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Abstract

A set D C V(G) is a dominating set of a graph G if every vertex
of G not in D is adjacent to at least one vertex in D. A minimum
dominating set of G, also called a 4(G)-set, is a dominating set of
G of minimum cardinality. For each vertex v € V(G), we define
the domination value of v to be the number of v(G)-sets to which
v belongs. In this paper, we find the total number of minimum
dominating sets and characterize the domination values for P,0P,

and P00C,.

1 Introduction

Let G = (V(G), E(G)) be a simple, undirected, and nontrivial graph. For
S C V(G), we denote by (S) the subgraph of G induced by S. For a vertex
v € V(G), the open neighborhood of v is the set N(v) = {u | uwv € E(G)},
and the closed neighborhood of v is the set N[v] = N(v) U {v}. For S C
V(G), the open neighborhood of S is the set N(S) = U,esN(v) and the
closed neighborhood of S is the set N[S] = N(S)uU S.

A set D C V(G) is a dominating set if N[D| = V(G), and is a total
dominating set if N(D) = V(G). The domination number of a graph G,
denoted by ¥(G), is the minimum of the cardinalities of all dominating
sets of G. A minimum dominating set of G, also called a v(G)-set, is a
dominating set of G of minimum cardinality. For discussions on domination
(resp. total domination) in graphs, see [1, 2, 6, 9, 10, 17] (resp. see [5,
9, 12]). Slater [18] introduced the notion of the number of dominating
sets of G, which he denoted by HED(G) in honor of Steve Hedetniemi on
the occasion of his 60th birthday; further, Slater used #v(G) to denote
the number of (G)-sets. Following [14, 19], we denote by 7(G) the total
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number of y(G)-sets. For each vertex v € V(G), we define the domination
value of v in G, denoted by DVgz(v), to be the number of y(G)-sets to
which v belongs; we often drop G when ambiguity is not a concern. Clearly,
0 < DVg(v) < 7(G) for any graph G and for any vertex v € V(G). See
(19] for an introductory discussion on domination value in graphs and [14]
for an introductory discussion on total domination value in graphs.

The Cartesian product of two graphs G and H, denoted by GOH, is
the graph with the vertex set V(G) x V(H) such that (u,v) is adjacent
to (u/,v’) if and only if (i) v = v’ and vv' € E(H) or (ii) v = v’ and
uu’ € E(G). For other graph theory terminology, refer to [4].

We denote by P, and C,, the path and the cycle on n vertices, respec-
tively. In [13], Jacobson and Kinch obtained the results on v(P,0F,) for
m = 2,3,4. Later, Hare developed an algorithm to compute v(PrnrOP,)
and was able to find expressions for v(P,0F,) for a number of different
values of m and n (see [8]). Chang and Clark proved the formulas found by
Hare for v(Ps0P,) and y(PsOP,) in {3]. The complexity of determining
v(P,0OP,) is open as of [11]. In [15], KlavZar and Seifter obtained results
on v(Cy,0Cy) for m = 3,4,5.

In section 2, we present relevant results from [19]. In sections 3 and
4, noting v(P,0PF,) # v(P,0OC,) for n = 0 (mod 4), we investigate the
total number of minimum dominating sets and the domination value for
two classes of graphs, P,[1P, and P0C,.

2 Preliminaries and domination value in paths
and cycles

We first recall the following observations.
Observation 2.1. [19] Z DVg(v) = 7(G) - v(G)
veV(G)
Observation 2.2. [19] If there is an isomorphism of graphs carrying a
vertez v in G to a vertez v’ in G', then DVg(v) = DVe (V').
It is well known that y(P,) = 7(Crn) = [%§]. If we let the vertices of the
path P, be labeled 1 through n consecutively, then we have the following

Theorem 2.3. [19] Forn > 2,

1 ifn=0 (mod 3)
T(P,) = { n+312)(13]-1) #n=1 (mod3)
2+ 3] ifn=2 (mod 3).
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For the domination value of a vertex v on P,, by Observation 2.2,

DV(v) = DV(n+1—w) for 1 < v < n. More precisely, we have the
classification results which follow.

Corollary 2.4. [19] Let v € V(Ps;), where k > 1. Then

_ [0 fv=0,1 (mod 3)
DV(v)_{l ifv=2 (mod 3) .

Proposition 2.5. [19] Let v € V(Par41), where k > 1. Write v =3q+r,

where ¢ and r are non-negative integers such that 0 < r < 3. Then, noting
7(Paks1) = 2(k% + 5k + 2), we have

{ 1a(g+3) ifv=0 (mod 3)
DV(v)=< (¢g+1)(k—q+1) ifv=1 (mod 3)

%(k—q)(k—q+3) ifv=2 (mod 3) .

Proposition 2.6. [19] Let v € V(Par42), where k > 0. Write v =3q +r,

where g and r are non-negative integers such that 0 < r < 3. Then, noting
T(Par+2) = k + 2, we have

ifv=1 (mod 3)

0 ifv=0 (mod 3)
DV(v)=< l+g¢
k+1—-q ifv=2 (mod3).

If we let the vertices of the cycle C, be labeled 1 though n cyclically,
then we have the following

Theorem 2.7. [19] Forn > 3,

3 ifn=0 (mod 3)
7(Cr) = { n(l+312]) #fn=1 (mod3)
n ifn=2 (mod 3).

By Theorem 2.7, Observation 2.1, Observation 2.2, and the vertex-
transitivity of C,, we have the following

Corollary 2.8. [19] Let v € V(C,), where n > 3. Then

ifn=1 (mod 3)

1 fn=0 (mod 3)
DV(v) = { 3[310+131)
3 ifn=2 (mod 3).
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3 Total number of minimum dominating sets
and domination value in P,0F,

We consider P,0P, (n > 2) as two copies of P, with vertices labeled
T1,%2,-..,Tn 80d Y1,¥2,...,Yn With only the edges z;y;, for each i (1 <
t < n), between two paths (see Figure 1).

Figure 1: Labeling of vertices of P,00FP,

We first recall the following.
Theorem 3.1. [18] For n > 2, v(P,0P,) = [21].

Lemma 3.2. Let G = P,0P,, where n > 2. If neither 1 nor y; belongs
to a v(G)-set D, then {x2,y2} C D. (Likewise, if neither x, nor y, belongs
to D, then {zpn—1,Yn-1} C D.)

Proof. By definition of a dominating set, either z; or a vertex in N(z,) =
{z2,91} belongs to D. If zy ¢ D and y; € D, then z; € D. Similarly, either
y1 € D or a vertex in N(y;) = {z1,y2} belongsto D. If z; ¢ Dand y; ¢ D,
then y, € D as well. Thus z; ¢ D and y; ¢ D implies {z3,y2} C D. a

Lemma 3.3. Let G = P,0P,, where n > 3. If there exists a v(G)-set
containing no vertez of degree two, thenn =3 orn= 6.

Proof. Suppose that D is a y(G)-set such that {z1,y1,Zn,yn} N D = 0.
Let So = {z2,¥2,Zn—1,Yn-1}. Then, by Lemma 3.2, S C D. Note that
|So| = 2 if and only if n = 3: in this case, v(P,0P3) = 2 and Sy = {2, y2}
is a y(P,0P;)-set. If 4 < n < 5, then [So| = 4 and y(P0OP,) = 3,
and thus So € D. If n = 6, then |Sp| = 4 and v(P,0F;) = 4: in fact,
So = {z2,Y2,Ts5,ys} is a y(P,00Pg)-set. Now, we need to consider n > 7.
Suppose that So C D; we consider two cases.

Case 1. n = 2k, where k > 4: Here, v(P:0Py) = k+ 1. Since
N[So] = {zi,¥i |1 £ i < 3}U{x;,y; | 2k—2 < j < 2k}, the part of P,00P;
not dominated by Sp is a P.00Pak—6. So, k — 3 vertices of D — Sp must
dominate P,00P;_g. But v(P;0Py;_6) = k — 2 by Theorem 3.1, and we
reach a contradiction.
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Case 2. n = 2k + 1, where k > 3: Here, y(P30Ps,41) = k + 1. Since
N[So] = {zi,v: | 1 < i <3}U{zj,y; | 2k — 1 < j < 2k + 1}, the part of
P;0P;;. 41 not dominated by Sy is a Po0OPy;..5. So, k— 3 vertices of D — S
must dominate P,0OPy,_5. But 4(P;0P,,_5) = k — 2 by Theorem 3.1, and
we reach a contradiction.

Thus, we have shown that if Sy € D, then n = 3 or n = 6. O

Next we compute the total number of v(P,00F, )-sets for n > 2.

Theorem 3.4. Forn > 2,

6 ifn=2

3 fn=3
7(P,0OP,)=<¢ 17 ifn=26

2 ifnisoddandn #3

2n+4 ifnisevenandn#2,6.

Proof. Let D be a y(P,0P,)-set for n > 2. Notice that no D contains both
z; and y, or both z, and y,, unless n = 2. We consider two cases.

Case 1. n > 3 is odd: Here, y(P,0P,) = 2. By Lemma 3.3, if
there is a D containing no vertex of degree two then n = 3. Moreover, we
note that {z2,y2} C D if and only if n = 3: If {z2,4} € D and n > 3,
then the part of P,00P, not dominated by {z3,y} is 2 P0P,_3, and 253
vertices of D — {3, y2} must dominate P,00P,_3. But y(P,0P,_3) = 232
by Theorem 3.1, and we reach a contradiction. So, if n > 3, by Lemma
3.2, either z; € D or y; € D. One can easily check that z; € D uniquely
determines a y-set D = {z;,y; | i = 1,5 = 3 (mod 4)}. Similarly, y; € D
uniquely determines a y-set D = {z;,y; | i = 3,5 = 1 (mod 4)}. Thus,
7(P0P,) = 2 for n # 3, and 7(P0P;) = 3 by Lemma 3.3. (See Figure 2
for the three y(P;0OP;)-sets, where the solid black vertices in each P,(1P;
form a y(P,0P;)-set.)

7 T 7

Figure 2: vy-sets for P,00P;

2> 2 is even: Here, v(P20F,) = 3 +1. If n = 2, then
Y(P;0P;) = 2 and 7(P,0P;) = 7(Cs) = (3) = 6. We consider n > 4.
By Lemma 3.3, if there is a D containing no vertex of degree two (i.e.,
{z2,¥2:Tn-1,Yn-1} C D), then n = 6. We consider three subcases.

Case 2. n >
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Subcase 2.1. {z2,y2} C D and {Tn—1,Yn-1} N D = @: Let 7 be the
number of such y(P,00P,)-sets for n > 4. Note that the part of P,0OP,
not dominated by {z2,y2} is a P.OP,_3. So, 71 equals the number of
¥(P0P,_3)-sets with v(P200P,_3) = % —1. One can easily see that 7, =2
when n = 4, 6. Since 71 (P0P,_3) = 2 for n > 8 by Case 1, we have 7, =2
for n > 4.

Subcase 2.2. {z3,y2} N D = 0 and {Tn-1,yn-1} € D: Let 72 be the
number of such y(P0FP, )-sets for n > 4. By Observation 2.2 and Subcase
2.1, we have i, =2 for n > 4.

Subcase 2.8. {z2,y2} € D and {zn-1,yn-1} € D: By Lemma 3.2,
{z1,%1}ND| =1 and |{Zn,yn} N D| = 1. Let D (resp. D’) be such a y-set
of G = P,O0P, (resp. G' = P,0P,+2), where n > 4. And let 73 (resp. 73)
be the number of such ~y-sets of G (resp. G'). We will show that 73 = 2n,
for n > 4, using induction. The base case, n = 4, is easily verified (see
Figure 3). Assume that 73 = 2n for n > 4. If z; € D, then each D extends
to D’ such that D’ = DU{zn42} if yo € D and D’ = DU{yn42} if z, € D;
in addition, there are two additional v(G')-sets which do not come from any
v(G)-sets, i.e., {zi,y; |i=1,7=3 (mod 4) and 1 < 4,5 < n+1}U {zp42}
and {z;,y; |i=1,j =3 (mod 4) and 1 < 4,5 < n+1}U{yn42}. Similarly,
if y, € D, then each D extends to D’ and there are two additional y(G')-sets
which do not come from v(G)-sets. So, 74 =13 +4=2n+4 =2(n + 2).

Now, noting that {z2,y2,Zn—1,Yn-1} € D implies n = 6, combine the
three disjoint casestoget T=T1+ T2 +73 =2+24+2n=2n+4ifn # 2,6
and 7(P0Ps) = (2-6+4)+1=17. ]

See Figure 3 for the collection of y(P;00P;)-sets, where the solid black
vertices in each Po0P, form a y(Po0P;)-set.
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Figure 3: y-sets for P.0P,

As an immediate consequence of Theorem 3.4 for an odd n > 3, we have
the following

Corollary 3.5. Letn > 3 be an odd number.



(i) For each v € V(P,OP;), DV (v) = 1.
(i) For z;,y; € V(P.OP,), where n > 5,
a V[ 1 ifiisodd
DV(z:) = DV (ys) = { 0 ifiis even .
Proposition 3.6. Let n > 2 be an even number.
(i) For each v € V(P,0P,), DV(v) = 3.
(it) For z;,y; € V(P.OP,), wheren >4 andn # 6,

n+2—1 ifiisoddandl <i<n-3
DV(z;)=DV(y;) = 4 fi=2o0ri=n-1 (1)
i+1 ifiisevenandd<i<n.

(i’ii) For z;,y; € V(PzDPﬁ),

DV(z;) = DV(y:) = { '57 g;zi grsi = 6 @)

Proof. Let n > 2 be an even number.

(i) Note that P,00P; 22 C4, 4(Cy4) = 2, and 7(C4) = 6. By Observation
2.1, Observation 2.2, and the vertex-transitivity, DV (v) = 3 for each v €
V(R0PR,).

(ii) For an even n > 4, let D (resp. D’) be a vy-set of G = P,OP, (resp.
G' = P,0P,y2). Since DVg(z;) = DVg(y:) for each i (1 < i < n), it
suffices to compute DVg(z;) for 1 < i < n. We consider two cases.

Case 1. {z1,y1} N D = §: By Lemma 3.2, {z2,92} € D. Denote by
DV'(v) the number of such D’s containing v. Notice that there are two
such y(G)-sets. We will show, by induction, that

2 ifi=2
DVi(z;)=<{ 1 ifi>4andiiseven 3)
0 ifiisodd.

For n = 4 (the base case), the two v-sets are {z2,y2,z4} and {z2,y2,v4},
thus satisfying (3). Assume that (3) holds for G. Let D; and D, be v(G)-
sets, containing both z2 and y», such that z, € D; and y, € Ds. Then
D, extends to D] = D; U {yn+2} and D3 extends to Dy = D U {Zn42},
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where D] and D) are ¥(G')-sets. So, DV, (z;) = DV(x;) for 1 < i < n,
DV}, (znt1) =0, and DV (znt2) = 1. Thus

2 ifi=2
DVl (z;)={ 1 ifi>4andiiseven
0 ifiisodd,

proving (3).

Case 2. x; € D or y; € D: Denote by DV2(v) the number of such D’s
containing v. By Subcase 2.2 and Subcase 2.3 in the proof of Theorem 3.4,
there are 2n + 2 such 4(G)-sets; n + 1 such D’s containing z;, and n +1
such D’s containing y;. We will show, by induction, that

7 ifi=0,2 (mod4)and2<i<n
DVE(z;)={ n+2-i ifi=1,3 (mod4)and1<i<n-3 (4)
4 fi=n-1.

Noting that no «(G)-set contains both z; and y;, we consider two sub-
cases.

Subcase 2.1. 1 € D: Denote by DV?1(v) the number of such D’s con-
taining v. For n = 4 (the base case), one can check that there are five such
y-sets: {z1,Z2,y4}, {T1,¥2,Ta}, {Z1,¥3,Z4a}, {T1,¥3,¥4}, and {71, 23,3}
Let Dy, D3, - ,Dn41 be 4(G)-sets containing 3, where {Zn—-1,¥n-1} C
Dy +1. Then, for 1 < i < n, each D; extends to D} = D;U{zn42} if yn € D;
and D! = D; U{yn+2} if z, € D;, where each D} (1 < i < n) is a v(G’)-set;
Dpyry={ziy;1i=1,7=3 (mod 4) and 1 < i,5 <n—2} U {Tp_1,Yn-1}
does not extend to a y(G’)-set, but there exists a v(G')-set Dy, ,; = {zi,y; |
i=1,7=3 (mod 4) and 1 <%,j < n}U{Zn+1,Yn+1} which does not come
from any v(G)-set. Further, there exist two additional vy(G')-sets which
do not come from any (G)-sets such as D} o = {z;,y; |1 =1, = 3
(mod 4) and 1 < 4,5 < n+1}U {Tn42} and D;, 3 = {z;,y; | i=1,7=3
(mod 4) and 1 £ 4,5 < n+1}U{yn+2}. So, noting that n is even, we have
the following:

DV2(z;) ifi=0,2,3 (mod4)and1<i<n—2

sz;l(zi)= DVt e e .
G (z)+2 ifi=1 (mod4)and1<i<n-2,

DVg‘l(xn_l) —1 ifn=0 (mod4)
DV2 (z,_1)+2 ifn=2 (mod4),

a1 _[3 ifn=0 (mod4)
DVg: (zn+1) = { 1 ifn=2 (mod4),

DVEiNzaoy) = {
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DVgiM(zn) = DVZ'(za), and DV (Zn42) = 3 + 1.

Subcase 2.2. y, € D: Denote by DV22(v) the number of such D’s con-
taining v. For n = 4 (the base case), one can check that there are five such -
sets: {yli y2,$4}, {ylsxz,yfi}; {y1,$3a$4}, {ylaz31 y‘l}’ and {ylax3y ?/3}- Let
I'y, T2, -+ ,Tnt1 be ¥(G)-sets containing y;, where {Tn_1,9n-1} C Cnt1.
Then, for 1 < i < n, each I'; extends to I'; = T'; U {zn42} if ¥, € T; and
I} =T U {ynt2} if zn € I, where each I, (1 < i < n) is a y(G")-set;
Fap1={zs,y; |i=3,j=1(mod4)and 1 <i,j < n- 2}U{zn-1,yn-1}
does not extend to a y(G’)-set, but there exists a v(G')-set T, ., = {z;,y; |
i=3,j=1 (mod 4) and 1 < 4,j < n}U{Zn41,Yn+1} Which does not come
from any 4(G)-set. Further, there exist two additional y(G’)-sets which
do not come from any (G)-sets such as I}, ., = {z;,y; | i =3, =1
(mod4)and 1 £ i,j K n+1}U{Tnt2} and [, 3 = {zs,y; | i=3,5 =1
(mod 4) and 1 <i,j < n+1}U{yn+2}. So, noting that n is even, we have
the following:

DV2*(z)) ifi=0,1,2 (mod4)and1<i<n—2
DVZ3%*(z;)+2 ifi=3 (mod4)and1<i<n-2,

DV2*(zno1)+2 ifn=0 (mod 4)
DV2¥(zp_1)—1 ifn=2 (mod4),
2,2 _ 1 ifn=0 (l’l’lOd 4)
bvg: (x""'l)_{ 3 ifn=2 (modd),

DV3?(zn) = DVE?*(z,), and DVZ (Tny2) = 2 +1.

Next, assume that (4) holds for G. Noting that DV?(v) = DV21(v) +
DV?22(y) and that n is even, by Subcase 2.1 and Subcase 2.2, we have

9 DVE(x:) ifi=0,2 (mod4)and1<i<n-2
DVG/ (xi) = 2 T .
DVg(z;)+2 ifi=1,3 (mod4)and1<i<n-2,

DV&/(zn-1) = DV&(zn-1) + 1, DVE(zn) = DVE(zn), DV (2n41) = 4,
and DVE, (zn+2) = n + 2, proving (4).

Now, noting that DV (v) = DV!(v) + DV?2(v) for v € V(P,[0P,.), where
n > 4 is even and n # 6, combine (3) and (4) to obtain (1), proving ().

DVZ¥(z;) = {

DVZ*(zn_y) = {

(iii) By Theorem 3.4, P,0Ps has an additional y-set {r2,y2,zs,ys5}.
This, together with (1), for z;,y; € V(P.0F;), we obtain
8—17 ifiisoddand1<i<3

DV(z;)=DV(y;)=¢ 5 ifi=20ri=5
i+1 ifiisevenand 4<i <6,

which equals the domination value in (2). a
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4 Total number of minimum dominating sets
and domination value in PUC,

For n > 3, consider P,[0C, as two copies of C, with vertices labeled
T1,Z2,...,Zn and y1,¥2,-..,yn with only the edges z;y;, for each ¢ (1 <
i < n), between two cycles (see Figure 4).

Tn

Yn

0 Y2 Y3

Figure 4: Labeling of vertices of P.00C,

We recall the following result.
Theorem 4.1. [7] For n > 3,

e ifn=0 (mod 4)
Y(P0C,) = { [2£1] ifn#0 (mod 4).

We introduce the following definition which will be used in the proof of
Theorem 4.3.
Definition 4.2. Let G! and G? be disjoint copies of a graph G, and let D
be a y(P,00G)-set. Let (DNV(G')) = U, H}, a disjoint union of connected
components such that |V(H})| < |V(H},)| for 1 <i < my — 1; similarly,
we write (D N V(G?)) = U3 HE. Let a = max(|V(HL )|, [V(HZ,,)|); we
will denote by H, any HI with [V(HI)| = a, for j = 1,2 (1 < i < m, or
1<i < ’Inz).

Example. The black vertices in Figure 5 form a v(P,0C10)-set D,
where (D) contains 2H.

h ey e oo e oo

b =TT

Figure 5: 2H, C (D), where D is a y(P,00C0)-set



Theorem 4.3. Let n > 3. For each v € V(P,0C,,),

(1 ifn=0 (mod 4)
adl ifn=1,3 (mod4)andn #3
DVw)={ (21?2 n=2 (mod4) andn#6
3 ifn=3
\ 17 ifn==6.

Proof. By Observation 2.2 and the vertex-transitivity, DV (v) = DV (z;)
for each v € V(P0OC,). Let D be a y(P,00C,)-set containing z;, where
n 2 3; note that at least a vertex in {2, z3, y1,y2, y3} belongs to D. Noting
that each vertex dominates four vertices, we consider four cases.

Case 1. n = 4k, where k > 1: Since y(P,0C ) = 2k and |V (P,0C)| =
8k, each vertex is dominated by exactly one vertex (i.e., no vertex is doubly
dominated). Thus there is a unique D containing z1, i.e., D = {z;,y; | i =
1,7 =3 (mod 4)}, and hence DV (z;) = 1.

Case 2. n = 4k + 1, where k > 1: Here y(Po0Cyk41) = 2k +1. We
will show that no D contains both z; and a vertex in {y1,y2,z3}. First,
we note that no D contains both z; and y;: if {z;,51} C D, then the
part of Po00Cyx41 not dominated by {z1,1} is a Po0O0Py,_o, and 2k — 1
vertices of D — {z1,¥1} must dominate P,0JPyx_o. But y(Pe0Pyk—2) = 2k
by Theorem 3.1, and we reach a contradiction. Second, we note that no
D contains both x; and ys: if {z1,y2} € D, then the part of Po00Cyk4)
not dominated by {z,y.} is the graph H in Figure 6, and 2k — 1 vertices
of D — {z1,y2} must dominate H. If we let So = {z;,y; | 1 = 0,5 =

P W) o T
l -©

o U Yae  Yakel

—Q
N

Figure 6: H C Po.00Cyx 41

2 (mod 4) and 4 < i,5 < 4k — 2}, then |Sp| = 2(k — 1), Sy dominates
8(k — 1) vertices, the part of H not dominated by S; is a P, and one
vertex of D — (Sp U {z1,¥2}) must dominate P;. But v(P;) = 2, and
we reach a contradiction. (Similarly, no D contains both z; and ysk41.)
Third, no D contains both z; and z3: if {z;,23} C D, then a vertex
in N{y2] = {z2,91,¥2,ys} must belong to D. Since {z1,y1} € D (and
thus {z3,y3} € D by the vertex-transitivity) and {1,492} € D, z2 € D.
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If Ry := {z),z2,2z3} C D, then the part of P,0C,+; not dominated
by Ro, say H;, must be dominated by 2k — 2 vertices in D — Rp. Since
|V (P20Cj4k+1)| = 8k + 2 and |N[Ryp)| = 8, 2k — 2 vertices in D — Ry must
dominate 8k — 6 vertices. But each vertex in P,00C4r41 dominates four
vertices, and we reach a contradiction. (Similarly, no D contains both z;
and z4.) So, we only need to consider D such that (i) {zi,z2} C D
(resp. {z1,Zak+1} € D) or (ii) no vertex in N(z;) is doubly dominated
(ie., {z1,y3} € D and {x1,y4x} € D).

Subcase 2.1. {z;,z2} C D (resp. {z1,Zax+1} € D): The part of
P,00C4x41 not dominated by {z;, z2}, say Hz, must be dominated by 2k—1
vertices in D — {x,,z2}. Since |V (P,0C4k+1)| = 8k+2 and |[N[{z1,z2}]| =
6, 2k — 1 vertices in D — {1, z2} must dominate H; with |V (H;)| = 8k —4,
and thus there exists at most one y-set containing both z; and z; (resp.
z1 and T4g41). Noting that {z;} U {zi,y; | ¢ = 2,7 = 0 (mod 4)} (resp.
{zi,y; | 1= 1,7 = 3 (mod 4)}) is a v-set, there is a unique D containing
both z; and z2 (resp. z; and T4k41).

Subcase 2.2. No vertex in N|[z1] is doubly dominated: Since z; & V(H2),
by Subcase 2.1, there are 2k — 1 slots in which Hs can be placed.

By Subcase 2.1 and Subcase 2.2, we have DV (z;) = 2(1) + (2k - 1) =
2k +1.

Case 3. n = 4k +2, where k > 1: Here y(Pe0Cyk42) = 2k +2. We will
show that no D contains a H, for o > 4. If Ry := {z1,22,23,24} C D, then
the part of P,00C k42 not dominated by R;, say F}, must be dominated by
2k — 2 vertices in D — R;. Since |V(P,0Cyk+2)| = 8k+4 and |N[R,]| = 10,
2k —2 vertices in D — R; must dominate F) with |V (F})| = 8k—6. But each
vertex in Po0JCy+2 dominates four vertices, and we reach a contradiction.
We consider four subcases.

Subcase 3.1. Hz C (D): We denote by DV?*(z;) the number of such
D’s containing ;. We note that the placement of H3 uniquely determines
D: if Ry := {z),23,23} C D, then the part of P,0Cyx+2 not dominated
by R, say F,, must be dominated by 2k — 1 vertices in D — Rp. Since
|V (P.OCuk+2)| = 8k + 4 and |[N[R3]| = 8, 2k — 1 vertices in D — Rz must
dominate F, with |V (F;)| = 8k — 4, and thus there exists at most one ~y-set
containing Rz. Noting that {z;,z2}U{z;,y; | i =3,j=1 (mod 4) and 3 <
1,7 < 4k + 2} is a ~-set, there is a unique D containing Ry. If z, € V(H3),
there are three such D’s, i.e., {z1,%2,23} C D, {Z4k+2,%1,22} C D, and
{zak+1, Zak+2, 21} € D. If 1 & V(H3), there are 2k — 1 slots in which H;3
can be placed. So, DV(z;) =3+ (2k—1) =2k +2.

Subcase 3.2. 2H; C (D): We denote by DV?(z;) the number of such
D’s containing z;. Since each vertex in Hp is doubly dominated, four
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vertices in 2#, are doubly dominated, and hence the placement of 2H,
uniquely determines D. If z; € V(#Hs) (i.e.,, {z1,22} C D or {z1,Tar42} C
D), then there are 2k — 1 available slots to place the other Hs. If z; ¢
V(H2), then there are (2'°2' ') available slots to place 2H,’s. Thus, DV2(z;)

=2(2k - 1) + (3 = (2k - 1)(k + 1).

Subcase 3.3. Ha C (D) and 2Ha € (D): We will show that no such D
exists. Without loss of generality, suppose that {z;,z2} C D. In order for
y3 to be dominated, a vertex in N[ys] = {z3,y2,ys, y4} must be in D. By
the hypothesis, {x,,z2,z3} € D. First, suppose that R3 := {z;,z2,y2} C
D. Then the part of Po00Cy4r 2 not dominated by Rj, say F3, must be
dominated by 2k —1 vertices in D — Rj3. Since |V(P,0Cy42)| = 8k+4 and
|N[R3]| = 7, 2k — 1 vertices in D — R3 must dominate F3 with |V (F3)| =
8k —3. But each vertex in Po00C;k4.2 dominates four vertices, and we reach
a contradiction. Second, suppose that R4 := {z1,z2,y3} C D. Then the
part of Po,00Cyj+2 not dominated by Ry, say Fy, is a graph isomorphic to H
in Figure 6, and 2k —1 vertices of D — R4 must dominate Fy = H, whichisa
contradiction by Case 2. Third, suppose that Rj := {z1,22,y¥4} € D. Then
the part of P,00C4k+2 not dominated by Rj, say Fj, must be dominated by
2k —1 vertices in D — Rg. Since |V (P0C4x42)| = 8k +4 and |[N[R;)| = 10,
2k — 1 vertices in D — Rs must dominate F5 with |V (Fs)| = 8k —~ 6, and
thus there exist two vertices in N[Fg| that are doubly dominated. When
k = 1, one can easily see that ys € D (ie, 2Hy C (D)) or z¢ € D
(i.e., Ha € (D)); both cases contradict to the assumption. So we consider
for £ > 2. Without loss of generality, we may assume that at least one
vertex in N{ys] N N[F5] = {z4,y5} is doubly dominated. In order for z,
to be doubly dominated, zs € D. If {x1,22,ys,25} C D, then the part
of P,00C4k+2 not dominated by {z1,2,y4,2s} is the graph H' in Figure
7, and 2k — 2 vertices of D — {z;,2,Y4, 25} must dominate H'. If we

Z7 Tg . Zak+1
! I ) I l o
Yo v U Vak+l  Yakse2

Figure 7: H' ¢ P,0C 42, where k > 2

let 8" = {xi,y; | i = 1,5 = 3 (mod 4) and 6 < ¢,j < 4k}, then |§'| =
2k — 3, S’ dominates 8k — 12 vertices, the part of H' not dominated by
S’ is a Py, and one vertex of D — (S’ U {z),z3,y4,25}) must dominate
P;. But 4(P4) = 2 and we reach a contradiction. In order for ys to
be doubly dominated, a vertex in {zs,ys,ys} must belong to D. Since
{z1,22,y4,75} € D and {z1,22,94,y5} € D, ys € D. In this case, i..,
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{z1,T2,¥4,¥6} € D, note that z;, zq, and ys are doubly dominated. In
order for z5 to be dominated, a vertex in N{zs] = {z4, zs,Z¢, ys} must be
in D and each case results in at least two additional vertices to be doubly
dominated, which is a contradiction. Thus, there is no v(P;0Cyk42)-set
containing exactly one Ha.

Subcase 3.4. Ha € (D): We denote by DV3(z;) the number of such D’s
containing z;. First, suppose that {z,,ys} C D for some s (1 < s < 4k+2).
If {z1,11} € D, then the part of P,00C4x+2 not dominated by {z1,y:1} is
P,0P,y;._,, and 2k vertices of D — {z;,y1} must dominate P,00P4;_;. By
Theorem 3.4, there exist two such D’s for k # 1 (i.e., n # 6) and there exist
three such D’s for k = 1 (i.e., n = 6). If z; € D and {1, ¥2, Yak+2}ND = @,
then there are 2k available slots in which {z,,y;} € D can be placed for
some s 7 1. Second, suppose that no two adjacent vertices belong to D.
If welet S; = {z;,y; | i =1,j =3 (mod 4) and 1 < i,j < 4k}, then
|S1| = 2k and the part of P,00C4k,2 not dominated by S) is a Py, so
two vertices of D — S; must dominate P;. Since no two adjacent vertices
belong to D, if Sy € D, then {Tak,yak41} C D or {Tak,yars2} S D or
{z4k+1, Yak+2} € D, thus there are two pairs of vertices (not necessarily
disjoint) in D that are at distance two apart. The number of ways of
selecting 2 out of 2k + 2 available slots is (**}%) = (k + 1)(2k + 1). Thus,
DV3(z) = 2+2k+(k+1)(2k+1) = (k+1)(2k+3) if k # 1, and
DV3(z))=11if k=1

Now, noting that DV (z,) = DV(z;) + DV?(z,) + DV3(z1), we have
DV(z1) = (2k+2)? if k# 1, and DV(z) = 17 if k = 1.

Case 4. n = 4k + 3, where k > 0: Here y(P20OCyk43) = 2k + 2.
When k = 0, one can easily check that there are three y-sets containing z;,
ie, {z1,71}, {z1,¥2}, and {z1,y3}. So DV(z;) = 3 for z; € V(P,0C3).
Next, we consider for k > 1. We will show that no D contains both
z; and a vertex in {y1,z2,z3}. First, note that no D contains both z;
and y;: If {z;,11} € D, then the part of Py00C4+3 not dominated by
{z1,y1} is P,0Py, and 2k vertices of D — {1, ¥1} must dominate Py0JPy.
But y(P,0Pys) = 2k + 1 by Theorem 3.1, and we reach a contradic-
tion. Second, note that no D contains both z, and z3: if {z;,z2} C D,
then the part of P;(0Cyk43 not dominated by {zi,z2}, say H*, must
be dominated by 2k vertices. If we let S* = {z;,y; | i = 2,7 = 0
(mod 4) and 4 < i,j < 4k}, then |S*| = 2k — 1 and the part of P,00Cyk+3
not dominated by S*U{z1,z2} is a P,, and one vertex of D—(S*U{z),z2})
must dominate Py. But y(P,;) = 2, and we reach a contradiction. (Simi-
larly, no D contains both z; and z4k+3.) Third, note that no D contains
both z; and z3: if {z1,z3} C D, then a vertex in N{y2] = {z2,¥1,¥2,¥3}
must belong to D. Since {z1,11} € D, {z3,ys} € D, and {z;,22} € D,
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we need to consider {z;,z3,y2} C D: since |V (P0Cyx43)| = 8k + 6 and
[N[{z1,y2,z3}]| = 8, 2k—1 vertices of D—~{z;, 3, y2} must dominate 8k—2
vertices, which is impossible since each vertex in P,00Cy; 3 dominates four
vertices. (Similarly, {z;,Z4x+2} € D.) So, we only need to consider D such
that (i) {z1,92} C D (resp. {z1,yar+3} € D) or (ii) no vertex in N[z;]
is doubly dominated. So suppose that {z;,yo} € D. Then the part of
Py(0C4r43 that are not dominated by {z1,y2}, say H”, must be dominated
by 2k vertices. Since |V (P,0OCyk+3)| = 8k + 6 and |N[{z1,y2}]| = 6, 2k
vertices of D — {z1,y2} must dominate H” with |V (H")| = 8k, and thus
there exists at most one such D. Since {z1,52}U {z;,y; | i = 0,5 = 2
(mod 4) and 3 < 4,5 < 4k + 3} is a y-set, if {x1,y2} C D, then there exists
a unique such D. Similarly, there exists a unique D containing both z; and
Yak+3. 1f no vertex in N{z,] is doubly dominated (i.e, {z1,y3, yar+2} C D),
then there are 2k slots in which a pair of vertices of D at distance two
apart can be placed. Thus, DV(z1) =2+ 2k if k > 1, and DV (z;) = 3 if
k=0. a

As an immediate consequence of Theorem 4.3, Observation 2.1, Obser-
vation 2.2, and the vertex-transitivity of P,00C,,, we have the following.

Corollary 4.4. Forn > 3,

4 ifn=0 (mod 4)

2n fn=1,3 (mod4) andn #3
T(P,0CR) ¢ n(n+2) in=2 (modd) andn#6

9 ifn=3

51 ifn==6.

5 Open Problems

We end this paper with some open problems. One could ask the following
questions.

1. In our terminology, Mynhardt [16] characterized vertices v in a tree T
such that DV (v) = 7(T') or DV (v) = 0. Can we describe vertices satisfying
DV (v) =k for k # 0,7(T)?

2. For e € E(G), can we find the bounds of 7(G — e) in terms of 7(G)?
And, for v € V(G — e), how does DVg_.(v) change in terms of DVg(v)?

3. For w € V(G), can we find the bounds of 7(G —w) in terms of 7(G)?
And, for v € V(G — w), how does DVz_.,(v) change in terms of DVg(v)?

4. For a given graph G, can we characterize subgraphs H C G satisfying
DVy(v) = DVg(v) for each vertex v € V(H)?
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In parallel with the idea of 7(G), the anonymous referee suggested the
following questions.

5. Can we compute the number of ir-sets (maximal irredundant sets of
minimum cardinality), v-sets (minimum dominating sets), «;-sets (min-
imum total dominating sets), i-sets (minimum independent dominating
sets), fo-sets (maximum independent sets), I'-sets (minimal dominating
sets of maximum cardinality), IR-sets (maximum irredundant sets) in a
graph G?7

Acknowledgement. The author thanks Cong X. Kang for suggesting the
notion of domination value, as well as his helpful comments and suggestions.
The author also thanks the referee for bringing to her attention the reference
(18], and other helpful comments and suggestions.
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