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Abstract

Let D be a directed graph. An anti-directed cycle in D is a set
of arcs which form a cycle in the underlying graph, but for which
no two consecutive arcs form a directed path in D; this cycle is
called an anti-directed Hamilton cycle if it includes all vertices of D.
Grant [6] first showed that if D has even order n, and each vertex
indegree and outdegree in D is a bit more than 2n/3, then D must
contain an anti-directed Hamilton cycle. More recently, Busch et
al. [1] lowered the lead coefficient, by showing that there must be
an anti-directed Hamilton cycle if all indegrees and outdegrees are
greater than 9n/16, and conjectured that such a cycle must exist
if all indegrees and outdegrees are greater than n/2. We prove that
conjecture holds for all directed graphs of even order less than 20, and
are thus able to extend the above result to show that any digraph
D of even order n will have an anti-directed Hamilton cycle if all
indegrees and outdegrees are greater than 11n/20.

1 Introduction

In what follows, for vertices u,» , we do not allow parallel edges uv in
a graph, or parallel directed arcs ¥ — v in a digraph. For any vertex
v in graph G, we let deg(v) denote the degree of v, and let 6(G) denote
the minimum degree over all vertices of G. Similarly for any vertex v in
digraph D, we let deg™ (v) denote the indegree of v, let deg™(v) denote the
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outdegree of v, and let §(D) denote the minimum of all vertex indegrees
and outdegrees.

Classic theorems by Dirac [4] and Ghouila-Houri [5] give sufficient condi-
tions for a Hamilton cycle in a graph, and a directed Hamilton cycle in a
directed graph.

Theorem 1 (4] If G is a graph of order n > 3 and §(G) = n/2, then G
contains a Hamilton cycle.

Theorem 2 [5] If D is a digraph of order n and 6(D) > n/2, then G
contains a directed Hamilton cycle.

Let D be a directed graph. An anti-directed cycle in D is a set of arcs which
form a cycle in the underlying graph, but for which no two consecutive arcs
form a directed path in D (clearly such a cycle must have even length}); this
cycle is called an anti-directed Hamilton cycle if it includes all vertices of D.
Our focus is on degree bounds similar to the ones in Theorems 1 & 2 that
guarantee the existence of an anti-directed Hamilton cycle in a digraph.

The following theorem by Grant [6] gives a sufficient condition for the ex-
istence of an anti-directed Hamilton cycle in a directed graph D.

Theorem 3 [6] If D is a digraph of even order n and minimum degree
5(D) = 2n/3 + y/n x In(n), then G contains an anti-directed Hamilton

cycle.

In his paper, Grant conjectured that the above theorem can be strengthened
to assert that if D is directed of even order and §(D) > n/2 then D contains
an anti-directed Hamilton cycle, but Cai {2] showed an infinite family of
directed D with (D) = n/2 that do not contain an anti-directed Hamilton
cycle. Nevertheless, the Grant result was improved in Plantholt and Tipnis
[7], and more recently even further in Busch et al. [1].

Theorem 4 [1] If D is a digraph of even order n and 6(D) > 9n/16, then
G contains an anti-directed Hamilton cycle.

Based on some additional evidence, they conjectured that the original
Dirac-style conjecture by Grant is almost true; we refer to this as The
0.5 Conjecture.
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Conjecture 1 [1] The 0.5 Conjecture. If D is a digraph of even order
n and 8(D) > n/2, then G contains an anti-directed Hamilton cycle.

Note that Theorem 4 verifies this Conjecture for n < 14.

We verify the Conjecture above for the cases when n = 16 and n = 18.
Then, using another bound from [1] , we obtain the following improvement
of Theorem 4; this lowers the coefficient from {& (= .5625) to & ( = .55)
in the direction of the conjectured coefficient % .

Theorem 5 If D is a digraph of even order n and (D) > 11n/20, then
G contains an anti-directed Hamilton cycle.

2 Method Outline

Note that in any anti-directed Hamilton cycle of a digraph D, half the
vertices have outdegree 2, and half have indegree 2. Now for any digraph of
even order n, consider any partition of the vertices of D into XUY, and with
|X |=|Y |= n/2; we call this an equipartition of the vertices. Corresponding
to such a partition, let D(X,Y) be the spanning subdigraph of D whose arc
set is the subset of the arcs of D that are directed from a vertex of X into
a vertex of Y. Thus any anti-directed Hamilton cycle in D corresponds
naturally to a unique equipartition of the vertices (by letting X be the
set of vertices with outdegree 2 in the cycle}, and a Hamilton cycle in the
corresponding digraph D(X,Y’). Now let B(X,Y) be the graph obtained
from digraph D(X,Y’) by changing each arc to an undirected edge; we call
B(X,Y) the bipartite equipartition graph corresponding to partition (X,Y).
Because by the structure of D(X,Y’) each cycle in D(X,Y) is necessarily
anti-directed, we make the following observation.

Observation 1 Let D be a digraph of even order. Then D has an anti-
directed Hamilton cycle if and only if it has a corresponding bipartite equipar-
tition graph B(X,Y) that has a Hamilton cycle.

Our approach to the problem is as follows. Given a digraph D, we consider
all corresponding bipartite equipartition graphs, and show that at least one
of them has a Hamilton cycle. To do so, we rely strongly on the following
result by Chvéatal. For a set S of vertices in a graph, we let N(S) denote
the set of neighbors of S.
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Theorem 6 (Chuital’s Theorem) [3] Let B be a bipartite graph with order
n, and partite sets X,Y, where |X |= |Y |= n/2. If B does not have a
Hamilton cycle, then:

If n = 2(mod4), for some k < nf4, there is a set S of k vertices, with
SCX orSCY, such that

deg(v) < k for each vertex v in S, and [N(S) |< k.
If n = 0(mod4), then either:

1. for some k < nf4, there is a set S of k vertices, with S C X or
S CY, such that deg(v) < k for each vertex v € S, and |[N(S) |[< &k
, or

2. there is a set S = Sx U Sy of n/2 vertices, where |Sx |= n/4 and
Sx € X, and |Sy |= n/4 and Sy C Y, such that |[N(Sx) |< n/f4
and |[N(Sy) |< n/4 (and so deg(v) < n/4 for each vertez in S).

We call a set S of vertices that satisfies the conditions in Chvétal’s Theorem
a blocking set of deficient vertices.

Thus, Chvétal’s Theorem shows that if a digraph D has no anti-directed
Hamilton cycle, each of its corresponding equipartite bipartite graphs must
have a certain number of low degree vertices (degree < n/4). Focusing on
those low degree vertices, we say that a vertex in B(X,Y) is a deficient
vertex if its degree is at most n/4. Our approach to showing that a digraph
D has an anti-directed Hamilton cycle is to count the number of deficient
vertices that appear in B(X,Y) as we range over all equipartitions (X,Y)
of the vertices. We show that the number of these is insufficient by the
Chvital Theorem to make each B(X,Y’) non-hamiltonian, so by our earlier
Observation, D has the desired anti-directed Hamilton cycle. We note in
advance that with this argument, if 6(D) > t > n/2, then we may assume
that each vertex has indegree and outdegree exactly t, as this can only
increase the number of times that a vertex has degree k < n/4 for each
such k , as we range over all (X,Y) (this is equivalent to ignoring some
adjacencies in our count, and showing the Hamilton cycle exists without
using those adjacencies).

3 Casesn=16and n=18

Note that Chvétal’s Theorem gives different types of information for defi-
cient vertices for the cases n = 16 and n = 18 because they differ mod 4, so
we will use two different approaches. We begin with the case n = 16. By
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the deficient degree multiset of B(X,Y) we mean s listing, with repeats, of
all vertex degrees that are at most n/4.

Lemma 1 Let D be a digraph of order n = 16, with §(D) > 9. If there is
an equipartition (X,Y) of the vertices of D whose corresponding bipartite
graph B = B(X,Y) has deficient degree multiset {2,2} or {3,3,3}, then D
has an anti-directed Hamilton cycle.

Proof. By the previous comments, in the following argument we may
assume that all indegrees and outdegrees are exactly 9. First suppose that
the deficient degree multiset from B is {2,2}. By Chvatal’s Theorem, we
may assume without loss of generality that the vertices of degree 2, call
them z; , 13, are in X, and their neighbors in B are {y1, y2}. All vertices
other than z; , z; have degree at least 5 in B. Since z; has outdegree 9
in D, 3y — 2 is an arc in D. Let s be any vertex in Y - { 11, 12}. Now
let X* = XU {s} - { i}, and let Y* = YU { »} - {s}, and consider the
corresponding bipartite graph B* = B(X*,Y*). In B*, deg(z;) = 3, deg(s)
2 2, and all other vertices of X* have degree at least 4; among vertices in
Y™, deg(y1) 2 4, deg(12) > 4, deg(z;) = 2, and all other vertex degrees are
at least 5. Thus by Chvédtal’s Theorem, B* has a Hamilton cycle, and so
D has an anti-directed Hamilton cycle as desired.

Now suppose that the deficient degree multiset from B is {3, 3, 3}. By
Chvétal’s Theorem, we may assume without loss of generality that the
vertices of degree 3, call them z;, 2 and 73, are all in X, and their neighbors
in B are { v, y2,y3}. All vertices other than z;, 7, and mzhave degree at
least 5 in B. Since z; has indegree 9 in D, either z; = z or z;y — 73 is
an arc in D; without loss of generality, assume z; — 23 is an arc. Choose
a vertex s in Y —{y1, 2, y3} according to the following rule: if each of y;,
¥2,y3 have degree at least 7 in B, let s be any vertex of Y- { y1, v, 13};
otherwise, assume wlog that in B, deg(ys) < 7, and let s be a vertex from
Y- { v, 42, y3} such that s & y3 is an arc in D (such a vertex must exist

because ys has indegree 9 in D).

Now let X* = XU {s} - { 23}, and let Y* = YU { 23} - {s}, and consider
the corresponding bipartite graph B* = B(X*,Y*). In B*, deg(z) = 4,
deg(z) > 3, d(s) > 2, and all other vertices of X* have degree at least 4;
among vertices in Y*, deg(y1) > 4, deg(1) > 4, deg(ys) > 5, deg(zs) >
2, and all other vertex degrees are at least 5. Thus by Chvatal’s Theorem,
B* has a Hamilton cycle, and so D has an anti-directed Hamilton cycle as
- desired. The result follows.

Theorem 7 Let D be a directed graph of order n = 16. If each vertex
indegree and outdegree is at least 9, then D has an anti-directed Hamilton
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cycle.

Proof. As noted earlier, we may assume that all indegrees and outdegrees
are exactly 9. We consider all (%) = 12,870 equipartitions of the vertices
into (X,Y) , and the corresponding bipartite graph B(X,Y’) of each. Let
np denote the total number of degree 2 vertices as we range through all
partitions, ng the number of degree 3, and n4 the number of degree 4.
Suppose that D does not have an anti-directed Hamilton cycle. Then each
bipartite B(X,Y) is not Hamiltonian, and so each contains at least one
blocking set of vertices. By Chvétal’s Theorem and Lemma 1, this means
each contains one of the following:

1. a set of three deficient vertices , at least two of which are degree 2;

2. a set of four deficient vertices, at least three of which have degree at
most three; or

3. at least eight vertices with degree at most four.

If a graph has more than one set satisfying the conditions above, we choose
a representative set satisfying (1), (2) or (3) arbitrarily. Let a denote the
number of B(X, Y') whose representative set of vertices satisfy condition (1),
b denote the number satisfying condition (2), and ¢ the number satisfying
(3). Then we must have:

2a < mp,
2a+ 3b < np + n3, and
3a+4b+8c< m+ nz + ny.

Maximizing a+ b+ c under these restrictions is a simple linear programming
problem, with solution given by ¢ = 576,b = 5376, and ¢ = 6811, so
a+b+c =12,763. ( Note that this tells us that in order to maximize
the number of blocking sets, we should proceed in a way that is intuitively
obvious: pair the degree 2 vertices together in 576 pairs, make 5376 triples
with the degree 3 vertices, and 6,811 groups of 8 degree 4 vertices.) But
then at most 12,763 equipartion graphs B(X,Y) can have a blocking set.
However, because there are 12,870 possible B(X,Y), some of these must
contain a Hamilton cycle. The result follows. W

We turn our attention now to digraphs of order 18, and minimum outdegree
and indegree at least 10. Again we can assume each outdegree and indegree
is exactly 10, for any increase only lowers the number of deficient vertices
in the corresponding B(X,Y) graphs. The method used for n = 16 can
be extended to this case. However, that argument now gets much more
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complicated with many subcases, in part because of the increase in the
order and degree, but more so because of the different impact of Chvétal’s
Theorem when n is not a multiple of 4. We instead use the following
idea. In our counting arguments, especially when n is not a multiple of 4,
the maximum possible number of deficient bipartite graphs is obtained by
assuming that the deficient vertices group together in the same set, be it X
or Y. We will show that a sizeable number of times, deficient vertices occur
simultaneously in X and Y; thus some deficient vertices are “wasted” when
we apply the Chvital Theorem, and we will be able to show that some of
the bipartite graphs corresponding to equipartitions must be Hamiltonian.

So, let D be a directed graph with no parallel arcs, order 18, and each
outdegree and indegree equal to 10. For any two vertices z, y, we wish to
bound the number of equipartitions (X, Y’) of the vertices for which z € X,
y €Y, and both z and y are deficient (have degree 4 or less) in B(X,Y).
That number will vary, depending on common neighbors of z and y, but
we first examine the possibilities. We partition the 16 vertices other than

z, y into four sets:

P={v |z — vand v— y are both arcs in D }
Q={v|z— visanarc, but v— yis not an arcin D }
R={v|z— visnot an arc, but v & y is an arc in D }

S = { v |neither £ — v nor v — y are arcs in D }

Lemma 2 Let D be a directed graph with order 18, with each outdegree and
indegree equal to 10, let z, y be vertices in D, and suppose T — y is not
an arc in D. Let the 4-tuple (p,q,r,s) denote the cardinalities of the sets
P,Q, R, S respectively described above. Then the number of equipartitions
(X,Y) for which z € X, y €Y, and =z, y are both deficient is given by the
value k in the chart. The 4-tuples 10,0,0,6 and 9,1,1,5 are omitted from
the chart; for these, k = 0.

p:qurs 812)2)4 713}313 6‘!4}472 575)5)1 4!6!6’0
k 420 840 | 1290 | 1270 | 2370

Proof. The numbers above are obtained by straightforward but tedious
calculation (checked by computer). For example, consider the situation
when the 4-tuple is (7,3,3,3). Let us count the number of ways to choose
the remaining 8 vertices for Y, and get both z, y deficient. From the sets
P,Q,R,S, we can choose:

4 from P, 0 from @, 2 from R, 2 from S (z has degree 4, so does y) in
(@) @) () = 315 ways,
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4 from P, 0 from @, 3 from R, 1 from S (z has degree 4, y degree 3) in
35%1x1%3 =105 ways,

3 from P, 1 from Q, 3 from R, 1 from S (z has degree 4, so does y) in 315
ways,

3 from P, 0 from Q, 3 from R, 2 from S (z has degree 3, y degree 4) in
105 ways. Thus the total number of ways this can happen for the 4-tuple
is 840, Other cases are similar. The result follows. W

Lemma 3 Let D be a directed graph with no parallel arcs, order 18, with
each outdegree and indegree equal to 10, and let z, y be vertices in D, and
suppose T — y 18 an arc in D. Let the 4-tuple (p,q,7, 8) denote the cardi-
nalities of the sets P,Q, R, S respectively described above. Then the number
of equipartitions (X,Y) for whichx € X,y €Y, and z,y are both deficient
is given by the value k in the chart. The 4-tuples (9,0,0,7),(8,1,1,8), and
(7,2,2,5) have k =0 and are omitted from the chart.

p,q,'l‘,s 6}313)4 514’4)3 4!5!5!2 3’6.'611 2’71 7!0
k 120 300 540 840 | 1290

Proof. Now each of z, y adds one to its degree in B(X,Y) from the arc
T — y; in order to choose a set Y so that both z and y will be deficient in
B(X,Y), we will need to select 8 remaining vertices for Y, and add at most
3 to each of the degrees of z and y. For example, if the 4-tuple is (4, 5,5, 2),
from the sets P, @, R, S we can choose:

34fr05m 5P,20 from @, 5 from R, 0 from S (z has degree 4, y degree 2) in
(3) (o) (3) (&) = 4 ways,

3 from P, 0 from Q, 4 from R, 1 from S (z has degree 4, y degree 3) in
4 %1 x5 %2 =40 ways,

3 from P, 0 from @, 3 from R, 2 from S (z has degree 4, y degree 4) in
4%1x10*1 =40 ways,

2 from P, 0 from Q, 2 from R, 2 from S (z has degree 3, y degree 4) in
6x1x5x*1=230 ways,

2 from P, O from Q, 5 from R, 1 from S (z has degree 4, y degree 4) in
6%1x1x2=12 ways,

2 from P, 1 from Q, 4 from R, 1 from S (z has degree 4, y degree 4) in
6 x5 % 5% 2 =300 ways,

1 from P, 0 from @, 5 from R, 2 from S (x has degree 2, y degree 4) in
4x1x%1x1=4 ways,
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1 from P, 1 from Q, 5 from R, 1 from § (z has degree 3, y degree 4) in
4x5%1%2 =40 ways,

2 from P, 1 from @, 5 from R, 0 from S (z has degree 4, y degree 3) in
6511 =230 ways,

1 from P, 2 from @, 5 from R, 0 from S (z has degree 4, y degree 4) in
4%x10%1x1 =40 ways,

for a total of 540 ways. Other cases follow similarly. W

Theorem 8 Let D be a directed graph of order n = 18 with no parallel
edges. If each verter indegree and outdegree is at least 10, then D has an
anti-directed Hamilton cycle.

Proof. Again, we may assume that all indegrees and outdegrees are ex-
actly 10. We use the previous results to get a lower bound on the number
of deficient vertex pairs that must appear in the bipartite graphs corre-
sponding to all the equipartitions (X,Y). In particular, fix a vertex z, and
consider the number of times that as we range over all partitions, we have
z € X, with z deficient in B(X,Y), and a deficient vertex ¥ € Y. Because
all vertex outdegrees and indegrees are 10, there are 100 directed paths of
length 2 starting at z. Because z has outdegree = indegree = 10 in D,
there are at least three vertices v such that + — v and v — z are both
arcs. Thus, there are at most 97 directed paths of two arcs starting at =
and ending at a vertex other than z. In Lemmas 2 and 3, for each choice of
the second vertex y , the value p in the 4-tuple (p, g, 7, s) gives the number
of directed paths of length 2 from z to y. Thus, as we range over the 17
possible choices for y, the sum of the values of p in the 4-tuples must be at
least 97.

For the seven vertices covered in Lemma 2, let a4, as,...,aq,a10 denote
the number of times that the p-value is 4,5, ..., 10 respectively. Similarly,
for the ten vertices covered by Lemma 3, let by, bg, ..., bg, by denote the
number of times the p-value is 2,3,...,9 respectively. Then as we range
over all B(X,Y) for which =z € X, the total of number of instances in which
z is deficient and there is y € Y that is also deficient is at least

2370a4+1770a5+1290a6+840a7+420ag+1290by +840b3 +540b4+300b5 +120bg

But we must have 310, a;=7, Y52 bi= 10, and for 2-paths,
10

9
D e+ jbj=097.

=4 =2
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Solving the corresponding linear program, we see that the minimum value
for formula above is given by ag= 7, by = 6, by= 4 , all other values 0.
Thus, the total number of deficient  — y pairs with = € X as we range over
all B(X,Y) is at least 840 * 6 + 540 * 4 = 7,200; the sum then of all such
pairs as we let x range over all 18 vertices is at least 129, 600.

Now the total number of B(X,Y) is ('Y) = 48,620. The number n; of
deficient vertices of degree 7 in these graphs for ¢ = 2, 3,4 is:

ny = 218(*%) (7) = 1620, n3 = 218(%) () = 30,240, and n, = 218() (§) =
158, 760

Now give a deficient vertex of degree d in B(X,Y) “weight” 1/d. Suppose
that each B(X,Y"} does not have a Hamilton cycle. By Chv4tal’s Theorem,
each B(X,Y) must contain a blocking S with total weight at least 1. If
more than one blocking set S satisfies the conditions of Chvétal’s Theorem,
we pick one with a minimum possible number of vertices arbitrarily, and
call it “the” blocking set for B(X,Y’). But from earlier calculations, there
are 129, 600 pairs of deficient vertices appearing in the B(X,Y’) sets. Since
there are 9 vertices in each of X,Y, it is possible that a single deficient
vertex could appear for up to 9 of these in the calculations, but at least
129,600/9 = 14,400 deficient vertices appear in the B(X,Y’) set that are
not in the designated blocking sets.

The total weight of all deficient vertices is 1620 % (1/2) + 30,240 x (1/3) +
158,760 * (1/4) = 50,580. But since 14,400 deficient vertices, each of
weight at least 1/4 are not in the designated blocking sets, the total weight
of the vertices in the blocking sets is at most 50,580 — 14,400/4 = 46, 980.
But recall that the total number of partitions is 48,620, and since each
of these must have a blocking set with total weight at least 1, we reach a
contradiction. The result now follows. [l

Theorem 9 The 0.5 Conjecture is true for all digraphs with order n < 20.

Proof. This follows immediately from Theorems 4, 7and 8. W

4 Main Result

We require one more result, which appeared in [1] .

Theorem 10 For any € > 0, every digraph D of even order
n > In(4)/(eln((1 + €)/(1 — €)))
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contains an anti-directed Hamilton cycle.

We are ready for our main result, stated earlier as Theorem 5.

Theorem 5. Every digraph D with even order n and §(D) > 11n/20
contains an anti-directed Hamilton cycle.

Proof. Applying Theorem 10 with ¢ = 0.05 gives the result whenever
n > 278, so assume n < 276. For a given D, as before we let n; denote
the number of occurrences of a vertex of degree k as we range over all
equipartition bipartite graphs B(X,Y’) corresponding to D (so letting d =
8(D) , we have ni = 2n(g) (:7;_‘1)) . Applying Chvatal’s Theorem, the
total number of blocking sets can be at most
774/2 + n3/3 +...4+ n(,,_z)/4/[(n - 2)/4]

when 7 is congruent to 2(mod4), and a similar sum when n = 0(mod4). A
computer run verifies that for all cases EXCEPT n = 16,6(D) = 9, and
n = 18,4(D) = 10, the number of equipartitions ( n72) exceeds the possible
number of blocking sets, so that there is an anti-directed Hamilton cycle in
D. The two cases with n = 16 and n = 18 are covered in Theorems 8 and
9, so the result follows. W
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