3 is z,
and the last is 2z — 1; and the first vertex of G4 is 2z + 2y, and the last is
2z + 4y — 3. For 1 < i <4, let A; and B; denote the sets labeled A’ and
B’ in P2 corresponding to the path G;. Then using P2, we compute

Al=[0ay_1]s B1=[8x+3y+8183+4y+6]1
Az = [y -1,z], B; = [Tz + 4y + 6,8z + 3y + 6],
Az = [z,2z — 1), B; = [4r + 4y + 2,5z + 4y),

Ay = [2z + 2y, 2z + 4y — 3], By =[2z+4y+1,2x + 6y —3).
Thus,
a1 <A1 SA2< As<by <az<bs<Ag<by<By<bys<Bs<ci<cz<Ba< B (8)

Note that V(G;) N V(Gz2) = {y — 1} and V(G2) N V(G3) = {z}; oth-
erwise, G; and G; are vertex-disjoint for i # j. Therefore, G, + G2 +
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Gz + (22 — 1,b1,¢,0) is a cycle of length 4= + 1, and G4 + (22 + 4y —
3,b2,a1,¢2,b3,a0,b4,2x + 2y) is a cycle of length 4y + 1. Furthermore,
V(Caz+1) NV (Cays1) = {ay = 0}; therefore, G is a graph composed of two
cycles that share a single vertex.

Next, let E; denote the set of edge labels in G; for 1 < i < 4. By P83,
we have edge labels

E, =8z + 2y + 9,8z + 4y + 6],
E; = [6z 44y + 6,8z + 2y + 7],
E;5 = [2z + 4y + 3,4z + 4y],
Ey= [4!4'.‘1_3]

yielding edge lengths

Ef={8x+8y+5—e:ec By} =[dy—1,6y—4],

E; ={8z+8y+5—e:e€ Ey}=[6y—22z+4y—1],
E3 ={e:e€ E3} =2z +4y + 3,4z + 4y),
Ej={e:ec E;} =[4,4y-3].

Moreover, the path (2z — 1, 5;,¢1,0) consists of edges with lengths 1, (4z +
4y + 3)* = 4z + 4y + 2, and (6z + 4y + 3)* = 2z + 4y + 2, and the path
(2z + 4y — 3,b2,a1,¢2, b3, a2, by, 22 + 2y) consists of edges with lengths 3,
2z+4y, (6z+4y+4)* = 2z+4y+1, 4o +4y+1, 2, 6y—3, and 4y —2. Thus,
the edge set of G has one edge of each length i where 1 < ¢ < 4z + 4y + 2.
It is clear from (8) that V(G) C [0,8z+ 4y +4]. Hence, the defined labeling
is a p-labeling, and condition (rl) for a p-tripartite labeling is satisfied.

Finally, let A = |Ji_, A U {a1,a2}, B = UL, Bi U {b1,b2,b3,b}, and
C = {c1,¢c2}. Then, {A, B,C} is a tripartition of V(G). Condition (r2) of
a p-tripartite labeling is clear from (8). Note that |by — ¢1] + |b3 — c3| =
(4z+4y+3) + (4z + 4y + 1) = 8z + 8y + 4, twice the number of edges of G.
Thus, condition (r3) is satisfied. Also, |b —c| = 8z + 8y + 4, where b € B
and c € C, is impossible since all vertices are in [0,8z + 8y + 4] and 0 € A.
Thus, condition (r4) holds, and we have a p-tripartite labeling of G.

Case 2r=s=3 mod 4.

Let G = Cyz43le)Cayt+3 where y > = > 0 but (z,y) # (0,0). We will
consider three subcases.

Case 2.1 z=0and y > 1.

Let C3 = (a1,b1,¢1,01) and Cyyys = G1 + G2 + (2y — 1,b,, a2, ¢5,b3,0)
where a; =0, b; =4y +3,¢; =8y +10, b =2y +1, a; = 2y, ¢z = 8y +9,
bz =4y + 4, and
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G, = P(0,2y + 4,2y — 2),
G2 =P(y-1,y+2,2).
(Note: In the case when y = 1, the path G; is empty. However, this does

not change the proof in any way.) If we proceed as in Case 1, it is easy to
verify that we have a p-tripartite labeling of G.

Figure 19: A p-tripartite labeling of C3le) C1;.

Case 2.21<z<y<z+2

Let Cyz43 = Gi1 + G2 + (2x,¢1,b1,0) and C4y+3 = G3+ G4+ (2z +
2y,bo,¢9,2z) where ¢y =8z +8y+11, by =4+ 4y +4, b =4 +4y+7,
co =8z + 8y + 12, and

G1 = P(0,2z + 2y + 7,2z + 2y — 4),
Gy =P(z+y—2,z+5y,2z — 2y + 4),
G3 = P(2z,4z + 2,4y — 2x),

G4 = P(z + 2y, x + 2y, 2z).

(Note: In the case when z = y = 1, the path G, are empty. However, this
does not change the proof in any way.) If we proceed as in Case 1, it is
easy to verify that we have a p-tripartite labeling of G.

Figure 20: A p-tripartite labeling of Cj; o) Cy;.

Case 2.3z >1landy>z+2.

Let Cizys = G1 + (2x,cl,b1,0) and C4y+3 = G + Gz + G4 + (2z +
2y,b2,¢2,2z) wherec) =8z +8y+ 11,0y =4z +4y+4, by =4z + 4y + 7,
¢y = 8z + 8y + 12, and

Gy = P(0,4y + 3,47),

Gy = P(2z,4z + 2y + 7,2y — 2z — 4),
Gs =Pz +y—2,3z +y,2y +4),
Gy = P(z + 2y, z + 2y, 22).

(Note: In the case when y = = + 2, the path G, is empty. However, this
does not change the proof in any way.) If we proceed as in Case 1, it is

easy to verify that we have a p-tripartite labeling of G. |
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Figure 21: A p-tripartite labeling of C ¢ Cjo.

Although the graph G = C3eJC3 does not admit a labeling that yields
cyclic G-decompositions of Kjg:41, it is easy to verify that such a cyclic
decomposition does exist. It is well known that there exists a cyclic Cs-
decomposition of Kg¢) for all positive integers ¢. (Such a decomposition
is better known as a cyclic Steiner Triple System of order 6t + 1.) The t
starters in such a decomposition are usually obtained from the partition of
[1,3t] into ¢ triples {a, b, c} such that a+b=cora+b+c=0 (mod 6¢+1).
(This is known as the First Heffter difference problem.) Then the set of all
triples {0,a,a + b} gives the ¢t starter blocks in the triple system. In other
words, the triples {0,a,a + b} give a p-labeling of the graph C:gt). Thus
there exists a cyclic Cg‘)-decomposition of Kgne41 for all positive integers ¢.
Since C3 o) C5 divides C:,Em, there exists a cyclic (Cs lo) C3)-decomposition
of Kj2¢41. We can now state our main theorem.

Theorem 12 If G with n edges is the one-point union of any two cycles,
then there exists a cyclic G-decomposition of Koney1 for all positive inte-
gers t.
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