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Abstract

Let k be a positive integer and let G be a simple graph with vertex
set V(G). If vis a vertex of G, then the open k-neighborhood of v, de-
noted by Ni,g(v), is the set Ny g(v) = {u | u # v and d(u,v) < k}.
Ni,g[v] = Ni,e(v) U {v} is the closed k-neighborhood of v. A func-
tion f : V(G) — {—1,1} is called a signed distance k-dominating
function if 3 Nyolv f(4) 2 1 for each vertex v € V(G). A set
{f1, f2,..., fa} of signed distance k-dominating functions on G with
the property that "% | fi(v) < 1 for each v € V(G), is called a signed
distance k-dominating family (of functions) on G. The maximum
number of functions in a signed distance k-dominating family on G
is the signed distance k-domatic number of G, denoted by d ,(G).
Note that di,,(D) is the classical signed domatic number d,(D). In
this paper we initiate the study of signed distance k-domatic num-
bers in graphs and we present some sharp upper bounds for d,,(G).
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1 Introduction

In this paper, k is a positive integer and G is a finite simple graph with
vertex set V = V(G) and edge set E = E(G). For a vertex v € V(G), the
open k-neighborhood Ni c(v) is the set {u € V(G) | v # v and d(u,v) < k}
and the closed k-neighborhood Ni g[v] is the set Ni,g(v) U {v}. The open
k-neighborhood Nic(S) of a set S C V is the set | J,cs Nk,c(v), and the
closed neighborhood Ni. ¢[S] of S is the set Ni,g(S)U S. The k-degree of a
vertex v is defined as deg;, g(v) = |Nk,g(v)|- The minimum and maximum
k-degree of a graph G are denoted by 0x(G) and Ax(G), respectively. If
8x(G) = Ax(G), then the graph G is called distance-k-regular. The k-
th power G* of a graph G is the graph with vertex set V(G) where two
different vertices u and v are adjacent if and only if the distance d(u,v) is
at most k in G. Now we observe that Nix.g(v,G) = N, gx(v) = Ngx(v),
N glv] = Ny g [v] = Ngx[v], deg; ¢(v) = deg; or (v) = deggx (v), 6k (G) =
8(G*) = §(G*) and Ax(G) = A1(G*) = A(G*). Consult [9] for the
notation and terminology which are not defined here.

For a real-valued function f : V(G) — R, the weight of f is w(f) =
Yvev f(v). For S C V, we define f(S) = 3,5 f(v). So w(f) = f(V).
A signed distance k-dominating function (SDkD function) is a function
f: V(G) = {—1,1} satisfying 3, op () 2 1 for every v € V(G).
The minimum of the values of 3°, (g f(v) taken over all signed distance
k-dominating functions f is called the signed distance k-domination number
and is denoted by 7k,s(G). Then the function assigning +1 to every vertex
of G is a SDKD function, called the function ¢, of weight n. Thus v, ,(G) <
n for every graph of order n. Moreover, the weight of every SDkD function
different from ¢ is at most n — 2 and more generally, v s(G) = n (mod
2). Hence vk +(G) = n if and only if € is the unique SDkD function of G.
In the special case when k = 1, 7k +(G) is the signed domination number
investigated in [3] and has been studied by several authors (see for example
[2, 4]). The signed distance 2-domination number of graphs was introduced
by Zelinka [11] and the signed distance k-domination number of graphs was
introduced by Xing et al. [10]. By these definitions, we easily obtain

Vk,s(G) = 'YS(Gk)- 1)

A set {f1,f2,...,fa} of signed distance k-dominating functions on G
with the property that Z:.Ll fi(v) €1 for each v € V(G)), is called a signed
distance k-dominating family on G. The maximum number of functions
in a signed distance k-dominating family on G is the signed distance k-
domatic number of G, denoted by dj s(G). The signed distance k-domatic
number is well-defined and d ,(G) > 1 for all graphs G, since the set
consisting of any one SDkD function, for instance the function ¢, forms a
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SDkD family of G. A dy s-family of a graph G is a SDkD family containing
dk,s(G) SDKD functions. The signed distance 1-domatic number d; ,(G) is
the usual signed domatic number d,(G) which was introduced by Volkmann
and Zelinka in (8] and has been studied by several authors (see for example
[5, 6, 7]). Obviously,

dx,s(G) = dy(G*). (2)
Observation 1. Let G be a graph of order n. If 4 ;(G) = n, then € is the
unique SDkD function of G and so di +(G) = 1.

We first study basic properties and sharp upper bounds for the signed
distance k-domatic number of a graph. Some of them generalize the result

obtained for the signed domatic number.
In this paper we make use of the following results.

Proposition A. [3] Let G be a graph of order n. Then v,(G) = n if and
only if every nonisolated vertex of G is either an endvertex or adjacent to

an endvertex.

Observation 2. If G is a graph of order n, then 4, s(G) = n if and only if
1. k£ =1 and each vertex of G is isolated, a leaf or a support vertex,
2. k> 2 and G = rK; U sK, for some nonnegative integers » and s.

Proof. If 1. or 2. hold, then obviously each SDkD function satisfies f(z)
+1 for all z € V(G). Therefore € is the unique SkD function and  +(G)
n.

Conversely, assume that v, ,(G) = n. If kK = 1, then the result follows
from Proposition A. Let & > 2. If A(G) 2 2, then assume that z,z5...z,,
is a longest path in G. It is easy to see that the function f : V(G) — {-1,1}
defined by f(z2) = —1 and f(z) = 1 otherwise is a signed distance k-
dominating function of G which is a contradiction. Thus A(G) < 1 and
the result follows. This completes the proof. ]

Proposition B. (8] The signed domatic number d,(G) of a graph G is an
odd integer.

Proposition C. (8] If G is a graph, then 1 < d,(G) < §(G) + 1.

Proposition D. (7] Let G be a graph, and let v be a vertex of odd degree
degi(v) = 2t + 1 with an integer t > 1. Then d,(G) <t when t is odd and
ds(G) <t+1 whent is even.

Proposition E. [10] Let k > 1 be an integer. For any integer n > 2, we
have

1 ifn=1(mod?2
Vi,s(Kn) = 70(Kn) = { 2 nothersvise. ) (3)
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Proposition F. (8] If G = K, is the complete graph of order n, then

n if n is odd,
ds(Kp,)=< p if n=2p and pis odd
p—1 ifn=2p and piseven.
Since Ni k. [v] = Nv] for each vertex v € V(K,) and each positive

integer k, each signed dominating function of K, is a signed distance k-
dominating function of K, and vice versa. Using Theorem F, we obtain

n if n is odd,
des(Kn) =ds(Kn) =4 P if n=2p and pisodd 4)
p—1 ifn=2p and piseven.

More general, the following result is valid.

Observation 3. Let k£ > 1 be an integer, and let G be a graph of order n. If
the diameter diam(G) < k, then vk s(G) = 7,(K») and di +(G) = ds(Kr)-

Next result is immediate consequences of Observation 3, Propositions
Eand F.

Corollary 4. If k > 2 and G is a graph of order n with diam(G) = 2, then

1 ifnisodd
Y,s(G) = { 2 if niseven,

and
n if n is odd,
di s(G) = { P if n =2p and pis odd
p—1 ifn=2p andpiseven.
Corollary 5. Let £ > 2 be an integer, and let G be a graph of order
n. If diam(G) # 3, then 1,4(G) = 7s(Kn) and di,s(G) = ds(Kp) or
7k,s(?}') = ’Yg(Kn) and dk,s(G) = d,(Kn).

Proof. If diam(G) < 2, then it follows from Observation 3 that v :(G) =
vs(Kyn) and dio(G) = ds(K,). If diam(G) > 3, then the hypothesis
diam(G) # 3 implies that diam(G) > 4. Now, according to a result
of Bondy and Murty [1] (page 14), we deduce that diam(G) < 2. Ap-
plying again Observation 3, we obtain 7 ,(G) = 7s(K») and di(G) =
ds(Kn).

Corollary 6. If k > 3 is an integer and G a graph of order n, then
V,4(G) = 7s(Kn) and di,s(G) = ds(Kn) or Yk,s(G) = 7s(Kn) and dk,(G)
ds(Kp).
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2 Basic properties of the signed distance k-
domatic number

In this section we present basic properties of di ,(G) and sharp bounds on
the signed distance k-domatic number of a graph.

Proposition 7. The signed distance k-domatic number of a graph is an
odd integer.

Proof. According to the identity (2), we have di s(G) = d,(G*). In view
of Proposition B, d,(G*) is odd and thus dj, ,(G) is odd, and the proof is

complete. 0
Theorem 8. If G is a graph of order n, then

1 <d;s(G) < 0(G) + 1.

Moreover, if dy +(G) = 8x(G) + 1, then for each function of any dj ,~family
{f1,f2,- -+, fa} and for all vertices v of minimum k-degree §;(G),
YueNs oy filw) =1 and Z:;l fi(u) =1 for every u € Ny c[v).

Proof. Let {f1, f2,..., fa} be a SDKD family of G such that d = di +(G) and
let v be a vertex of minimum k-degree Jx(G). Then |Ni ¢[v]| = dk,c(v) +1

and

Er—-l 1
Z;_l EueN,‘ a[v] fi(u)
EuéNk ,alv) Et"'l f‘(u)

uEN, clv) 1
0x(G) + 1.

If di s(G) = x(G) + 1, then the two inequalities occurring in the proof

become equalities, which gives the two properties given in the statement.
a

1<d

A 1Al

Theorem 9. Let k > 1 be an integer, and let G be a graph. If G contains
a vertex v of odd k-degree deg,(v,G) = 2t + 1 with an integer ¢ > 1, then
dr,s(G) <t when t is odd and di s(G) < t+1 when ¢ is even.

Proof. Since degy, ¢(v) = deggs(v) = 2t + 1, Proposition D and (2) imply
that di s(G) = d,(G¥) < t when ¢t is odd and di o(G) = d,(G*) < t+1
when ¢ is even. 0O

Restricting our attention to graphs G of odd minimum k-degree, The-
orem 9 leads to a considerable improvement of the upper bound of di 5(G)
given in Theorem 8

125



Corollary 10. If ¥ > 1 is an integer, and G is a graph of odd minimum
k-degree 0x(G), then di s(G) < (0x(G) — 1)/2 when §(G) = 3 (mod4)
and di (@) < (0x(G) + 1)/2 when 6:(G) = 1 (mod 4).

The equations in (4) show that the bounds in Theorem 8 and Corollary
10 are sharp.

Theorem 11. Let G be a graph of order n with signed distance k-domination
number v, ;(G) and signed distance k-domatic number dj, ,(G). Then

Y,8(G) - di o(G) < 1.

Moreover, if vk s(G) - dk,s(G) = n, then for each dy ,-family {f1, fa,- - , fa}
on G, each function f; is a v s-function and 2‘::1 fiw)=1forallveV.

Proof. Let {f1, f2,...,fa} be a SDkD family on G such that d = di ;(G)
and let v € V. Then

d- Yk,(G) Z,_l Vr,s(G)
Es—l Zv v f'(v)

Lvev Zt-—l fi(v)

veV
n.

WA I IA

If Yk,s(G) - dk,s(G) = n, then the two inequalities occurring in the proof
become equalities. Hence for the di ,-family {f1, f2,-:+ , fa} on G and for
each i, 3 <y fi(v) = 7k,s(G), thus each function f; is a v .-function, and

Z?=1 fi(v) =1 for all v. 0

Corollary 12 is a consequence of Theorems 11 and 7 and improves Ob-
servation 1.

Corollary 12. If vk (G) > %, then dy ,(G) = 1.

The upper bound on the product vk ¢(G) - di,s(G) leads to a bound on
the sum.

Corollary 13. If G is a graph of order n > 4, then
Yx,s(G) + di,s(G) < n + 1.

Equality v,s(G) + dk,s(G) = n + 1 occurs if and only if di,s(G) = n and
Yr,s(G) =1 or di 5(G) =1 and 7x,+(G) = n.

Proof. According to Theorem 11, we obtain

Yk,s(G) + di,s(G) £ 5—=5 +dk,s(G). (5)

dr (G')
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The bound results from the facts that the function g(z) = z + n/z is
decreasing for 1 < z < /n and increasing for \/n < £ < n and that
1 £ dk,s(G) < n by Theorem 8. Equality occurs if and only if di o(G) = n
and Yk,s(G) = 1 or di s(G) =1 and v +(G) = n. a

By Corollary 13, ,s(G) + dx,s(G) can be equal to n+1 if 74 +(G) = n
orlorifdes(G)=norl Butifl < vs(G) <norifl <dis(G)<nor
if min{vk, s(G), dk,s(G)} > 1, we can lower the upper bound n + 1.

Corollary 14. Let G be a graph of order n > 4. If 2 < 4, ,(G) <n—1or
if 2 < d,s(G) <n—1, then

Yk,s(G) + di,s(G) <n — 1.

Proof. By Corollary 13, vk 5(G) + di,s(G) < n+1. The result follows from
Theorem 7 and the fact that, as seen in the introduction, yx,s(G) = n (mod
2). a

Corollary 15. Let G be a graph of order n, and let £ > 1 be an integer.
If min{vk,s(G),dk,s(G)} 2 a, with 2 < a < +/n, then

4(C) + da(G) Sa+ —.

Proof. Since min{yk +(G),dk s(G)} = a > 2, it follows from Theorem 11
that 2 < di s(G) < Z—. Applying the inequality (5), we obtain

Vi,s(G) + di o(G) < di o(G) + —c

dk,s(G)’
The bound results from the facts that the function g(z) = :z:-i--g is decreas-
ing for 1 € z < +/n and increasing for /n <z < n. O
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