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Abstract

In this paper, we obtain a new set of conditions which are neces-
sary for the existence of balanced arrays of strength eight with two
levels by making use of the positive semi-definiteness of the matrix
of moments. We also demonstrate, using illustrative examples, that
the maximum number of constraints derived using these results are
better than those obtained earlier.
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1 Introduction and Preliminaries

For the sake of completeness, we first present some basic concepts and def-
initions concerning balanced arrays (B-arrays). If a is any column vector
of an m-rowed matrix T, then the symbols A(a), P(a), and w(a) denote,
respectively, the number of times ¢ occurs in T', the column vector obtained
by permuting the elements of ¢, and the weight of the column vector o (the
weight of ¢ is the number of non-zero elements in it). It is quite obvious
that w[P(a)] = w(a). In this paper, we confine ourselves to bi-level arrays.

Definition 1. A balanced array (B-array) T with m rows (factors, con-
straints), N columns (runs, treatment-combinations), two symbols (say,
0 and 1), and of strength t is merely a matrix T of size (m x N) with
two elements 0 and 1 such that in every (¢ x N,t < m) submatrix T*
(clearly, there are () such sub-matrices) of T, the following condition
holds: w(a) = w[P(a)] = u: (say), where ¢ is any (¢ x 1) vector of T* with
i1s (0<i<t)init.

Remarks: Clearly, the above definition can be extended to B-arrays with s
symbols. The vector g’ = (o, 41, ..., 4¢) is called the indez set of T, and

clearly N = Z:=o (f)u, In this paper, we will restrict ourselves to arrays
with ¢t = 8.

Definition 2. If y; = u for each ¢, then the B-array is reduced to an
orthogonal array (O-array) with index set . In this case, N = u - 2°.

In this paper, we will restrict ourselves to ¢ = 8.

B-arrays tend to unify numerous combinatorial structures such as bal-
anced incomplete block (BIB) designs, group divisible designs, nested BIB
designs, rectangular designs, etc. B-arrays have been extensively used in
the construction of optimal balanced fractional factorial designs. Different
values of ¢ give rise to factorial designs of different resolutions. For example,
B-arrays with ¢ = 8 give us, under certain conditions, balanced fractional
factorial designs of resolution IX which allow us to estimate all the effects up
to and including four-factor interactions under the assumption that higher-
order interactions are negligible. It is well-known that O-arrays, a special
case of B-arrays, have been extensively used in information and coding the-
ory, in medicine, in quality control in industry, etc. To gain further insight
into the importance of these arrays in statistical design of experiments and
in combinatorics, the interested reader may consult the list of references
(by no means an exhaustive one) at the end of this paper, and also further
references cited therein.

Thus, the existence and construction of these arrays are quite important
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from the point of view of applications in real-life situations as well as to the
study of combinatorial structures. To construct a B-array for an arbitrary
given set of parameters m and u' is a very complex and difficult problem.
In particular, we confine ourselves here to the problem of obtaining the
maximum number of constraints m for a given y’ with ¢ = 8, which is a
non-trivial problem. Such problems for O-arrays and B-arrays have been
addressed, among others, by Bose and Bush [1], Chopra et. al [4, 5, 6, 7,
8], Hedayat et. al [9], Rafter and Seiden [13], Rao [14], Saha et. al [15],
Seiden and Zemach [16], Yamamoto et. al [18], etc.

First of all, we obtain some inequalities involving m and p’ for t = 8.
Given u' (ie. given N), these inequalities only involve m (the unknown
parameter). Clearly, each of these inequalities must be satisfied for m =
8, which serves as a check on the correctness of these inequalities. The
challenging situation arises when m > 9. If any of these inequalities is
contradicted for a certain value of m (say, m = k + 1 where k& > 8), then
the maximum value of m is k. These inequalities are necessary conditions,
but not sufficient, for the existence of B-arrays. We make use of these
inequalities to obtain the maximum value of m for a given p'.

2 New Necessary Conditions for B-arrays
with t =8

The following results can be easily established.

Lemma 1. A B-array T witht = 8, m = 8, and arbitrary ¢, always exists.

Lemma 2. A B-array T with t = 8 is also of lower strength k, where
0<k<8.

Note. It is not difficult to see that, when considered as an array of strength
k, the elements of its index set are linear combinations of the elements
Hos 1, M2y« - -, Hs. Let A(7, k) be the jth element (0 < j < k) of the pa-
rameter vector of 7" when it is considered as an array of strength k, where
A(j, k) in terms of u; is given by

8—k
AG k) =) (8 : k)u,-+,-, where j =0,1,2,...,k, (k<8). (2.1)

=0

From (2.1), it is obvious that A(j,8) = u; (0 < 7 < 8), A(4,0) = N =
A(0,0), and A(8,8) = us.

The next lemma expresses the moments of the weights of the columns
of T as a polynomial function in terms of its parameters m, and in terms
of the elements of the index set u'.
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Lemma 3. Let T be a B-array of sirength eight with parameters m and yu'.
Let z; (0 < j < m) be the number of columns of weight j in T. Then, the
following must hold:

Ly=) z;=N,
J=0
m k
Ly = Z]'kxj = ZarmrA(r’ ), (1Lk<8), (2.2)
=0 r=1

where m, = m(m—-1)(m—-2).--(m—r+1) and a, are known which appear
while deriving > jk:x:j with1 <k <8.

Clearly, Ly, is the moment of order k around zero for the columns of weight
k.

Remark. To facilitate the computations, we provide the values of a, (1 <
r < 8); the elements of the vector (a),as2,...,as) are respectively: (1),
(1,1), (1,3,1), (1,7,6,1), (1,15,25,10,1), (1,31,90,65,15,1), (1,63,301,
350,140, 21,1), and (1, 287,966, 1701, 1050, 266, 28, 1).

Next, we consider the following matrix for ¢ = 2u (even, p being a
positive integer):

Lo=N IL; Ly --- L,
L L L .-« L
Moy = :l :2 :3 . #:-l.1 ’ (2.3)
L, Lyyr Lyy2 -+ Loy

It is a symmetric matrix and is non-negative definite (n.n.d), which can
be seen by observing the non-negative definiteness of the quadratic form
(o +1j+02ji?+- - -+ ayuj*)?z; in variables ag,ay, a, .. . ,a,. We now
state the main results.

Theorem 1. Let z; (0 < j < m) be the number of columns of weight j
in T, where T is a B-array of strength eight with m constraints and having
index set p' = (po, p1,...,ps). For T to exzist, the following inequalities
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must be satisfied:

LoL, > L2, (2.4)
LoLoLy +2L1LsLs > LoLg + L%L‘; + Lg, (2.5)
LoLyLyLg + 2LoL3Ly4Ls + L3L2 + 2L, LoLsLe + 2L, L3 L2
+2L3L3Ls + L3L% + L >
LoLng + LoLgLe + LoLz + L%L.;Ls + 2L1L§L5
+2L,LoLaLs + L3Le + 3L, L2L4. (2.6)

Proof. (Outline). For ¢t = 8, we select u = 4 in (2.3) and we obtain the
following (5 x 5) matrix:

M3= Lz L3 L4 L5 L6

Since M3 is n.n.d., all of its leading principal minors have determinant
greater than or equal to 0. Now, consider the following leading principal
minors:

Lo Ly Ly Lj
Lo L Ly Ly L Ly Ly Ly L4
Ly Ly)’ Li L, L, Ly L3 Ly Ls

Ly Ls La Ls Ly Ls Le

We obtain (2.4), (2.5), and (2.6), respectively, by expanding the determi-
nant of each of the leading principal minors mentioned above. O

Theorem 2. Let z; (0 < j < m) be the number of columns of weight j
in T, where T is a B-array of strength eight with m constraints and having
index set p' = (po, p1, ..., us). ForT to exist, the following inequality must
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3 Further Discussions

In order to check the existence of any B-array with ¢t = 8 for a given m and
', a computer program was prepared involving the results of (2. 4) to (2.7).
If any of these inequalities is contradicted for a given m and y’, then the
B-array does not exist for that m and . In order to obtain the ma.x(m)
for a given y/, we use (2.4) to (2.7), which are merely inequalities in m.
Starting with m = 9, we test each value of m, and if a contradiction occurs
for somem =k+1 (sa.y), then the maximum constraints for such an array
is k. The problem of determining the existence of a B-array with a given
number of runs N is a very difficult and complex problem, since a given N
usually corresponds to a very large number of y' values. Next, we present
some illustrative examples for arrays with ¢ = 8 and compare the present
results with earlier ones found within the mathematical literature.

Ezample 1. Here, we compare the current results with the ones found in
Dios/Chopra [8], and in Chopra/Bsharat [4]. For the arrays with u' =
(1,3,6,4,1,7,5,1,2), (1,3,2,2,1,5,5,2,2) and (1,4,3,3,2,8,4,1,1) found
in Dios/Chopra [8], we have m < 12, m < 10, and m < 9, respec-
tively. However, the above inequalities are improved upon to m < 9,
m < 9, and m < 8 respectively, which are obtained by using (2.7). Here,
m < 8 is the optimal inequality and cannot be further improved upon.
The values of y' considered in Chopra/Bsharat [4] are (1,1,1,1,1,6,1,1,1),
(1,1,3,1,1,6,6,2,2), (111116311),and(111114631)wh1ch
yielded m < 10, m < 12, m < 11, and m < 11, respectively. However,
these inequalities are improved upon (by the use of (2.7)) tom < 8 (opti—
mal value for m is 8), m < 9 (a considerable improvement over m < 12),
m < 8, and m < 10, respectively.

Ezample 2. Next, we compare our current results with the ones found
in Chopra/Low/Dios [7]). For the arrays with u’ = (8,8,8,8,6,8,8,8,8),
(4,4,4,4,4,4,4,4,3), (7,8,8,8,8,8,8,8,8) and (6,5, 6,6,6,5,5,5,5), we get
m < 83, m < 50, no max(m) available, and no max(m) available, respec-
tively. However, by using (2.4) to (2.7), the above inequalities are improved
upon to m < 10, m < 12, m < 15, and m < 21, respectively. Thus, we
find considerable improvement in our current results over those previously
found.

Note. Even though the present results produce considerable improvements
(for the arrays in examples above) over the ones given earlier, we do not
claim that these are uniformly better for every array. The problem of
finding a set of conditions producing the “best” and optimal inequalities
satisfied by the number of constraints m for each B-array with index set
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' is a very difficult and complex problem. Such conditions are not even
available for O-arrays (a subset of B-arrays).
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