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Abstract

Let G be a graph of order n > 4k +8,where k is a positive integer
with kn is even and 6(G) > k+1. We show that if mez{dc(u),de(v)} >
n/2 for each pair of nonadjacent vertices u, v , then G has a connected
[k, k + 1]-factor excluding any given edge e.
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1 Introduction

The graphs considered in this paper will be simple undirected graphs. Let
G be a graph with vertex set V(G) and edge set F(G). Denote by dg(z) the
degree of a vertex z in G. We use §(G) for the minimum degree of G and
use G — S for the subgraph of G obtained from G by deleting the vertices
in S together with the edges incident with them. Let S and T be disjoint
subsets of V(G), denote by eg(S, T) the number of edges that join a vertex
in S and a vertex in T. If S = {z}, then eg(z,T) denotes the number of
edges that join z and a vertex in T. Let S,T C V(G) with SNT = @. For
an integer k > 1, a component C of G — (SUT) is called a k-odd component
or k-even component according to k | V(C) | +eg(V(C),T) is odd or even.
We denote by h(S,T') the number of k-odd components of G — (SUT). A
k-factor of G is a spanning subgraph F of G such that dp(z) = k for each
z € V(G). A graph G is called a k-uniform graph if for each edge of E(G),
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there is a k-factor containing this edge and another k-factor excluding it.
Notations and definitions not given here can be found in (1].

Many authors have investigated (g, f)-factors and f-factorsin [2,3,6,7,9].
And The following theorems of k-factors in terms of degree conditions were
known.

Theorem 1(Nishimura [7]). Let k be an integer such that k > 3, and
let G be a connected graph of order n with n > 4k — 3, kn is even, and
minimum degree at least k. Suppose that

maz{dg(u),da(v)} > g

for each pair of nonadjacent vertices u, v of V(G).Then G has a k-factor.
Theorem 2(Chen [3]). Let G be a graph of order n and k be a positive
integer where k > 3, n > 4k — 6 and kn even. If6 > %, then G has a
k-factor including any given edge and a k-factor excluding any given edge.
The following Theorem is essential to the proof of our main theorem.
Theorem 3[5]. Let G be a graph, and g and f be two integer-valued
functions defined on V(G) such that g(z) < f(z) for allz € V(G). If G
has both a (g,f)-factor and a Hamilton path, then G contains a connected
(9, f+1)-factor.
Theorem 4[4]. Let G be a 2-connected graph with v > 3; If for any
two vertices x and y of G such that the distance between T and y is two,

mazdegg(z), dege(y) 2 g,
then G has Hamiltonian cycle.
Extending Theorem 1 and Theorem 2, we prove the following results.

Theorem 5 Let k > 2 be a positive integer and G be a graph of order
n > 4k + 8 with §(G) > k+ 1 and kn even. Suppose that

maz{de(z),dc(y)} > g
for any nonadjacent vertices z and y of V(G). Then G is a k-uniform graph.
Corollary Let k > 2 be a positive integer and G be a graph of order
n > 4k + 8 with 6(G) > k+ 1 and kn even. Suppose that
maz{do(),do(®)} > 5

for any nonadjacent vertices z and y of V(G). Then G has has a connected
[k, k + 1]-factor ezcluding any given edge e.
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2 Lemmas

In order to prove Theorem 5, we need the following lemmas.

Lemma 1(Tutte [8]). Let G be a graph and k be a positive integer.
Then for all S,T CV(G) with SNT =9,

(i) G has a k-factor if and only if 6c(S,T) > 0;

(%) 8g(S,T) = kn(mod 2). where 6c(S,T) =k | S | +dg-s(T) — k |
T | =h(S,T).

Lemma 2 (Chen [3]). Let G be a graph and k > 1 be an integer.
Assume that there exists a real number @ and disjoint subsets S and T of
V(G) satisfying

(i) 6c(S,T)< 6 ;

(%) dc(S*,T*) > 8 for all $*,T* C V(G) such that SC S* C V(G) —
T*CV(G)—Tand | S|+ |TI|<|S*|+|T*|. Thendg-s(u)>k+1
and eg(u,T) < k-1 for u € V(G) — (SUT). Moreover, the order of each
component of V(G) — (SUT) is at least 3.

Lemma 3 (Nishimura [7]) Let m,n,s,t, and wo be nonnegative integers.
Suppose that m > 3, wy 2> 4 and m(wo — 1) < n—s—t — 3. Then it holds
that ]

m=1+s+t < 3[n+2(s+t+1-wo).

Lemma 4(Liu [6]) Let G be a graph and k be a positive integer .
Then G is a k-uniform graph if and only if G is 2-connected and for any
S,TCV(G) with SNT =9,

JG(S, T) .>. 0(5’ T)’

where §(S,T) = 2 if S or T is not independent or SUT # @ and G—(SUT)
has a k-even component; 6(S,T) = 0, otherwise.

3 Proof of Theorem 5

We prove the Theorem 5 by contradiction. Suppose that G is not a k-
uniform graph. By lemma 4, there exist S,T C V(G) such that é¢(S,T) <
6(S,T). Set § = 6(S,T). We choose disjoint subsets S and T of V(G) such
that 8, S and T satisfy the condition of Lemma 4. Since §g(S,T) < 8 and
0c(S5,T) = kn(mod 2), by (ii) of Lemma 1, then

k|S|+) do-s(@)—k|T|-h(S,T)<0-2<0. (1)
z€T
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Let U=G-(SUT) and let C1,C...,C, denote the components of
G —(SUT), where | Cy |<| C; |< ... £| Gy, |. For convenience, Set s =|
S |,t =| T | and m; =| V(C;) |. From Lemma 2 we have dg_s(u) > k +1,
ec(u,T)<k—-1lforanyueV(U)and m; >3 fori=1,2,...,w.

If SUT = 9, then h(S,T) = h(d,0) = 0. Since G is Hamiltonian, G
is 2-connected and so @ = 6(S,T) = 0 by lemma 4. Therefore, we have
6¢(S,T) =0 < 6(S,T) =0, a contradiction.

So we may assume that SUT # 0. If T # 0, we write hy = min{dg_gs(z) |
z € T} = dg-s(z1). And if T — Nr[z1] # 0, let hy = min{dg-s(z) |z €
T — Nr[z:1]} = dg-s(z2). By Lemma 2 we know

n—s—t2>3w. (2)
If w > 2, we have
n—s—t n—-s—t-3
<
m = w y M2 S w—1 (3)
Let p =| Nr[r1] |, s =| S| and ¢t =| T'|, then from (1) we get
ks + (k1 — k)p+ (he — k)t —p) — R(5,T) £ 6 -2 <0. (4)

To prove the Theorem, we distinguish five cases.

Casel. T=0.

Because of SUT # 0, s > 1. By (1), w = 2s, which contradicts the fact
that G is hamiltonian.

Case2. T#0,hy >k+1.

If s =0 and ¢t = 1, then from (1),

Y de-s(z)—k|T|-h(S,T)<6-2<0.
z€T

So h(S,T) > 1 and § = 2. By Lemma 4, there exists a k-even component in
U = G—(SUT). Thusw > 2, contradicting the fact that G is Hamiltonian.
Therefore, s > 1 or t > 2. Then w > ks +t > 2. Clearly,

n—s—t>m +me(w—1)2m; +ma(2s+t—1). (5)

Obviously for any z € V(C)), dg(z) < m1 — 1+ s+¢; for any y € V(C2),
dc(y) <mz—1+s+t. Since z and y are nonadjacent and the assumption
of Theorem 3, so if dg(z) > %, then my — 1+ s+t > 3. By the above
inequality and (5), we get

2my —2+2s+2t>my+ma(2s+t—1)+s+1¢,

which yields
my +mg > 2+ (2mg — 1)s + (mg — 1)t.
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This is a contradiction since s > 1 or ¢t > 2.
If de(y) > %, then ma — 1 + s+t > %. Then we may have

s+t>2+my+ma(2s+t—3). (6)

Since T' # @, if s > 1, obvious we obtain a contradiction from (6). If s =0
and t = 2, then by (1), Z dg-s(z) =k | T | =h(S,T) < 0. Since G is

Hamiltonian and | SUT |— 2, h(S,T) < w £ 2. So there is a contradiction
sincedg(z) >k+1landt=2.Ifs=1andt=1, thenweget2>2+m,
by (6), contradicting the fact that m; > 3. If s+t > 3, from (6) we may
obtain 0 > 2 +m; + (2mg — 1)s + (m2 — 1)t — 3my. This is a contradiction.
Case 3. T#0, 0<hy <k and T — Nr[z;]=0.
In this case, t < hy + 1, i.e. t < k otherwise hy = k. By (4), ks + (hy —
k)t — h(S,T) <0. Since s > k+ 1 — h;, we get

w>k+(k—t)(k—h)

Since (k —t)(k - h1) 20, w = 3.
At first, we claim that there exists y; € V(C)) such that z; and y, are
nonadjacent. Otherwise, for any y € V(C}), 1y € E(G). Then by Lemma

2,

k+1 < dg_s(y) < m1—1+t = eg(z1, V(C1))-1+Nr[21] < dg_s(z1) < k.

This is a contradiction. From (2) and (4), we have
n—s>n—s—t2>3w>3ks+3(hy — k)t > 3ks+3(hy — k)(h1 +1).

So
n > (3k+1)s + 3(hy — k)(hs +1). (M
Therefore, according to the assumption of the Theorem, max{dg(z1),de(y1)} >
%llf de(y1) > %, then 3 <dg(y1) <mi1—14+s+t—-1< -'-‘;3‘?—_—‘+s+t-2.
en

4s>n—4t+12>n—4h; +8. 8)
Combining (7) and (8), we have
i(kf:—l—)-’f < —3h% + (6k — 2)hy — 3k — 2

Let f(h1) = —3h% + (6k — 2)hy — 3k — 2. We can obtain its maximum value
is 3k% + k — 2, which is a contradiction since n > 4k + 8 and k > 2.
If dg(z1) > 5, then s > % — h;. So from (7) we have

3k —1)n

5 < —3h2 + 6khy — 2hy + 3k. (9)
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Let f(h1) = —3h} + 6khy — 2h; + 3k. Using the same method as above, we
can show that its maximum value is 3k2 + k. This leads to 6k? + 10k —4 <
3k2 + k from (9) since n > 4k + 8, which contradicts k > 2.

Case 4. 0< h; <k-—1and T — Np[z;] #0.

Subcase 4.1. 0<h; <hs<k-1.

Since k — hg > 1, (k— ho)(n— s —t) = ks + (h1 — k)p + (ha — k)(t — p).
Then (k — ha)(n—s) — ks > (hy — ho)p = (h1 — h2)(h1+1). So

(k = ho)n = (2k — h2)s + (h1 — h2)(h1 +1). (10)

Since z; and zo are nonadjacent, if dg(z1) > %, then s > § — k1. So

(k—h2)n > (2k—ha)(% —h1)+ (h1 — hg)(hy +1). From the above inequality
we get

(g —1)hg < (2k — 1)hy — h2. (11)

Clearly, when h; = k — 1, the right side of the above inequality attains its
maximum value. Therefore hy = k—1. (9) implies that (28 -1))(k—1) <
(2k — 1)(k — 1) — (k — 1)% since n > 4k + 8, which is a contradiction.

If dg(z2) > 3, then s > 2 — hy, from (10) we obtain 0 < (2k+1 —
2)hg + h1hg — h3 — h} — hy, which contradicts n > 4k + 8 and hy < ha.

Subcase 4.2. 0< hy <k—1and hp =k.

Clearly ¢ > p+1, then by (2) and (4) n—s— (p+1) > 3ks+3(h1 — k)p,
therefore

(3k+1)s <n+ (3k—3hy —1)p—1. (12)

According to the assumption, max{dg(z1),dg(z2)} > %, which means
3>%—h1 01‘8>%'—h2.

If s > 2—hy, then from (12) and p < hy+1. We obtain (3 —h1)(3k+1) <
n+ (3k —3hy — 1)(hy + 1) — 1. Then EEZ1% < (6k — 3)hy — 3h3 + 3k — 2.
Let f(h) = (6k — 3)hy — 3h2 + 3k — 2. Obviously, the maximum value of
f(h1) is 3k? + 1 when hy = k — 1, which contradicts n > 4k +8 and k > 2.

If s> 2—hy =% —k, from (12) (§ — k)(8k +1) <n+ (3k — 3hy —
1)(h; +1) — 1. We can get the desired contradiction by employing the same
argument as above.

Subcase 4.3. hy > k+1and 0 < h; < k—1. Obviously,p < h1+1 < k.

Subcase 4.3.1. p = k. In this case hy = k — 1. From (4) we have
ks —k+ (hg — k)t — k) — h(S5,T) <0. Since s >k+1—h; > 2, w >
h(S,T) > 3k +1 > 7. First we claim that there exists a y € V(C1) such
that 21 and y, are nonadjacent. Otherwise, 2, is adjacent to every vertex
in V(C,). Then by Lemma 2, for any y € V(C}),

k+1 < dg_s(y) € mi—1+k-1 < eg(z1, V(C1))~2+Nrr1] < dg_s(z1)
< k—1.
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This is a contradiction. Hence, if dg(z1) > %, then s > 3 — h;. By (2)
and (4), n —s > 3ks+3(hy —k)k +3. So (3k+1)s <n—3(hy —k)k - 3.
Since s >3 —hy =5~ (k—1), weget (Bk+1)(3 —(k—1)) <n+3k-3,
or &;-93 < 3k? + k — 4, which contradicts the fact that n > 4k + 8.

Therefore we may assume that dg(y2) > g for some y; € V(C,), then
my—1+s+k—1> 3. Sincet 2 p+1 =k+1, 7=5 kt) _14s+k—1> 2.
Then s > 2=dktld In this case by (2) and (4) we obtam n—s—(k+1)> S
3ks + 3(hy — k)k +3. So 3k +1)s <n—(k+1)—3-3(hy — k)k. From
s> n-4ki1 , we get (3k:3)n < (4k-143(3k+1) +2% —4 0r0 < — 21k 21
since n > 4k + 8. This is a contradiction since k > 2.

Subcase 4.3.2. p < k—1. From (4) and s > dg(z1)—h1 > 6(G)—h; >
k +1— hq, we have

2 ks+(h —k)p+ (hy — k)(t —p)
> k(k+1-h)+(hi~k)p+t—p
2 k+(k-h)k-p)+124

Since n — s —t > 3ks + 3(hy — k)p + 3(ha — k)(t — p), we get
(3k+1)s<n+(3k—3h; —1)p-—3. (13)

We may suppose that ma — 1+ s+t > 2 since otherwise there is a contra-
diction. Let wp = 2k — hy +t — p. Then w > wy and wy > 4 in this case.
By Lemma 3 we obtain

g < mo—l4s+t

IA

1
§[n+2(s+t+1-—2k+h1-—t+p)]

= 3ln+2s—2k+hy+p+1)]

This yields
4s>n+4(2k—hy —p—1). (14)

Combining (12) with (13), we get
4[(=2k+h1 +p+1)(3k+ 1) + (3k — 3h; — 1)p - 3]

[3(2k — ha)(k — 1) + (=2k + hy + 1)(3k +1) — 3]
4[dhy — 5k — 2] < 0.

3(k-1)n

A A
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This is a contradiction.

Case 5. hy =k and T — Np[z;] # 0.

Subcase 5.1. h; = kand ho < k+ 2. By (4) h(S,T) > ks, then
from (2) n—s—t > 3ks. Sos < —"k’—'—‘- < :;};_1 At first we may suppose
dg(z2) > §. Then § < dg(z2) < s+he < 455 "'2 % +k+2. Since n > 4k + 8,
6k2 + 6k — 8 < 0, which contradicts k > 2.

Subcase 5.2. h; = k and hy > k + 3. Obviously, t > p. By (4)
ks+(h2—k)(t—p)—h(S,T) <0. If s=0and t—p = 1, thenw > h(5,T) > 3
and t = p+1 < hy +2 = k+2. Using the same method as in case 3, we can
show that there exlsts some y € V(C,) such that y and z, are nonadjacent.
Hence if dg(y) > &, then § < 2=f=t 4 s +1— 1 = 2t2=3 < 2d42b4] Thjs
implies that n < 4k + 2, which contradicts the assumptlon that n > 4k +8.
If dg(z1) > 3, then s > 3 —hy = 2 —k. Sincen—-s>n—-s—-t 2>
3ks+3(ha — k)(t - p), or (3k+1)s < n— 3(hs — k)(t — p). Combining this
inequality with s > 3 —k, we get 3k2 +9k+5 < 0. This is a contradiction.

Therefore we can assume that s > 1 or t —p > 2. Since w > h(S,T) >
ks + (ha — k)(t — p), we can know that in either case w > 4. First suppose
dg(z1) > 3, then s > 3 —hy = 3 —k. Sincen—-s>n-s—-t >
3ks+3(hy — k)(t — p), or (3k+1)s < n—3(hg — k)(t — p). Combining this
inequality with s > % —k, we get 3k?+ 9k +5 < 0. This is a contradiction.

Ifdg(y) > % for any y € V(C1) such that z; and y are nonadjacent, then
by Lemma 3 a.ndt >2wehave 3 <mj—1+s+k—1<2=2=2_]14s4k—1.
So s > n=4k+10 O the other hand , by (4) in this case, (3k+ 1)s<n-2.
Combining the above two inequalities we have (3k — 2)n < (3k + 1)(4k —
10) — 6, which yields 40k < 0 since n > 4k + 8. This is a contradiction .
Finally, this contradiction complete the proof of the Theorem 5.

4 Proof of Corollary

Based on Theorem 5, we know that G has a k factor excluding any given
edge e. Further, according to Theorem 4, G — e contains a Hamiltonian
path. From Theorem 3 the proof of Corollary is complete.
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