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Abstract

A group divisible design GDD(v = v; + v2 + - - - + vg, 9, k; A1, A2)
is an ordered pair (V,B) where V is a v-set of symbols and B is a
collection of k-subsets (called blocks) of V satisfying the following
properties: the v-set is divided into g groups of sizes vy, vs,...,v;
each pair of symbols from the same group occurs in exactly A; blocks
in B; and each pair of symbols from different groups occurs in exactly
Az blocks in B. In this paper we give necessary conditions on m and n
for the existence of a GDD(v = m+n, 2,3; 1, 2), along with sufficient
conditions for each m < %. Furthermore, we introduce some con-
struction techniques to construct some GDD(v = m + n,2,3,1,2)s
when m > 2, namely, a GDD(v = 9+ 15,2,3;1,2) and a GDD(v =
25+ 33,2,3;1,2).

1 Introduction

A group divisible design GDD(v = vy +va + -+ - + vg, g, k; A1, A2) is an
ordered pair (V, B) where V is a v-set of symbols and B is a collection of
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k-subsets (called blocks) of V satisfying the following properties: the v-set
is divided into g groups of sizes vy, v2, ..., v,; each pair of symbols from the
same group occurs in exactly A; blocks in B; and each pair of symbols from
different groups occurs in exactly A2 blocks in B. Symbols occurring in
the same group are known to statisticians as first associates, and symbols
occurring in different groups are called second associates. The existence of
such GDDs has been of interest over the years, going back to at least the
work of Bose and Shimamoto in 1952 who began classifying such designs
(12]. More recently, much work has been done on the existence of such
designs when A; = 0 (see [2] for a summary).

Most interestingly, if the number of groups is less than the block size
then the construction of such GDDs is notoriously difficult. For & = 3 this
existence problem was completely solved by Sarvate, Fu and Rodger (4, 5]
in the case where all groups have the same size. In this paper we focus
on an existence of a GDD(v = m + n,2,3;1,2) for any m and n. Since
we are dealing with GDDs with two groups and block size 3, we will use
GDD(m, n; A1, A2) for GDD(v = m + n,2,3; A1, A2) from now on, and we
refer to the blocks as triples. Punnim and Sarvate have written the first
draft in this direction and later became part of [1]. In particular they have
completely determined all pairs of integers (n, A) for which a GDD(1,n;1, )
exists. Other work on the existence problem of a GDD(m, n; A1, Ag) for
possible m,n,A; and A; includes work on a GDD(m,n;A,1) [11] and a
GDD(m,n; A,2) when A # 1 [14]. In this paper we investigate the existence
of a GDD(m, n; A, 2) for the remaining case A = 1. The sufficient conditions
for its existence seem to be complicated while the necessary conditions can
be easily obtained by describing it graphically as follows.

Let AK, denote the graph on v vertices in which each pair of vertices
is joined by X edges. Let G; and G be graphs. The graph G; Vv, G2 is
formed from the union of G; and G2 by joining each vertex in G; to each
vertex in Gy with A edges. A G-decomposition of a graph H is a partition
of the edges of H such that each element of the partition induces a copy of
G. Thus the existence of a GDD(m, n; A1, A2) is easily seen to be equivalent
to the existence of a K3-decomposition of A\ Ky, Va, A1Kn. In particular
the existence of a GDD(m,n;1,2) is equivalent to a K3-decomposition of
Km Vo K.

2 Necessary Conditions

Let (V = V1UV;, B) be a GDD(m, n; A1, A2) where V) is an m-set and V;
is an n-set. Then there exists a K3-decomposition of A} Ky, Vi, A1 K, where
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V(Km) = Vi and V(K,) = V5. It is easy to see that the graph M Ky, V),
MK, is of order m + n and size A1 () + A1(3) + Aemn. Furthermore, the
graph contains m vertices of degree A\;(m—1)+Ayn and n vertices of degree
A1(n — 1) 4+ Agm. Triples in B can be partitioned into sets B, B2, By, and
By, in a natural way, namely

B, is the set of triples consisting of three elements from ;.
B, is the set of triples consisting of three elements from V.

B2 is the set of triples consisting of one element from V; and two elements
from V5.

By, is the set of triples consisting of one element from V5 and two elements
from V5.

Put t; = IBll, ty = Ile, ti12 = |312', and t3; = |321|. We obtain the
following relations.

L b=B| = }[M(75) + A1 (3) + Aemn), that is, 6 | Ay [m(m — 1) + n(n —
1)] + 2Agmn.

2. 11 = 3[M(m = 1) + don] and 12 = I[A(n — 1) + Aom)], that is,
2| A1(m —1) + Aen and 2 | A\;(n — 1) + Aom, where r; represents the
number of blocks in B containing any fixed element of V; and r; the
number of blocks in B containing any fixed element of V5.

3. 31+t = )\1(’;), g +tin=X\ (g) and 215 + 2t5; = Agmn.
4. i +ta+tia+ty =b= %[Al[m(m — 1) + n(n — 1)] + 2Aamn].

In particular if A; = 1 and A; = 2, then we obtain the following neces-
sary conditions.

Theorem 2.1. Let m and n be positive integers. If there exists a
GDD(m,n;1,2) then there exist non-negative integers h and k such that
(m,n) € {(6k +1,6h + 3), (6k + 3,6h + 1), (6k + 3,6k + 3)}.

Proof. Since2 | m—1+42n,2 |n—14+2mand 6 | [m(m—1)+n(n—1)]+
4mn, we have that both m and n must be odd satisfying m(m —1) +n(n—
1) + 4mn = 0(mod 6). Three possible cases are verified. If m = 1(mod 6),
then, n(n — 1) + 4n = 0(mod 6); thus n = 3(mod 6). If m = 3(mod 6),
then n(n — 1) = 0(mod 6); thus n = 1,3(mod 6). Lastly, if m = 5(mod 6),
then 20 + n(n — 1) + 20n = n? + n + 2 = 0(mod 6); so, there is no n
satisfying the congruence. Therefore, the only possible values of m and n
are (m,n) € {(6k + 1,6k + 3), (6k + 3,6h + 1), (6k + 3,6h + 3)}. u
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3 Sufficient Conditions

It can be noted from the necessary conditions that GDD(n, n; 1, 2) does
not exist. Suppose for the remainder of this paper that m < n. In Section
3.1 we prove the existence of a GDD(m,n;1,2) when m < Z. In Sections
3.2 and 3.3 we construct two GDD(m, n;1,2)s for which 3 < m < n. This
can appears to be a more complicated problem.

A GDD(m,n;1,2) is said to be gregarious if each triple intersects each
group. Thus a gregarious GDD(m,n;1,2) is a GDD(m,n;1,2) in which
t; = ta = 0. A necessary condition for an existence of such designs is
that (n — m)? = n 4+ m. This simple necessary condition was proved to
be sufficient in [3]. If t; + ¢z = 1, necessary conditions lead to m = (4t +
1)(2t + 3) and n = (2¢ + 1)(4t + 7) for a non-negative integer ¢, in which
the first two pairs are (3,7) and (25, 33). Similarly, if t; + 2 = 2, we have
m = (2t + 1)(4t + 9) and n = (4t + 3)(2t + 5) for a non-negative integer ¢
with the first pair (9,15). Since (m,n) = (3,7) satisfies m < 3, the first
nontrivial cases for t; +t; = 1 and ¢; + t2 = 2 are GDD(25, 33;1,2) and
GDD(9, 15; 1, 2), respectively. We construct these two GDDs using a graph
labeling and latin squares.

3.1 GDD(m,n,1,2) when m < %

When A} = A; =1, a GDD(m,n;1,1) is a Steiner triple system and is
denoted by STS(v) where v = m + n. Let (V, B) be an STS(v). Then the
number of triples b = |B| = v(v — 1)/6. A parallel class in an STS(v) is a
set of disjoint triples whose union is the set V. A parallel class contains v/3
triples, and hence an STS(v) having a parallel class can exist only when
v = 3 (mod 6). A Kirkman triple system, denoted by KTS(v) is an STS(v),
namely (V, B), with the set B can be partitioned into parallel classes. Note
that there are exactly (v — 1)/2 parallel classes for a KTS(v). Here is a
well-known result, also see [9].

Theorem 3.1. Let v be a positive integer.

1. An STS(v) exists if and only if v=1 or 3(mod 6).
2. A KTS(v) ezists if and only if v = 3(mod 6).

For any integer v, a difference triple is a subset of three distinct ele-
ments {z,y,2} of {1,2,...,v — 1} such that £ + y = +2z(mod v), and its
corresponding base block is the triple {0,z,z + y}. In 1896, Heffter [7]
posted a problem called Heffter’s Difference Problem and it was solved by
Peltesohn in 1939 [10}, namely:
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o The sets {1,2,...,% = 3k} and {1,2,.. vl =3k +1}\ {2 =
2k + 1} can be pa.rtltloned into dlﬂ'erence tnples ifv==6k+1 and
v = 6k + 3 respectively, except for v = 9.

Let (S, 7) be an STS. An automorphism of (S, T) is a bijection @ : § —
S such that ¢t = {z,y,z} € T if and only if ta = {za,ya,za} € 7. An
STS(v) is cyclic if it has an automorphism that is a permutation consisting
of a single cycle of length v. Let V = {0,1,2,...,v — 1} and D(v) be a
set of difference triples that are solution to Heffter’s Difference Problem.
Consider the collection of base blocks obtained from the difference triples
in D(v). For v = 6k + 1, there are exactly k base blocks By, Bs,..., B;.
Let B; be the set of 6k + 1 blocks obtained from the base block B;. Thus
(V,B), where B = \JX_, B;, forms an STS(6k + 1). Note that for each
i=1,2,...,k, B; contains 6k + 1 blocks and for j = 0,1,...,v — 1, there
are exactly three blocks in B; containing j. The result is summa.rized in
the following theorem, see details in [9].

Theorem 3.2.  For all v = 1(mod 6), there ezists a cyclic STS(v).

Example 3.3. This example is included to illustrate the use of difference
triples to construct cyclic STSs and will also be used in the construction
of a GDD in Example 3.7. For v = 13, the set {1,2,...,6} can be par-
titioned into difference triples {1, 3,4} and {2, 5,6}, and its corresponding
base blocks are B, = {0,1,4} and B; = {0,2,7}. This yields

B, = {{0,1,4},{1,2,5},{2,3,6}, {3,4,7},{4,5,8}, {5,6,9}, {6,7, 10},
{7,8,11},{8,9,12}, {9, 10,0}, {10,11,1}, {12,11,2}, {12,0,3}}
and

By = {{0,2,7},{1,3,8},{2,4,9}, {3,5,10},{4,6,11},{5,7,12},
{6,8,0}, {7,9,1}, {8,10,2}, {9, 11,3}, {10,12, 4}, {12,0,5},

Hence, ({0,1,...,12}, By U By) forms an STS(13). m}

The following notations will be used for our constructions.
1. Let {z,y, z} be a triple and a & {z,v, z} a symbol. Then a * {z,y, z}

will produce three triples {e, z,v}, {a,z, 2}, {a,y, z}. Similarly if T is
a set of triples from X and a € X, then a = T is defined as

axT={axT:TeT}.

2. Let (z,y,2) be an ordered triple and let a, b and ¢ be three distinct
symbols none of which is in {z,y,2}. Then < a,b,c > x(z,y, 2) will
produce three triples {a,z,y}, {b,z, 2}, {¢,y,2}. Similarly if T is a
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set of ordered triples from X and a,b,¢c ¢ X are distinct symbols,
then < a,b,¢ > *T is defined as

<a,be>+T ={<a,bc>+T:TeT}.

Now we are ready to show that necessary conditions for the existence
of a GDD(m,n;1,2) with m < % are sufficient.

Lemma 3.4. Ifn = 3(mod 6), m =1,3(mod 6) and m < %, then there
ezists a GDD(m,n;1,2).

‘Proof Let V3 and V2 be an m-set and n-set, respectively. Since n =
3(mod 6), there exists a KTS(n). Say n = 6h+3 and V} = {a1,02,...,am}.
Let (V,,B’) be a KTS(n) with parallel classes Py, Py, ..., Pans1. Put

m
B' = U(“i *Pi)U Pny1 U...UPapyr.

i=1
Furthermore, since m = 1, 3(mod 6), there exists an STS(m). Let (V4, B")

be an STS(m). Hence, setting B = B” U B"” yields a GDD(m,n;1,2) as
desired. m]

Example 3.5. To construct a GDD(3,9;1,2), let V} = {z,y,2z} and
Vo = {0,1,...,8}. Then B' = U?=1 P; is a KTS(9) where parallel classes
P; are as follows:

Pr= {{0,1,2},{3,4,5},{6,7,8}}
P2 = {{0,3,6},{1,4,7},{2,5,8}}
Ps= {{0,4,8},{2,3,7},{1,5,6}}
Pa= {{0,5,7},{1,3,8},{2,4,6}}

Now, put B = (z * P1) U (y * P2) U (z * P3) U P,. Explicitly, B” =
{{=,0,1},{=z,0, 2}, {=,1, 2}, {=, 3,4}, {=, 3,5}, {=, 4,5}, {=, 6, 7}, {z, 6,8}, {z, 7,8},
{%,0,3},{%,0,6},{v,3,6}, {v, 1,4}, {», 1,7}, {%, 4,7}, {v, 2,5}, {9, 2,8}, {v,5,8},
{z,0,4},{z,0,8},{=,4,8},{22,3},{2,2,7},{2,3,7}, {2, 1,5}, {2, 1,6}, {=, 5,6},
{0,5,7},{1,3,8},{2,4,6}}.

Now B = {z,y,z} is an STS(3). Hence, B = B” U B" forms a GDD(3,9;1,2)
as in Lemma 3.4. O

Lemma 3.6. Ifn = 1(mod 6), m = 3(mod 6) and m < %, then there
exists a GDD(m,n;1,2).

Proof Let V} and V- be an m-set and n-set, respectively. Say n = 6h+1
and V1 = {aq,ai2,ai3 | i =1,2,...,2}. Since n = 1(mod 6), we have a

122



cyclic STS(n). Let B;, Bs,..., B be base blocks of V3. Note that for our
construction, we fix the order of elements in each base block. Let B; be
the set of 6k + 1 ordered triples obtained from the ordered based block B;,
namely, if B; = (b1, b, b3) then B; = {(b1+3j,b2+3,b3+5)|5 = 1,...,6h+1}
where the adding modulo n. Since m < 2, we have Z < h. Put

m

k)
B*= U(< ai1, @52, a3 > *B;) UB!;..H U...UB;.

=1

Furthermore, since m = 3(mod 6), there exists an STS(m). Let (V},8’) be
an STS(m). Hence, setting B = B'UB* yields a GDD(m, n; 1, 2) as desired.
]

Example 3.7.  To construct a GDD(3,13; 1, 2), we use V} = {z,y,2} and
Vo = {0,1,...,12}. Base blocks B; and B,, together with the set of blocks
B, and B, are obtained in Example 3.3. Put B* = (< z,y,z > *8B;)UB,. To
spell thisout, < z,y,z > *B; = {{z,0,1}, {y,0,4},{z,1,4},{=, 1,2}, {v, 1,5},
{21 2) 5}! {IE, 2s 3}’ {y, 21 6}7 {Z, 3, 6}, {:L', 31 4}: {yy 3, 7}; {Z, 45 7}a {:B, 4) 5}’
{,4,8},{2,5,8},..., {z, 12,0}, {v, 12,3}, {z,0,3}}.

Furthermore, B’ = {{z,y,z}} simply gives us an STS(3). Hence, B =
B' U B* yields a GDD(3,13;1, 2). m]

Theorem 3.8.  Let m and n be positive integers such that m < %. There
exists a GDD(m,n;1,2) if and only if there exist non-negative integers h
and k such that (m,n) € {(6k+1,6h+3),(6k+3,6h+1), (6k+3,6h+3)}.

Proof It follows from Theorem 2.1, Lemma 3.4 and Lemma 3.6. 0

3.2 GDD(9,15;1,2)

Given X = {v1,vs,...,v,} & set of n vertices, both notations K, (X)
and K, (v1,...,vs) stand for the complete graph on the vertex set X. Now
let X = {z0,z1,...,28} and Y = {0,...,8} U {a,b,c,d,e, f}. Consider
Ko(X)V2K15(Y). Since ty+to = 2, there are only two triples from the same
group. We give a design such that By = @ and By = {{a,b,¢}, {d,¢, f}}.
Other triples must be in By or By;. We first construct triples in By2 which
correspond to an edge in K;5(Y) — Ka(a, b,c) — K3(d, e, f) with a vertex in
X. To do that, we decompose K;5(Y) — Ka(a,b,c) — K3(d, e, f) into nine
subgraphs H; each having degree sequence 1827,

For ¢ = 0,...,8, consider F; a subgraph of Ki5(Y) — Ks(a,b,c) —
K3(d, e, f) as in Figure 1. Note that vertices labeled by integers modulo 8.
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64+ 06— C
¢ 1+

T+i 0——2 4
341

841 6&——e ¢

——b 24

Figure 1: F;, a subgraph of K15(Y) — K3(a, b,c) — K3(d, e, f).

For i = 0,1,...8, we create each subgraph H; by adding a single edge
to Fj; that is H; = F; + e; where

eo=cf e =be ex=cd
e3=ad e4=bf es=ae
es=af er=bd eg=ce

Then H; has 15 vertices with the degree sequence 1827, however, note that
not all the H;s are isomorphic. It can be directly verified that K;5(Y) —
K3(a,b,c) — K3(d,e, f) is decomposed into {Hp, Hi,...,Hs}. Each edge
uv in H; gives rise to the triple {z;,u,v}. Hence,

Bia = {{x;,u,v}|uv € E(H-,),'L =0,... ,8}

The vertex z; must meet vertices in K;5(Y) twice, however, there are
8 vertices of degree one in each H;. Those vertices must meet z; again in
Bs1. The following symmetric partial Latin square of order 9 with the it
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row contains all elements of degree one in H;.

D |zolz1 x| T3 |Xa |25 | T | T7 | x8
To 76| 8|eld|5|alé

zy [ 7 8lc|O0|f|d]l6]a
2| b | 8 Ojlalllel|f]T7
z3| 8| ¢ | O 1|62 ]elf
zs|l e |0 fall 2| c|3]|d
zs|d|l f|l1]b] 2 31cl| 4

6 | 5| d|e|2]|c| 3 4| b

zy|a |6 | fle|3|c]|4 5

zg | 6 |a | 7| f|d]| 4| b5

This symmetric partial Latin square yields the triangles
Boy = {{zi,zj,7: ®z;}0 < 4,5 < 8}

In conclusion, we have that (XUY, B,UByUB,oUBs, ) is 2 GDD(9,15;1,2).
Hence, the next theorem records our desired result.

Theorem 3.9.  There exists a GDD(9,15:1,2).

3.3 GDD(25,33;1,2)

Here we let X = {zo,z1,...,7z24} and Y = {0,...,24} U {a,b,c} U
{21,...,25}. Note that |[X| = 25 and |Y| = 33. Consider Ka5(X)V2K33(Y).
Since t; 4+ t2 = 1, we give a design for ¢; = 0 and ¢t = 1. Let {a,b,c} be
the only triple from the same group. That is, B, =0 and Bz = {{a,b,c}}.
Other triples must be constructed from an edge in Ka5(X) with a vertex
in K33(Y) or an edge in K33(Y) — K3(a, b, c) with a vertex in Ko5(X).

A p-labeling of a graph is an injection from the vertices of the graph
with ¢ edges to the set {0,1,...,2¢}, where if the edge labels induced by
the absolute value of the difference of the vertex labels are {a1,as,...,a,},
then a; =i or @; = 2¢+1 —i. Rosa introduced this kind of labeling in 1967
(13] and proved the following result.

Theorem 3.10.  For a graph R with q edges, the complete graph Kaqy:
can be decomposed into copies of R if and only if R has a p-labeling.

Lemma 3.11.  There ezists a graph decomposition of K33 — K3 into 25
isomorphic spanning subgraphs.

Proof. We will partition K33(Y) — K3(a,b,c) where Y = {0,...,24} U
{a,b,c}U{z1,..., 25} into 25 isomorphic subgraphs. First consider K25(0, 1,
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..., 24) a complete subgraph of G. By Theorem 3.10, K25(0,1,...,24) can
be decomposed into copies of R = C7 U5K> if R has a p-labeling. Figure
2 illustrates R with its p-labeling.

0

7 8 —* 16
1 9 e—18
6 10 —=20
2 11 &——= 22
4 9 12 60— 24
3

Figure 2: Ry = C7 U5K; with a p-labeling.

For i =0,1,...,24, we obtain R; the i* copy of R in K35(0,1,...,24)
by adding i to each vertex in R modulo 25. Now we extend each copy of
R; in K25(0,1,...,24) to F; 2 C7 U13K3 in Ka3 as in Figure 3.

0+i 54 o——s a
T+ig 8+ie——ejg4i BH—= b
143 O4ie——e184i HHOT— €

Bt ——e 2
6+i 10 4+ § o———820 +i

Ttie— o 2z
2414 Mpie— o22+i

PHie—o 2
d+ib 124ie———e2Uti gy .
3+i Brie—o 2

Figure 3: The subgraph F; = C7 U 13K, in K33(V(G)).

Besides, for i = 0,1,...,24, we create each subgraph H; by adding a
single edge to F;; that is H; = F; 4 e; where
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€g = 2125 €1 = 2924

ez = C2; ez = b21 €4 =02y
€5 = 2122 € = 2323

ez =azp eg=bz eg = Cc2g
€10 = 2223 €11 = 2124

e12 =bzz ez=cz ey =az
€15 = 2324 €16 = 2225

e;7=czg eg=azg eyg9=bz
€20 = 2425 €21 = 2123

e =azs e =bzs ez =czs

Then H; = C; U P, U 11K, has 33 vertices with the degree sequence
1242%, It can be directly verified that K33(Y) — K3(a, b, c) decomposes into
{Ho,Hl,...,H24}. (]

Each of the 25 isomorphic subgraphs in the previous lemma induces a
set of triples containing a vertex in X. Each edge uv in H; gives rise to the
triple {z;,u,v}. Hence,

Bl2 = {{mi,u, 'v}l uv € E(Hi),i =0,... ,24}.

It now remains to determine Bp;. Fori =0,1,..., 24, the vertex z; € X
must occur in the same triple with each vertex in Y twice, however, there
remain 24 vertices of degree one in each H;. These vertices must meet x;
again in Bj;. The following symmetric partial Latin square of order 25 with
the i** row contains all elements of degree one in H;.
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8¢l

Zo

x1

2

z3

Z4

Ts

x6

Tg

x9

Z10

T11

Z12

Z13

Ti4

Z15 | T16 | Ti7 | T18 | 19 | T20 | ¥T21 | ¥22 | T23 | T24
Zo 16 | z2 | 17 ] ¢ | 18| 6 | 191 23| 20] 8 | 21 | 9 | 22 | 10 | 23 | 11 b | 12 | 24 | 13 | z¢ | 14 | a | 15
z1 | 16 17| a |18 | 2zs [19] 6 | 20| b | 21 | O | 22 | 10 | 23 | 11 | 24 | 12 | z; | 183 | 0 | 14 | ¢ | 16 | zs
zy | 22 | 17 18 | z3 | 19| & | 20| 7 | 20| & | 22 | 10 | 23 | 11 | 24 { 12 | 0 | 13 | z5 | 14 | 1 156 | za | 16
zs | 17| a | 18 19| ¢ | 20 | z5s | 21| 8 | 22 | 2a | 23 | 11 | 24 | 12 | 0 | 13 | 1 14 | z2 | 16 | 2 | 16 | 2
Za | ¢ | 18 | z3 | 19 20 | za | 21 | 25 | 22| O | 23 | 22 | 24 | 12 | 0 | 13 | 1 14 | 2 | 15| &6 | 16 | 3 | 17
Ts | 18| z5 | 19| ¢ | 20 21 | z3 | 22| @ | 23 | 10 | 24 | zq 0 | 13 | 1 14 | 2 | 16| 3 |16 | b | 17 | 4
Ze | 5 | 19 | @ | 20 | za | 21 22| ¢ | 23| z1 | 24 ] 11 | © b 1 14 | 2 | 15| 3 | 16 | 4 | 17 | z2 | 18
z7 | 19| 6 | 20 | zs | 21 | za | 22 23 | za | 24 | ¢ 0 12 1 b 2 | 156 | 3 [ 16 | 4 |17 | 6 | 18 | =1
Zs | 23 | 20| 7 | 21 | 25 | 22 | ¢ | 23 24| a 0 | =, 1 13 | 2 | za | 3 | 16 | 4 | 17| 6 | 18 | 6 | 19
Zo | 20| b | 21| 8 | 22 | @ | 23 | 24 | 24 0 | zs 1 Z1 2 | 14 | 3 | z3 4 | 17| 6 | 18] 6 | 19| 7
Zwo | 8 | 21| & | 22| 9 | 23| z1 | 24| a | O 1 Z4 2 c 3 | 15 | 4 | zs 5 | 18] 6 | 19| 7 | 20
Zn | 21| 9 | 22 | z3 | 23 | 10|24 | ¢ | 0 | 25 | 1 2 b 3 | z2 | 4 16 | 5 a 6 | 19 | 7 | 20| 8
Tiz | 9 | 22| 10 | 23 | 22 | 24 |11 | O | z:1 | 1 | 24 2 3 Zs 4 c 5 i7 | 6 a 7 | 20 | 8 21
ZTia | 22 | 10 | 23 | 11 | 24 | z¢ | O 12 | 1 =1 | 2 b 3 4 a 5 22 | 6 | 18 | 7 | zs 8 | 21| 9
Tia | 10 | 23 | 11 |24 12| 0 ( b | 1 [13 ] 2 c 3 | zs 7 5 | =1 6 | zz | 7 | 19| 8 | za 9 | 22
Tis | 23| 11 |22 | 12| 0 |18 | 1 | 6 | 2 |[14] 3 | 22 1 a 5 6 | 25 7 c 8 |20 9 | z; | 10
Zwe | 11 | 24 |12 | O |13 | 1 |14 2 |z | 3 | 16 | 4 ¢ 5 | =1 [ 7 b 8 | za | 9 | 21 10| a
"z | 0 |12 0 |13 1 |14 | 2 [16] 3 [2a | 4 16 | 5 22 6 | 25 7 8 | =1 9 a 10 | 22 | 11
Zis | 12 | z1 |13 | 1 | 14| 2 |16 | 3 |16 | 4 | zs 5 17 | 6 | 22 7 [ 8 9 c | 10 | 2z3 | 11 | 23
Zio | 24 | 13 | 25 | 14| 2 | 16| 3 |16]| 4 |17 | & a 3 18 | 7 c 8 | z1 9 10 | z2 | 11 | 23 | 12
Z20 13 0 14 | 2o 15 3 16 4 17 5 18 6 a 7 19 8 zZ3 9 [3 10 11 N 12 b
Zo1 | za | 14| 1 | 156 b |16 4 |17 | 5 | 18| 6 | 19 | 7 { 2s | 8 | 20 | 9 a | 10 | zz | 11 12 | ¢ | 13
Z22 1 14] ¢ | 15 2 | 16| & | 17| 5 1 18] 6 | 19 | 7 | 20 | 8 | zs 9 | 21 | 10 | z3 | 11 | z; | 12 13 | 22
ZTaa | @ | 16 | z¢ | 16 3 |17 |22 | 18| 6 | 19| 7 | 20 | 8 | 2L | 9 [ =z [ 10 | 22 | 11 | za | 12 | c | 13 14
Z2a | 16 | 23 | 16 | za |17 | 4 |18 [ z1 | 19| 7 | 20 | 8 | 21 | 9 [ 22 [ 10 [ a | 11 | 23 | 12 [ b | 13 | 22 | 14




The above symmetric partial Latin square yields the triangles
By = {{zi,zj,7: ®x;}| 0 < i # 5 < 24}
Therefore we successfully conclude our next desired result.

Theorem 3.12.  There exists a GDD(25,35;1,2).
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