DIGRAPHS FROM ENDOMORPHISMS OF FINITE
CYCLIC GROUPS

MIN SHA

ABSTRACT. We associate each endomorphism of a finite cyclic group
with a digraph and study many properties of this digraph, including
its adjacency matrix and automorphism group.

1. INTRODUCTION

As we all know, we can construct Cayley graphs and Cayley digraphs
from a group, and these graphs are vertex-transitive. In this article, we
construct digraphs from a finite cyclic group by using its endomorphisms.
In general, these digraphs are not vertex-transitive. But they have many
good properties which may make them into beautiful graphs and may merit
further researches.

Let H be a finite cyclic group with n elements, n > 1, we treat it
as a multiplicative group. We denote its identity element by 1 without
confusion. As we all know, H has n endomorphisms, every endomorphism
has a unique form f : H - H,x — z*,k € Z,1 < k < n, and f is
an isomorphism if and only if n and % are coprime. We can consider
the digraph that has the elements of H as vertices and a directed edge
from a to b if and only if f(a) = b. Since cyclic groups with the same
order are isomorphic, this digraph only depends on n and k. So we can
denote this digraph by G(n, k). For example, see Figure 1 in section 4. [2]
studied the digraph from any endomorphism of Z/nZ, especially the author
studied the number of cycles. [1], [7] and [12] studied the digraph from the
endomorphism f(z) = z2 of (Z/pZ)*, p is a prime. In particular, the cycle
and tree structures have been classified. (6] generalized those results in
(1] to the digraph from any endomorphism of (Z/pZ)*. [8] studied some
elementary properties of the digraph from any endomorphism of (F,)*, F,
is a finite field with ¢ elements.

In section 2 and section 3, we generalize those results in [6] to G(n, k),
and we consider many other properties of G(n, k). In section 4 and section
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5, we consider its adjacency matrix and automorphism group respectively,
furthermore we determine its characteristic polynomial and minimal poly-
nomial.

Especially, the results here may have applications to monomial dynam-
ical systems over finite fields, see [8].

2. Basic PROPERTIES OF G(n, k)

Given two integers [ and m, we denote their greatest common divisor
and least common multiple by ({,m) and [l, m] respectively.

First we factor n as tw where t is the largest factor of n relatively prime
to k. So (k,t) = 1 and (w,t) = 1. For any a € H, Let ord(a) denote its
order.

For proceeding further, we need the following lemma.

Lemma 2.1. Let a € H, the equation * = a has a solution if and only if
a? =1, d = (n,k). Moreover, if the equation has a solution, it has eractly
d solutions.

Proof. Applying the same argument as Proposition 7.1.2 in [5]. O

The following lemma is easy to prove but fundamental to the understand-
ing of the structure of G(n, k). We omit its proof and refer the readers to
(6]

Lemma 2.2. We have the following elementary properties of G(n, k).

(1) The outdegree of any vertez in G(n, k) is 1.

(2) The indegree of any vertez in G(n, k) is 0 or (n,k). Moreover, the
indegree of a € G is (n, k) if and only if a®™m =1,

(3) G(n, k) has n vertices and n directed edges.

(4) Given a,b € H, there exists a directed path from a to b if and only
if there ezists a positive integer m such that a*™ =b.

(5) Given any element in G(n, k), repeated iteration of f will eventually
lead to a cycle.

(6) Every component of G(n, k) contains ezactly one cycle.

(7) The set of non-cycle vertices forms a forest.

Proposition 2.3. The number of the vertices with indegree 0 is “'—j—ln,
where d = (n,k).

Proof. By Lemma 2.1, a vertex a has non-zero indegree if and only if a &
1. Hence, the vertices with non-zero indegree form a subset Hy = {z
H|z? = 1}. It is well-known that Hy is a cyclic subgroup of H with
elements. So we get the desired result.

As follows, we want to study the cycle structures of G(n, k).

Proposition 2.4. The vertez a is a cycle vertez if and only if ord(a)|t.
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Proof. Suppose a is a cycle vertex. Then there exists a positive integer m
such that a*™ = a. So ord(a)|(k™ — 1), which implies (ord(a), k) = 1. So
(ord(a), w) = 1. Note that ord(a)|n, then ord(a)]t.

Conversely, suppose ord(a)|t. Then (ord(a),k) = 1. So there exists a
positive integer m such that ord(a)](k™ — 1), which implies a*” =a. So a
is a cycle vertex. O

Corollary 2.5. There are ezactly t cycle vertices in G(n, k).

Proof. From Proposition 2.4, the total number of cycle vertices is 3 _ ¢(d) =
djt

t, where ¢ is the Euler’s p-function, and y(d) is the number of elements

with order d. O

Proposition 2.6. Vertices in the same cycle have the same order.

Proof. Assume a and b are in the same cycle. So there exists a m such that
a*™ = b, which implies 4°74(®) = 1. So ord(b)|ord(a). Similarly, we have
ord(a)|ord(b). So ord(a) = ord(d). O

By Proposition 2.6, the notion of the order of a cycle is well-defined. Let
¢(d) denote the length of a cycle with order d, where d|t. If two integers [
and m are coprime, let ord;m denote the exponent of m modulo I.

Proposition 2.7. Let d and r be orders of cycles. Then:
(1) 4(d) = ordgk.
(2) The longest cycle length in G(n, k) is £(t) = ord;k.
(3) There are p(d)/€(d) cycles of order d.
(4) The total number of cycles in G(n, k) is Y eﬂ(:'ti%-
dlt

(5) &([d,7]) = [&(d), &(r)]-

Proof. (1) Let a be a vertex in a cycle of order d. It is obvious that ¢(d)
is the smallest positive integer such that ok = g, that is the smallest
positive integer such that d|(k%¥) — 1). So £(d) = ordgk.

(2) By (1) and Proposition 2.4.

(3) Notice that the number of elements with order d is p(d).

(4) By (3) and Proposition 2.4.

(5) Since d|[d,r], &(d)|¢([d,r]). Similarly, we have £(r)|¢([d,7]). So
[(d), £()]|€([d, ]). In addition, since d|(k%® — 1), d|(k«D-4] 1), Simi-
larly, r|(klé@4) — 1), So [d 7)| (kD4 ~ 1), Hence, £([d, r])|(¢(d), l(r)]
So we have £([d,r]) = [¢(d), &(r)).

But £((d, 7)) = (¢(d), £(r)) is not always true. For example, let k = 2,d =
11 and r = 15, we have (11,15) = 1 and £(1) = 1, but (¢(11),£4(15)) =
(10,4) = 2.
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Remark 2.8. Let u be Mobius function. Similar as Proposition 2.5 in (8],
the number of cycles with length r is 1 3 u(d)(k™/¢ — 1, n).
dlr

Corollary 2.9. If a component has a generator of H, then its unique cycle
has the longest length £(t).

Proof. Since if a component has a generator of H, the order of its unique
cycle is ¢. a

Proposition 2.10. Every generator of H has indegree 0 if and only if
(n,k) # L.

Proof. Suppose (n,k) # 1. For any generator b of H, if the indegree of
b is not 0, then there exists a vertex a such that a* = b. Since n =
ord(b) = '(o_:?(?&% and ord(a)|n, ord(a) = n and (n,k) = 1. This leads to
a contradiction.

Conversely, if every generator of H with indegree 0, then generators are
not cycle vertices. By Proposition 2.4, t # n. So (n,k) # 1. O

Hence, if (n,k) # 1, since H has ¢(n) generators, by Proposition 2.3,
we have p(n) < ¢5tn, where d = (n, k).
Now we would like to consider which kind of graphs G(n, k) belongs to.

Proposition 2.11. The following statements are equivalent.
(1) G(n, k) is regular of degree 1.
(2) Every component of G(n, k) is a cycle.
(3) f is an automorphism.

Proof. Note that f is an automorphism if and only if (n,k) = 1, then
applying Lemma 2.2 (2) and (7). O

Proposition 2.12. G(n, k) is connected if and only if there exists a positive
integer m such that n|k™.

Proof. Suppose n|k™. Then for any a € H, a*" = 1. So G(n,k) is con-
nected.

Conversely, suppose G(n, k) is connected. By Lemma 2.2 (7), there is
only one cycle, that is {1}. By Lemma 2.2 (6), for any a € H, there is
a positive integer m such that a*” = 1. If a is a generator of H, then
n|k™. O

Notice that there exists a positive integer m such that n|k™ if and only
if t = 1. Hence, G(n, k) is connected if and only if G(n,k) has only one
cycle vertex, that is the identity element.

Proposition 2.13. The following statements are equivalent.
(1) G(n, k) is arc-transitive.
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(2) G(n, k) is vertez-transitive.
(3) f is the identity.

Proof. Note that there exist loops in G(n, k). So G(n,k) is arc-transitive
if and only if there are no other edges except loops, that is for any a €
G(n,k), f(a) = a, that is for any a € G(n,k),a*~! = 1, that is n|(k — 1).
Applying the same argument as the above paragraph, we have G(n, k)
is vertex-transitive if and only if n|k — 1.
Notice that 1 < k < n, we get the desired result. (|

Since the number of distinct endomorphisms of H is n, we attain n
distinct digraphs by our manner. There is an interesting problem that
whether there exist isomorphic digraphs among them. In [6], the authors
gave an example G(10,2) = G(10, 8).

Proposition 2.14. If n is a prime, for any 1 < ky < k2 < n, G(n, k) =
G(n, k2) if and only if ord, k) = ordnk;.

Proof. Since (n,k;) = 1, by Proposition 2.11, each component of G(n, k;)
is a cycle. By Proposition 2.7 (1), there are only two kinds of cycles in
G(n, k1), one with length 1, the other with length ord,k;. Since (n,k; —
1) = 1, there is only one cycle with length 1. By Proposition 2.7 (3), there
are ;A=1- cycles with length ord.k;.

We can get similar results for G(n, k;). Then we can get the desired

result. a

3. PROPERTIES OF TREES

Here we introduce some notations for the tree originating from any given
cycle vertex.

For m > 1, we say a non-cycle vertex a has height m with respect to
a cycle vertex c if m is the smallest positive integer such that a*™ = .
For m > 1, let T[" denote the set of non-cycle vertices with height m with
respect to the cycle vertex ¢. Similarly, T™ denotes the set of all vertices
with height m. For convenience, we put T? = {c} and say c has height 0,
T denotes the set of all cycle vertices. Let F, be the induced subgraph of
G(n, k) with vertices | J,,», To*. In fact, F, is a forest if it is not empty.
We can get an induced subgraph of G(n, k) with vertices Up>o T2, and
we delete the loop if it exists, then we get a tree and denote it by T.,.

All the vertices lie in the trees we define above. As follows, without
special instructions, the concept of tree means what we define in the above.

We will show that for any cycle vertex ¢, T, = T.

Lemma 3.1. The product of a non-cycle vertex and a cycle vertez is a
non-cycle vertez.
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Proof. Notice that by Proposition 2.4, the cycle vertices of G(n, k) form a
subgroup. 0

Lemma 3.2. Ifa € TP h > 1 and c is a cycle vertez, then ac € T

Proof. By Lemma. 3.1, ac ¢ T° Furthermore, (ac)" = " is a cycle
vertex but (ac)*" ™" is a non-cycle vertex because a*"~ ¢ T?, which implies
ac € T':,.

[
Theorem 3.3. Let c be a cycle vertes, then F, = F.

Proof. First we show that there exists an one to one correspondence be-
tween the vertices of T* and T* for all heights A > 1, and hence between
F, and F,. Let h be fixed and let ¢, denote the unique cycle vertex such

that ¢t” = c. From Lemma 3.2, define gx : T} = T by ga(a) = ac.
For any b€ T, (b- ¢ !)¥" = b"h ~1=1and (b- c;l)"h— ¢ T° because
bE"~' ¢ TO. 1t follows that b-c;* € TP. Then gn(b-c;') = b. So gn is
surjective. It is obvious that g is injective. So gx is one to one.

Combining these gi, we get a bijective map g from F} to F..

It remain to show that g is indeed an 1somorphlsm For any directed
edge of Fi, it is from some a € T} to a* € T" =1 for some h. We only
need to show that there exists a dxrected edge from g(a) to g(a") in F,,
that is (g(a))" = g(a*), that is (ga(a))* = gn_1(a*). Now c" = ¢ implies
(c" )"h = ¢, by the uniqueness of ¢;_;, we have ¢t = cp—1. So (gn(a))* =
(ach)* = aFcp_1 = gn-1(a¥).

Corollary 3.4. Let ¢ be a cycle vertex, then T, = T}.
Proof. Applying Theorem 3.3 and the relation between T, and F. O

Hence, every tree has the same height, denote it by ho, and different
trees have the same number of vertices in each height.

Corollary 3.5. For any two components G, and G of G(n, k), G1 = G,
if and only if the unique cycles in them have the same length.

There is another property of the map g5, in Theorem 3.3, see the following
proposition.
Proposition 3.8. Ifa € T} and b € T? with c, the cycle vertez such that
b= ach, then ord(b) = ord(a) - ord(c).

Proof. Since a*" = 1, ord(a)|k?. By Proposxtlon 2.6, ord(cp) = ord(c)|t.
So (ord(a),ord(cn)) = 1. It follows that ord(b) = ord(a) - ord(c). a

As follows, we would like to study the tree structures by using heights.
For any a € H, denote its order ord(a) by n,, and factor n, by t,w,,
where t, is the largest factor of n, relatively prime to k. So ng4|n,ts|t and
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we|w. Similarly, we denote a’s height by h,. The next proposition shows
that h, only depends on w,.

Proposition 3.7. For any a € H, h, is the minimal h such that w,|k".
Especially, ho is the minimal h such that w|kh.

Proof. If na | t, then a is a cycle vertex. So h, = 0. Note that w, =1, so
the conclusion is correct in this case. .
If n, 4 t. Since h, is the minimal h such that e*" is a cycle vertex, that

is the minimal h such that ord(a"") = Zn_:%h'i | £, then h, is the minimal h
such that (n,, k") = w,, that is the minimal h such that w, | &*. O

Corollary 3.8. For any two vertices a and b,if w, = wy, then they have
the same height. Especially, The vertices with the same order are at the
same height.

But if a and b have the same height, maybe w, # w;. For example, see
Figure 3 in section 5, let @ = 9 and b = 40, then a and b have the same
height, but w, =4 and w, = 2.

Corollary 3.9. For any vertez a, if w, = w, then a is at the largest height.
Especially, the generators of H must be at the largest height.

Proof. For any vertex a, w, | w, then applying Proposition 3.7, we get the
desired result. a0

Corollary 3.10. If k is a prime, then for any two vertices a and b, they
have the same height if and only if we = wy.

Proof. Since w, = k"= and wy = k™ in this case. O

About the heights of the vertices we have the following proposition and
corollary.

Proposition 3.11. Let a € T, ord(c) = d|t and h > 0. Then ord(a)|k"d
if and only if a € T, for some m < h.

Proof Suppose ord(a)|k*d. Then (a*")¢ = 1, which implies ord(a* )|d So

a*" isa cycle vertex. Hence, there exists m < h such that a € T™.
Conversely, suppose there exists m < h such that a € T™. Then ak" =

¢. So (a*™)¢ = c? = 1, which implies ord(a)|k™d. Hence, ord(a)lk"d O

Corollary 3.12. Leta € T, ord(c) = d|t and m > 1. Thena € T™ if and
only if ord(a)|k™d and ord(a) { k™~ 1d.

For any d > 1, let Hy be the subgroup of H defined by Hy = {z €
H|z?® =1}. It is well-known that Hy is cyclic with order (n,d). By Propo-
sition 2.4, all cycle vertices of G(n, k) form the subgroup H,. By Lemma
2.1, all vertices with non-zero indegree form the subgroup H. iy
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Corollary 3.13. For any d|t and h > 0, U T™ is ezactly the
0<m<h
c€TY, ord(c)ld

subgroup Hkhd.
Proof. By Proposition 3.11 and the first part of its proof, this union consists

of all a € H with ord(a)|k"d . So it is exactly the subgroup Hyag. O
Corollary 3.14. For any!l > 1 and h 2 0, U T™ is ezactly the
o<m<h
ceT®, e(c)|!

subgroup Hkh S(tkt-1)-

Proof. Since c is a cycle vertex, ord(c)|t. Then £(c)|! if and only if c" =g¢,
that is ord(c)|(k* — 1), that is ord(c)|(t, k' — 1), then applying Corollary
3.13. O

For any set X, denote the number of its elements by |X]|.

Proposition 3.15. For any cycle vertez c, we have:

(1) T = w.
(2) For m > 1, |T™| = (n,k™t) — (n,k™"1t) and [T = (w, k™) -
(w,k™1).

(3) If ho = 2, for 1 < m < hg — 1, the number of vertices in T[™ with

indegree 0 is |T*| — I-T(“—J?

Proof. (1) Note that there are t cycle vertices and n = wt, by Corollary
3.4, we have |T;| = w.
(2) In Corollary 3.13, fixd = t, put h = m and h = m—1 respectively, we
have T™ = |J T™ = Hpmi \ Hgm-1;. So [T™| = (n, k™) — (n, k™" 1¢).
ord(c)|t
Since |T™| = 1|T™|, we get the other formula.
(3) By Lemma 2.1, the number of vertices in T;" with non-zero indegree

is %?}l ]

Hence, if the unique cycle in a component of G(n, k) has length r, then

this component has rw vertices.
Corollary 3.16. |Tho| > 2.
Proof. Recall that hg is the height of the trees.

If ho = 0, then all vertices are in cycles, so [Th| =n > 2.

If ho > 1, From Proposition 3.15 (2), we have |T"| = n — (n,kho—1t) =
n—t(w, kPo=1). Since n t kPo~1t, w{ kPo~!, which implies (w, k*0~1) < &.
Hence, we have [T"| > 2. 0

In fact, the lower bound in the above corollary is the best one. For
example, let k = 6 and n = 2™, where m > 3, thent =1 and ho = m, so
|Th| = n — (n, kho~1t) = 3.
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Proposition 3.17. Ifn > 5 and n is even, then the length of the longest
cycle in G(n, k) is less than or equal to 232,

Proof. If (n, k) # 1, then hg > 1. By the above corollary, the number of
non-cycle vertices is more than or equal to %, which implies the number of
cycle vertices is less than or equal to 3. Since the identity element of H is
in a loop, the length of the longest cycle in G(n, k) is less than or equal to

n_1_n=2

If (n, k)2= 1, then all vertices are in cycles and ¢t = n. Notice that the
length of the longest cycle is £(t) = £(n) = ord, k. We factor n as 27s, where
r>1end (2,s) =1. If s # 1, then £(n) < p(n) = 27" 1p(s) < 2""ls = 2.
Since £(n) is an integer, £(n) < 3 —1 =252 Ifs =1, that isn = 27,
since n > 5, 7 > 2, which implies (Z/nZ)* has no primitive roots, so
{(n) < p(n) =2""! = 2, then £(n) < 252. a

Hence, the number of vertices in the largest component is less than or
equal to "—;—2'w. In fact, the upper bound in the above proposition is the
best one. For example, let £ = 2 and n = 2p, p is an odd prime, and 2 is

the primitive root of (Z/pZ)*, then t = p and £(t) = ord,2 =p— 1 = 252,

4. THE ADJACENCY MATRIX OF G(n, k)

For any two vertices u and v of G(n, k), if u* = v, we call u a child of v.

If the vertex-set of G(n, k) is {v1,v2, - ,v,}, then the adjacency matrix
of G(n, k) is a n x n (0, 1)-matrix with the (i, j)-entry equal to the number
of directed edges from v; to v;, we denote it by A(n, k).

We label the vertices of G(n,k) as follows. First, we label the vertices
component by component, so we can get a block diagonal matrix. Second,
for each component, we label its vertices height by height according to the
child relations. For example, see Fig. 2 in [12], let H = (Z/29Z)* and
k = 2, then there are three components, see Figure 1.

We label G(28,2) by vq = 1,vp = 28,v3 = 12,94 = 17,v5 = 7,vg
20, vy = 23, vg = 6,'09 = 22,’010 = 9,‘011 = 8, Vi2 = 21,'013 = 14, V14
15, v15 = 3,v16 = 26,v17 = 16,v18 = 24,v19 = 25,vz0 = 4,vp; = 13,v9
5,v3 = 2,v9q = 27,v95 = 10,v26 = 19,27 = 11 and vos = 18. Then
digraph G(28, 2) is given in Figure 2.

If we partition A(28,2) according to the components, then we can get a
block diagonal matrix and the main diagonal blocks are square matrixes.
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FIGURE 1. The digraph G(28,2)

The main diagonal blocks are given as follows.
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Since By and B3 correspond to isomorphic components, B; = Bs. If we
partition each main diagonal block according to the heights, then we can
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FIGURE 2. The digraph G(28,2)

get a block lower triangular matrix and its main diagonal blocks are square
matrixes, its main diagonal blocks are all equal to 0 except the (1, 1)-block.
After partitioning, By, By and B3 have the following form.

By 0 O
Bi;=|B;y; 0 0]),i=1,23.
0 B O

We denote the characteristic polynomial and minimal polynomial of a
matrix A by f4(A) and m4(A) respectively. Notice that the characteristic
polynomial and minimal polynomial of a 7 x r matrix with the following
form

(4.1)

are both A" — 1. Hence, fp,(A) = A3(A ~ 1) and fg,(\) = fg,()) =
A%(A% —1).

115



Lemma 4.1. If a partitioned matriz D has the following form

Do
D, o0
D= . . ’
Dm 0
where the main diagonal blocks are all square matrizes, Do is a r X matriz
with the form as (4.1), each D; (1 £ i £ m) i3 non-negative and its (1,1)-
entry is positive. Then mp(A) = A™(A" —1).

Proof. It is obvious that A" — 1|mp()) and the first row of the partitioned
matrix D™ — I is zero, where I is the identity matrix.

Since v
Dy 0 --- 0
_DID(')"_1 0 PN 0
D™ = D;D, D32 0 - 0f,
DpDpyx-oxDy 0 ..o 0
D™(Dr—-1)=0.
Since
D1 0 0
D, D72 0 0
Dt = : : AN
Dm_zD _3X---XDO 0 0
Dm—le—Q X oo X Dl 0 0
0 DDy X -+ X Do 0

the (m+1,1)-entry of the partitioned matrix D™~}(D" —I) is DynDm_1 X
<o x Dy x Dng’l. Since D5! is invertible and non-negative, there exists a
positive entry in the first row of Do"l. Notice that Dy, D1 X -+ X Do Dy
is non-negative and its (1,1)-entry is positive. Hence, DDy X -+ X
Dy x DyDy™ #0. So D™ Y(D" - 1I) #0.

Hence, we have mp(A) = A™(A" — 1), ]

So by Lemma 4.1, mp, (A\) = A2(A—1) and mp, (A) = mp,(A) = A2(X3 -
1).
Recall that hp is the height of the trees. Let C be a component of
G(n, k) and the unique cycle in C has length 7, then C has rw vertices, the
characteristic polynomial and minimal polynomial of C is A™~7(A" — 1)
and A" (AT — 1) respectively.
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Suppose the components of G(n,k) consist of m; copies of Gy, mg
copies of Gg, - - -, m, copies of G,, where G;,Gy, -+ - ,G, are pairwise non-
isomorphic, the unique cycle in each G; (1 < i < s) has length r;. Then we
get the following theorem.

Theorem 4.2. (1) The characteristic polynomial of G(n, k) is ]'[ [Arsw=rs(Ar—

n)™.
(2) The minimal polynomial of G(n, k) is Aro (A8t} — 1),

Proof. The result in (1) is obvious.
By Proposition 2.4 and Proposition 2.7 (1), the length of each cycle
divides £(t), this yields the result in (2). (]

By the discussions in section 2 and section 3, if we specify the values
of n and k, we can calculate explicitly these data s, ¢, w, ho, £(t), m; and r;
(1<i<s).

Since we have determined the characteristic polynomial of G(n, k), it is
easy to get the eigenvalues and spectrum of G(n, k).

5. THE AUTOMORPHISM GROUP OF G(n, k)

For any graph G, we denote its automorphism group by Aut(G). For
simplicity, we denote the automorphism group of G(n,k) by Aut(n,k).
Notice that Aut(G) is a permutation group on {1,2,---,|G|}.

Let S, be the symmetric group on {1,2,--- ,m}. Let P, and P, be two
permutation groups on {1,2,.-- ,m} and {1,2,--- ,r} respectively. Recall
that the wreath product P, ! P, is generated by the direct product of r
copies of P, together with the elements of P, acting on these r copies of
p.

Using the notations in the above section, we get the following theorem.

Theorem 5.1. Aut(n, k) = (Aut(G1) 2 Sp,) X (Aut(G2) 1 Sm,) X --- %
(Aut(G,) 1 Sm, ).

Proof. See Theorem 1.1 in [3]. O

For each component G; (1 < i < s), its unique cycle has length r;, by
Corollary 3.4, we have the following proposition.

Proposition 5.2. For each 1 <i < s, Aut(G;) = Aut(Thl < 0; >, where
0; 18 a ri-cycle,

- 12 3 ... Ti
*“\2 34 ... 1)
Proof. Notice that the automorphism group of the cycle in G; is exactly
the permutation group generated by o;. O
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Hence, we only need to determine Aut(7}). If (n, k) = 1, by Proposition
2.11, we have Aut(T1) = {1}. Then we get the following proposition.

Proposition 5.3. If (n,k) = 1, then Aut(n,k) = (< 01 > 1Sm,) % (<
02 > Sm,) X -+ X (< 05 > 1Sm,).

Proposition 5.4. If k = 1, then Aut(n,k) = Sp.
Proposition 5.5. If k = n, then Aut(n, k) = Sp_;.

But in general it is difficult to determine Aut(T}). Since the vertices
with the same height may have different number of children. For example,
let H = (Z/41Z)* and k = 4, T is given as follows.

OIDIOIO
& ® W
O

FIGURE 3. Thetree T} forn =40 and k =4

Recall that if hg is the height of T;, then the vertices of T; form the
subgroup Hys,, that is H,,. So Aut(H,) C Aut(T}).

As follows we want to determine Aut(7}) when & is a prime.

For any two vertices a and b, if there is a g € Aut(n,k) such that
g(a) = b, we say a is isomorphic to b, denote it by a = b. This is an
equivalent relation in G(n, k). We will show that if ord(a) = ord(b), then
a=bh.

Suppose that M is a cyclic group with m elements. Given three positive
integers r, r; and g such that r|r;|m and r; = rq. For any b € M,ord(b) =
r, put My = {a € M|a? = b,ord(a) = r,}. Then we have the following
lemma.

Lemma 5.6. For any b€ M with ord(b) =r, | M,| = £73.

Pr‘oof. Fix a generator ¢ of M such that (¥ = b. It is easy to see that
(™ € My. So M, is not empty.
Every element with order ) has a unique form ¢ = ,1<h <y, (L) =
1. Then we have
mll m

ml
(RN b ml(— - ) @il -1.
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So [My| = {li]1 <& < 71, (l1,m1) = 1,7]ly - 1}|, which implies that |M,|
only depends on r and r; and it is independent of the specified value of b.
Hence, given another ' € M,ord(b') = r, we have | My | = | Mp).

Since there are ¢(r,) elements with order 7; and @(r) elements with

order r, |Mp| = %{7‘%. O

Corollary 5.7. For any two elements a,b € M, ord(a) = ord(b),q > 1,
then for each positive integer r such that ord(a)|r, M; = {z|z? = a} and
M, = {z|z? = b} have the same number of elements with order r.

Proof. By Lemma 2.1, M; and M, have the same number of elements.
Then we can get the desired result by applying Lemma 5.6. O

Theorem 5.8. For any a,b € G(n, k), if ord(a) = ord(b), then a = b.

Proof. By Corollary 3.8, a and b are at the same height. Since for any
positive integer h, ord(a*) = ord(b"), then the cycles which they lead to
have the same order. Then the desired result follows from Corollary 5.7. O

From now on we assume that & is a prime.

For any a € T, there exists a h such that a*" = 1, which implies
that ord(a)|k®. So w, = ord(a). By Corollary 3.10, we get the following
proposition.

Proposition 5.9. If k is a prime, for any a,b € T\, a and b are at the
same height if and only if ord(a) = ord(d).

Hence, all the vertices with indegree 0 of T} are at the largest height hq.

Since k is a prime, (n,k) =1 or k. We have discussed Aut(n,k) on the
case (n, k) = 1, see Proposition 5.3.

As follows we suppose that (n,k) = k. Then the largest height ho > 1.
For 1 < h < hg, let Ty, be the tree originating from a vertex with height
h in T1. In particular, the vertex set of T},, contains only one point.
Proposition 5.9 and Theorem 5.8 tell us that T}, is well-defined. Then we
get the following proposition.

Proposition 5.10. Ifk is a prime and (n, k) = k, then we have Aut(T}) &
Aut(T11) 1 Sk—1, for any 1 < h < ho, Aut(T1p) = Aut(Ty,pn+1) ¢ Sk, and
Aut(Tin,) = {1}.

6. FURTHER PROBLEMS

We mention three further problems which may worth studying.

First, it may be interesting to consider other graphic problems for G(n, k),
such as the matching problem and the coloring problem.

Second, it may be interesting to study the asymptotic mean numbers of
cycle vertices and cycles. [4], [8] and [12] will be helpful.
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Third, what will happen if H is not cyclic? (1], (9], [10], [11] and [13]
will be helpful.
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