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Abstract

Let G be a (p,q)-graph in which the edges are labeled k,k +
1,...,k+ g—1, where k > 0. The vertex sum for a vertex v is the
sum of the labels of the incident edges at v. If the vertex sums are
constant, modulo p, then G is said to be k-edge-magic. In this paper
we investigate some classes of cubic graphs which are k-edge-magic.
We also provide a counterexample to a conjecture that any cubic
graph of order p =2 (mod 4) is k-edge-magic for all k.

1 Introduction

All graphs in this paper are simple graphs with no loops or multiple edges.

Stewart in (23, 24] defined that a graph is supermagic if the edges are
labeled 1,2,3,...,q so that the vertex sums are constant. He showed that
K3, K4, K; are not supermagic and when n =0 (mod 4), K,, is not super-
magic. For n > 5, K, is supermagic if and only if n = 0 (mod 4). For a
generalization of this result, see [11].

Hartsfield and Ringel in [6] provided some classes of supermagic graphs.
Ho and Lee in [7] extended the result of Stewart to regular complete k-
partite graphs. Recently, Shiu, Lam and Cheng in [18] considered a class of
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supermagic graphs which are disjoint union of K3 3. A general construction
of supermagic graphs is considered in [20].

Definition 1. Let G be a (p,g)-graph in which the edges are labeled
k,k+1,...,k+q—1, where £k > 0. The vertex sum S for a vertex v is
the sum of the labels of the incident edges at v. If the vertex sums are
constant, modulo p, then G is said to be k-edge-magic (in short k-EM).

From the definition, it is obvious that if G is supermagic, then G is
1-edge-magic.

Example 1. Figure 1 shows a graph G with 6 vertices and 8 edges which
is 1-edge-magic with different constant sums.

S =0 (mod 6) S =1 (mod 6) S =3 (mod 6) S =5 (mod 6)
Figure 1: The (6, 8)-graph which is 1-EM

Example 2. The following maximal outerplanar graphs with 6 vertices
are l-edge-magic.

Figure 2: The 1-EM maximal outerplanar graphs with 6 vertices

If k = 1, then G is said to be edge-magic. The concept of edge-magic
graphs was introduced by Lee, Seah and Tan in [11]. A necessary condition
for a (p, g)-graph to be edge-magic is g(g + 1) = 0 (mod p). However, this
condition is not sufficient. There are infinitely many connected graphs such
as trees and cycles satisfying this condition that are not edge-magic.
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The Cartesian product of two paths is frequently called the grid graph.
The Cartesian product of two cycles is called the torus graph. It was shown
in [16] that the torus graph C,, x C,, is edge-magic for all m,n > 2.

Lee, Pigg and Cox in [10] showed that C, x K, is edge-magic if and
only if n is odd and greater or equal to 3.

Schaffer and Lee in [16] have shown that if G and H are both odd-order,
regular, edge-graceful graphs, where G is d-regular with m vertices, H is
k-regular with n vertices, and ged(d,n) = ged(k,m) = 1, then G x H is
edge-graceful. In particular, they showed that the torus graph Cs;41 % C2;41
is edge-graceful.

In [9], Kwong and Lee investigated fans, ladder graphs and pagoda
graphs which are all k-EM. They showed that ladder graphs P, x P, are
not k-EM for any k when n is 3, 4 and 5. They conjecture that it is true
for all » > 6. In [14], Lee, Sun and Wen investigated some k-EM complete
bipartite graphs.

Lee, Pigg and Cox in [10] conjectured that every connected simple cubic
graph G with p = 2 (mod 4) is edge-magic. They also showed that the
conjecture is true for prisms and other cubic graphs.

It is natural to extend the conjecture to k-edge-magic as follow:

Conjecture 1.1. Any cubic graph of order p =2 (mod 4) is k-edge-magic
for all k.

In this paper, we investigate several classes of cubic graphs which are
k-edge-magic and show their peculiar behavior. We also provide a coun-
terexample for the conjecture 1.1. For more conjectures and open problems
on edge-magic graphs the reader is referred to [10, 11, 12, 16]. The reader
should see the survey article of Gallian [4] for various labeling problems.

2 General Theory of k-edge-magic Graphs

We list a couple theorems for k-edge-magic graphs here. Even the proof
can easily be found, we write it down for completeness.

Proposition 2.1. A necessary condition for a (p,q)-graph to be k-edge-
magic is g(q + 2k — 1) = 0 (mod p).

Proof. The sum of the labels of all edges is

k+(k+q—1)
q 2 .

Since every edge is counted twice in the vertex sums, the result follows. O
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Proposition 2.2. If a (p, q)-graph G is k-edge-magic then it is (pt + k)-
edge-magic for allt > 0.

Proof. The vertex sum is calculated in modulo p. o

Example 3. Figure 3 demonstrates, for ¥ = 0,1,2,3,4,5, the k-edge-
magic labelings in the complete bipartite graph K3 3. By Lemma 2.2, it is
k-edge-magic for all k.

Figure 3: Complete bipartite graph K(3,3) is k-EM for £k =0,1,...,5

An r-regular graph with p vertices has ¢ = 7F edges. When 7 is odd,
since ¢ is an integer, we know that p must be even. By the above two
propositions, we can quickly rule out some r-regular graphs of a certain
order to be k-edge-magic.

Theorem 2.3. When r is odd, an r-regular graph with order p = 0 (mod 4)
is not k-edge-magic for all k.

Proof. Since p =0 (mod 4), let p = 4s for some positive integer s. Thus,
the number of edges is ¢ = £ = 2rs. Assume that this graph is k-edge-
magic for some k. The necessary condition from Proposition 2.1 requires

(2rs)(2rs+2k—1)=0 (mod 4s).

This implies 2s = 0 (mod 4s) when r is odd, which is impossible. This
completes the proof. o

Therefore, in this article, we only consider the cubic graphs with order
p =2 (mod 4).

The following result was first proved in (8].
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Lemma 2.4. For any r-regular graph, if it is k-edge-magic for some integer
k, then it is k-edge-magic for all integer k.

Proof. If an r-regular graph admits a k-edge-magic labeling, then, by
adding one to every edge label, we create a (k 4 1)-edge-magic labeling
since each vertex is of the same order . Similarly, subtracting one from
every edge label creates a (k — 1)-edge-magic labeling. o

Since a cubic graph has the one-implies-all property as Lemma 2.4, due
to the nature of modulo p operation, we can focus on finding a 1-edge-magic
labeling.

Theorem 2.5. If a cubic graph of order p, G, is k-edge-magic, and p and 3
are coprime, then for any integer S, G is h-edge-magic with sum S, where
h is an integer.

Proof. Since G is cubic and k-edge-magic with sum s modulo p, if we add
1 or subtract 1 to all edge labels, then, obviously, G becomes (k + 1)-edge-
magic with sum (S 4 3) modulo p or (k — 1)-edge-magic with sum (S — 3)
modulo p. Since ged(p, 3) = 1, if we continue this process, we can reach
any integer S as the vertex sum modulo p. ]

3 A Couple Special k-edge-magic Labelings

In this section, we construct a special k-edge-magic labeling of cubic graphs.

Let G be a cubic graph of order p. If G is k-edge-magic, then according
to Theorem 2.3 holds that p = 2 (mod 4). Assume that p = 2n, where
n =1 (mod 2). Then ¢ = 3n.

To find a 1-edge-magic labeling for G, we need to label all 3n edges
by the number {1,2,3,...,3n}. Here we divide these numbers into three
groups: {1,2,3,...,n}, {n+ 1L,n+2,n +3,...,2n} and {2n + 1,2n +
2,2n+3,...,3n}, namely, group I, II and III, respectively. Since we do all
the operation under modulo 2n, the first and third groups are identical.

3.1 Mobius Ladders

The concept of Mébius ladder was introduced by Guy and Harary in [5].
It is a cubic circulant graph with an even number n of vertices, formed
from an n-cycle by adding edges (called "rungs”) connecting opposite pairs
of vertices in the cycle. For the Mébius ladder, namely ML(2n), let the
vertices be denoted, in order, by {a;,a2,...,as,} and the edges are then
(al’a2)1 (az, 0-3), crey (a2‘n’al) and (a'ls an+l): (alyan-{-l)) veey (any a2n)°
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In {17], Sedlégek proved that the Mobius ladder ML(2n) is supermagic
if and only if n is odd. This implies that

Theorem 3.1. The Mébius ladder ML(2n) is k-edge-magic for all k if and
only if n is odd.

But, we give a new proof here by using the labeling introduced in the
beginning of the section to demonstrate how to use this special labeling.
Proof. For convenience, we modulo 2n for the subscript of each vertex a;
so that az, = ag, G2n+1 = @1, and so on.

Now, we label the edge (ag:—1,a9;) by i for all i =1,2,...,n. This occu-
pies all the numbers from group I. We also label the edge (@n42i-1,@n+2i)
by 2n+i for all i = 1,2,...,n. Again, it uses all the number from group
III. Finally, we label the edge (ai,an+i) by 2n—i+1foralli=1,2,3,...,n.
It is easy to see that the numbers of group II are used here.

Because the subscripts are modulo 2n, before we calculate the vertex
sum, we need a couple observations here. First, when i=n+1,n+2,n+
3,...,2n, the edge (ai,an+i) is the same edge as (a;—n,a;). Thus, the la-
bel of the edge (ai,an4i) for i =n+1,n+2,n+3,...,2nis 2n — (i —
n) + 1. Second, since n must be odd, the two vertex subscripts of the
edge (an42i-1,an+2:i) for ¢ = 1,2,...,n are even and odd, respectively.
Moreover, for l'%i < i < n, the edge (an+2i—1,8n+2i) is the same as
(@2i-n—1,a2i—n) With the label 2n 4 .

We can see the sum of the vertex ag, is the sum of three adjacent
edges (agt-1,a2t), (a2t,a2e+1), and (age, @ny2t). Note the second edge has
the subscripts in (even, odd) format. Thus, as discussed in the above
paragraph, the label is

2At+n+1 ., n
<t =
2n ) lfl__t_2
or
2%t—-n+1._n
-<t<
2n + ) 1f2_t n

So, the vertex sum is

(t)+(2n+2—ti-2"—+—1-)+(2n—2t+1)if1_t5

N3

or
(t)+<2n+2t—'2"—+—1)+(2n—(2t—n)+1)if-’2i5t5n.

Both sums can be simplified into 4n + 2t + 2, a constant.
Similarly, by a similar argument, the sum of the vertex ag: 4 is also
4n + 24! + 2, the same constant. This provides ML(2n) a 1-edge-magic
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labeling. By Lemma 2.4, ML(2n) is k-edge-magic for all kif n isodd. O

Example 4. Figure 4 gives edge-magic labelings for ML(6) and ML(10).

Figure 4: Edge-magic labelings for ML(6) and ML(10)

3.2 Cylinder Graphs

In [10], Lee, Pigg and Cox proved that the cylinder graph C,, x P, is edge-
magic. Here we use the idea of the previous labeling to re-prove it again.

Theorem 3.2. The cylinder graph Cp, x P; is a k-edge-magic graph for all
k if and only if n is odd.

Proof. First we name the vertices of the inner cycle a;, as,...,a, and the
vertices of the outer cycle by, by, ...,b,. The edges are (a;,ait1), (b, bi41)
and (a;,b;) for all i = 1,2,...,n. Note here that, for convenience, we
modulo n for the subscript of each vertex a; and b; so that a,, = ag, any; =
a, bn = bo, bn+1 = bl, and so on.

Now, we label the edges (a2;-1,a2:) and (b2;—1,b2;) by ¢ modulo 2n for
all i = 1,2,...,n. This occupies all numbers in both groups I and III. We
also label the edge (a;,b;) by 2n—i+1foralli =1,2,3,...,n, which uses
all numbers in group II.

Note that, when § < ¢ < n, the edge (az;—1,as:) is the same as
(@2i—n—1,02i—n). Also, if 1 < i< 2, the vertex subscripts of (azi—1,a2) is
in the form of (odd, even) and § < i < n, the vertex subscripts are of the
form (even, odd).

We can see the sum of the vertex a; is the sum of three adjacent edges
(a2t-1,@2t), (a2t a2¢41), and (aae, bze), which is

W+n+1

(t) + (T) +@n-2%+1)=2n+"F1

2

+1,
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a constant.

Similarly, by a similar argument, the sum of the vertex as4 is also
2n + %1 + 1, the same constant.

Since the edge (b;, b;41) is labeled the same as the edge (@i, ai4+1) mod-
ulo 2n, the sum of the vertex b; is the same as the vertex a;. This provides
C, x P, a 1-edge-magic labeling. By Lemma 2.4, C, x P, is k-edge-magic
for all k if n is odd. O

Example 5. Figure 5 gives edge-magic labelings for C3 X P, and Cs x P;.

Figure 5: Edge-magic labelings for C3 x P, and Cs x P,

The special labeling we used for Ca.43 X P2 consists of two sub-cycles
of length 2t + 1. Each vertex in one of the sub-cycles has two edges labeled
by numbers in group I and one edge labeled by a number in group II. But,
a vertex in another sub-cycle is adjacent by two edges labeled by numbers
in group III and one edge labeled by a number in group II. We can obtain
a new edge-magic labeling for Cy;4y X P, by switching the labels in group
11 and III as follow:

Theorem 3.3. For the graph Cyi1q X Ps, consider the edge-magic labeling
constructed in the proof of Theorem 3.2. Assume that the labeling has the
verter sum S modulo 4t + 2. If we add 2t + 1 to all edge labels in group II
and subtract 2t + 1 to all edge labels in group III, then we obtain another
1-EM labeling with sum S + (2t + 1) modulo 4t + 2.

Proof. Since every vertex with edges labeled by numbers in group III has
two such kind of edges, when subtract 2¢ + 1 twice into the vertex sum,
under modulo 4t + 2, it is not changed. But, when adding 2t + 1 to the
third edge, it adds 2t 41 into the vertex sum S modulo 4¢4-2. At the same
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time, since the vertex in another sub-cycle contains only one edge labeled
by a number in group II, the vertex sum adds 2t + 1. Therefore, we obtain
another 1-EM labeling with sum S + (2t + 1) modulo 4¢ + 2. o

Example 6. The figure 6 shows the exchange between numbers in group
II and group III for the graph C7 x Ps.

20
5 A2,

13 19 13
)
18 3
1
17 5
s
0
16 ¢P)
14
a@-2a)r1

Figure 6: Exchange between group II and group III

3.3 Construct a New k-EM Graph from a Known One

For a k-edge-magic graph, assume that the edge (a,b) and the edge (c,d)
share the same label modulo p, say I3, ls. It is easy to see that if we remove
these two edges and add two edges (a, d) and (¢, b) and label them arbitrarily
with the label !; and I3, the vertex sum of the new graph remains the same.
Similarly, if we remove edges (a,b) and (c,d) and add two edges (a,c) and
(b,d) and label them with /; and Iy, we also construct a new k-edge-magic
graph. We summarize it as:

Theorem 3.4. For a k-edge-magic graph, if edge (a,b) and the edge (c,d)
share the same label modulo p, then if we remove these two edges and add
two edges (a,d) and (c,b), then the new graph is still k-edge-magic.

We provide a couple examples to demonstrate this construction.

Example 7. Our first example is to turn ML(14) to C7 x P,. We swapped
the edges labeled with 0 and 14 that are the same modulo 14. See Figure 7.

Example 8. The second example is also to start from ML(14). Here we
swap two edges labeled by 1 and 15 that are the same modulo 14. See
Figure 8.
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Figure 8: From ML(14) to a new edge-magic graph

4 Some k-edge-magic Cubic Graphs

While trying to prove the Conjecture 1.1, we find more low-number-of-
vertices examples of k-edge-magic cubic graphs.

Example 9. The Figure 9 shows that the Petersen graph is k-edge-magic
for all k.

Example 10. Figure 10 gives edge-magic labelings for the turtle shell
graphs TS(6) and TS(10).

It is well-known that ML(6) and T'S(6) are the only two cubic graphs
with order 6. We summarize

Corollary 4.1. All the cubic graphs with order 6 are k-edge-magic for all
k.
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Figure 10: Edge-magic labelings for TS(6) and TS(10)

Example 11. There are 19 connected and 2 non-connected cubic graphs of
order 10. When we examine them, 18 out of 19 connected cubic graphs are
k-edge-magic. We have shown ML(10), TS(10), Cs x P,, and the Petersen
graph. In Figures 11, we demonstrate all other 14 k-edge-magic cubic
graphs of order 10 here by giving k-edge-labelings.

5 Counterexamples of the Conjecture
Unfortunately, one of a connected order 10 cubic graph destroys the con-
jecture 1.1.

To demonstrate this counterexample, we need the definition of the

Mod(k)-edge-magic graphs. In (2], Chopra, Dios and Lee define

Definition 2. Let k > 2 and G be a (p, g)-graph in which the edges are



2//N
s Ja
£

Figure 11: 14 order 10 edge-magic cubic graphs

labeled 1,2,...,q. The vertex sum for a vertex v is the sum of the labels
of the incident edges at v. If the vertex sums are constant, mod k, then G
is said to be Mod(k)-edge-magic (in short Mod(k)-EM).

Lemma 5.1. For a graph with order p, if it is 1-edge-magic, then it is
Mod(k)-edge-magic if k divides p.

Proof. An l-edge-magic labeling is under modulo p. If k divides p, then
it is obvious a Mod(k)-edge-magic labeling. O

Immediately from Lemma 2.4 and Lemma 5.1 we obtain:

Lemma 5.2. For a cubic graph with order p, if it is k-edge-magic for some
integer k, then it is Mod(§)-edge-magic.
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Theorem 5.3. The graph in Figure 12 is not Mod(5)-edge-magic.

Figure 12: The counterexample

Proof. We assume that the graph in the Figure 12 is Mod(5)-edge-magic.
Since the graph is cubic, by adding 1 or subtracting 1 to each edge,

the labeling remains Mod(5)-edge-magic with the vertex sum increased or

decreased by 3. Because ged(3,5) = 1, we can obtain a new Mod(5)-edge-

magic labeling with the vertex sum to be any integer. Thus, we can assume

the vertex sum of the Mod(5)-edge-magic to be 0 without loss of generality.
By vy and vy, we have

a+b=l+m (mod 5). (1)
By v; and vg, we have

b+c=k+1 (modS5). (2)
By vs and vg, we have

h+i=f+e (modS5). (3)
From equations (1) and (2), we have a — ¢ =m — k (mod 5), that is,

a+k=c+m (mod>5). (4)

Therefore, by v3 and vg with equation (4), we have g = d (mod 5). By
looking at v4 and v7, we have

h+f=e+i (modS5). (5)

From equations (3) and (5), we have i — f = f —i (mod 5), that is, i = f
(mod 5). Then we have h = e (mod 5). Moreover, by v4 and vg, we have
g =j=d (mod 5). Let us summarize what we found here:

Note here the labels of the edges {a,b, ¢, d, ¢, f, g, k, %, j, k,1,m,n, 0} equals
{1,2,3,4,0,1,2,3,4,0,1,2,3,4,0} under modulo 5.
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i
Figure 13: The counterexample

First, we notice that d has already been used three times. Thus, no
matter which number in the set {0,1,2,3,4} is assigned to d, no other
symbol can be assigned to the same number.

Second, we see that there are two copies of pair {e, f}. After assigning
numbers to them, those numbers can be assigned to others only once.

Since the vertex sum is 0 modulo 5, by the vertex v4, we have d+e+f =0
(mod 5). If d is labeled i, where i € {1,2,3,4}, modulo 5, then e+ f =5—1
(mod 5). The only two solutions for {e, f} in Zs for this equation are
{5—1,0} and {33%, 35*}. Because there are totally four e and f edges, but
we can label the same number at most three times, we cannot label {e, f}
by {55%, 35%}. Therefore, the pair {e, f} must be labeled {5 — i,0}.

From the vertex v3, v4 and vg, we have

a+k=e+f=c+m (mod?5). (6)

Due to the symmetry of the graph, without loss of generality, we can assume
that {a,k} are labeled the same as {e, f}. It forces {c,m} to be labeled
by the same number & 2%, Now, there are only one 52 and three copies of
2-% left for labeling the edges {b,n,o0,!}.
F&'om v1, we have b+ 0+ ¢ =0 (mod 5). This implies that

b+o=—-c (mod5).

But, we can only use just one 23 or three —33* to label b and o. Thus, the
sum of edges b and o must be either 0, or —(5 — i) modulo 5. Both cannot
be equal to —c, where c is either 25* or ——2— This is a contradiction.

Now, we assume that d is labeled 0. By equation (6), we have
e+f=a+k=c+m=1+40r2+3 (mod>5). (7

We might have three different sets, {2,2,3,3}, {1,2,3,4}, or {1,1,4,4},
of numbers modulo 5 left to label edges {b,n,0,{}. Similarly, by the pre-
vious argument, b + o cannot be possibly equal to —c when b,n,0,l €
{2,2,3,3} or {1,1,4,4}.
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When b,n,0,! € {1,2,3,4}, if a = ¢ (mod 5), then by v,0 and v;, we
have n = o (mod 5). Also, if a # ¢ (mod 5), then by v and vy, we have
b=1 (mod 5). Both situations are impossible.

Therefore, the graph in the Figure 12 is not Mod(5)-edge-magic. m]

Corollary 5.4. The cubic graph in Figure 12 is not k-edge-magic for all
k.

Proof. Assume that the cubic graph in Figure 12 is k-edge-magic for some
k. Since ged(3,10) = 1, by Theorem 2.5, it must be h-edge-magic with
sum 0 modulo 10. Thus, by Lemma 5.2, it is Mod(5)-edge-magic. This is
a contradiction. o

By a similar argument or after an exhaustive search using a computer,
two non-connected cubic graphs of order 10 are not k-edge-magic for all k.

Remark. In 2003 (15], Lee, Wang and Wen found that the graph in Fig-
ure 12 is not edge-magic by using computer search. Also, without publishing
his result, Raridan recently used the computer to reconfirm the same result.

We have seen a lot of edge-magic cubic graphs. But, we only find few
counterexamples. Thus, our question now is what the sufficient condition
for a connected cubic graph to be k-edge-magic is or can you classify all
connected edge-magic cubic graphs? Also, is there any non-connected cubic
graph which is k-edge-magic for some k?
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