A degree condition for k-uniform graphs *

Jiansheng Cai [†]
School of Mathematics and information Sciences, Weifang
University, Weifang 261061, P. R. China

Abstract

Let G be a graph of order $n \ge 4k+8$, where k is a positive integer with kn is even and $\delta(G) > k+1$. We show that if $\max\{d_G(u), d_G(v)\} > n/2$ for each pair of nonadjacent vertices u, v, then G has a connected [k, k+1]-factor excluding any given edge e.

Key words: degree condition; connected [k, k+1]-factor; prescribed properties;

AMS(2000) subject classification: 05C70

1 Introduction

The graphs considered in this paper will be simple undirected graphs. Let G be a graph with vertex set V(G) and edge set E(G). Denote by $d_G(x)$ the degree of a vertex x in G. We use $\delta(G)$ for the minimum degree of G and use G-S for the subgraph of G obtained from G by deleting the vertices in S together with the edges incident with them. Let S and T be disjoint subsets of V(G), denote by $e_G(S,T)$ the number of edges that join a vertex in S and a vertex in T. If $S=\{x\}$, then $e_G(x,T)$ denotes the number of edges that join x and a vertex in T. Let $S,T\subseteq V(G)$ with $S\cap T=\emptyset$. For an integer $k\geq 1$, a component C of $G-(S\cup T)$ is called a k-odd component or k-even component according to $k\mid V(C)\mid +e_G(V(C),T)$ is odd or even. We denote by h(S,T) the number of k-odd components of $G-(S\cup T)$. A k-factor of G is a spanning subgraph F of G such that $d_F(x)=k$ for each $x\in V(G)$. A graph G is called a k-uniform graph if for each edge of E(G),

^{*}This work is supported by natural science foundation of shandong province(No.ZR2009AM009), NSFC(No.11001055)

[†]The corresponding author: Jiansheng Cai, mailaddress: School of Mathematics and information science, Weifang University, weifang, 261061, P.R.China. E-mail: health-cai@163.com

there is a k-factor containing this edge and another k-factor excluding it. Notations and definitions not given here can be found in [1].

Many authors have investigated (g, f)-factors and f-factors in [2,3,6,7,9]. And The following theorems of k-factors in terms of degree conditions were known.

Theorem 1(Nishimura [7]). Let k be an integer such that $k \geq 3$, and let G be a connected graph of order n with $n \geq 4k - 3$, kn is even, and minimum degree at least k. Suppose that

$$max\{d_G(u), d_G(v)\} \ge \frac{n}{2}$$

for each pair of nonadjacent vertices u, v of V(G). Then G has a k-factor.

Theorem 2(Chen [3]). Let G be a graph of order n and k be a positive integer where $k \geq 3$, $n \geq 4k - 6$ and kn even. If $\delta > \frac{n}{2}$, then G has a k-factor including any given edge and a k-factor excluding any given edge.

The following Theorem is essential to the proof of our main theorem.

Theorem 3[5]. Let G be a graph, and g and f be two integer-valued functions defined on V(G) such that $g(x) \leq f(x)$ for all $x \in V(G)$. If G has both a (g,f)-factor and a Hamilton path, then G contains a connected (g, f+1)-factor.

Theorem 4[4]. Let G be a 2-connected graph with $\nu \geq 3$; If for any two vertices x and y of G such that the distance between x and y is two,

$$maxdeg_G(x), deg_G(y) \ge \frac{\nu}{2},$$

then G has Hamiltonian cycle.

Extending Theorem 1 and Theorem 2, we prove the following results.

Theorem 5 Let $k \geq 2$ be a positive integer and G be a graph of order $n \geq 4k + 8$ with $\delta(G) > k + 1$ and kn even. Suppose that

$$max\{d_G(x),d_G(y)\} > \frac{n}{2}$$

for any nonadjacent vertices x and y of V(G). Then G is a k-uniform graph. Corollary Let $k \geq 2$ be a positive integer and G be a graph of order $n \geq 4k + 8$ with $\delta(G) > k + 1$ and kn even. Suppose that

$$\max\{d_G(x),d_G(y)\} > \frac{n}{2}$$

for any nonadjacent vertices x and y of V(G). Then G has a connected [k, k+1]-factor excluding any given edge e.

2 Lemmas

In order to prove Theorem 5, we need the following lemmas.

Lemma 1(Tutte [8]). Let G be a graph and k be a positive integer. Then for all $S, T \subseteq V(G)$ with $S \cap T = \emptyset$,

(i) G has a k-factor if and only if $\delta_G(S,T) \geq 0$;

(ii) $\delta_G(S,T) \equiv kn \pmod{2}$. where $\delta_G(S,T) = k \mid S \mid +d_{G-S}(T) - k \mid T \mid -h(S,T)$.

Lemma 2 (Chen [3]). Let G be a graph and $k \ge 1$ be an integer. Assume that there exists a real number θ and disjoint subsets S and T of V(G) satisfying

(i) $\delta_G(S,T) < \theta$;

(ii) $\delta_G(S^*,T^*) \geq \theta$ for all $S^*,T^* \subseteq V(G)$ such that $S \subseteq S^* \subseteq V(G) - T^* \subseteq V(G) - T$ and $|S| + |T| < |S^*| + |T^*|$. Then $d_{G-S}(u) \geq k+1$ and $e_G(u,T) \leq k-1$ for $u \in V(G) - (S \cup T)$. Moreover, the order of each component of $V(G) - (S \cup T)$ is at least 3.

Lemma 3 (Nishimura [7]) Let m,n,s,t, and w_0 be nonnegative integers. Suppose that $m \geq 3$, $w_0 \geq 4$ and $m(w_0 - 1) \leq n - s - t - 3$. Then it holds that

 $m-1+s+t \leq \frac{1}{3}[n+2(s+t+1-w_0)].$

Lemma 4(Liu [6]) Let G be a graph and k be a positive integer. Then G is a k-uniform graph if and only if G is 2-connected and for any $S,T\subseteq V(G)$ with $S\cap T=\emptyset$,

$$\delta_G(S,T) \geq \theta(S,T),$$

where $\theta(S,T)=2$ if S or T is not independent or $S\cup T\neq\emptyset$ and $G-(S\cup T)$ has a k-even component; $\theta(S,T)=0$, otherwise.

3 Proof of Theorem 5

We prove the Theorem 5 by contradiction. Suppose that G is not a k-uniform graph. By lemma 4, there exist $S, T \subseteq V(G)$ such that $\delta_G(S, T) < \theta(S, T)$. Set $\theta = \theta(S, T)$. We choose disjoint subsets S and T of V(G) such that θ, S and T satisfy the condition of Lemma 4. Since $\delta_G(S, T) < \theta$ and $\delta_G(S, T) = kn \pmod{2}$, by (ii) of Lemma 1, then

$$k \mid S \mid + \sum_{x \in T} d_{G-S}(x) - k \mid T \mid -h(S,T) \le \theta - 2 \le 0.$$
 (1)

Let $U=G-(S\cup T)$ and let $C_1,C_2\ldots,C_{\omega}$ denote the components of $G-(S\cup T)$, where $\mid C_1\mid\leq\mid C_2\mid\leq\ldots\leq\mid C_{\omega}\mid$. For convenience, Set $s=\mid S\mid,t=\mid T\mid$ and $m_i=\mid V(C_i)\mid$. From Lemma 2 we have $d_{G-S}(u)\geq k+1$, $e_G(u,T)\leq k-1$ for any $u\in V(U)$ and $m_i\geq 3$ for $i=1,2,\ldots,\omega$.

If $S \cup T = \emptyset$, then $h(S,T) = h(\emptyset,\emptyset) = 0$. Since G is Hamiltonian, G is 2-connected and so $\theta = \theta(S,T) = 0$ by lemma 4. Therefore, we have $\delta_G(S,T) = 0 < \theta(S,T) = 0$, a contradiction.

So we may assume that $S \cup T \neq \emptyset$. If $T \neq \emptyset$, we write $h_1 = \min\{d_{G-S}(x) \mid x \in T\} = d_{G-S}(x_1)$. And if $T - N_T[x_1] \neq \emptyset$, let $h_2 = \min\{d_{G-S}(x) \mid x \in T - N_T[x_1]\} = d_{G-S}(x_2)$. By Lemma 2 we know

$$n - s - t \ge 3\omega. \tag{2}$$

If $\omega \geq 2$, we have

$$m_1 \le \frac{n-s-t}{\omega}, \quad m_2 \le \frac{n-s-t-3}{\omega-1}.$$
 (3)

Let $p = |N_T[x_1]|$, s = |S| and t = |T|, then from (1) we get

$$ks + (h_1 - k)p + (h_2 - k)(t - p) - h(S, T) \le \theta - 2 \le 0.$$
 (4)

To prove the Theorem, we distinguish five cases.

Case 1. $T = \emptyset$.

Because of $S \cup T \neq \emptyset$, $s \geq 1$. By (1), $\omega \geq 2s$, which contradicts the fact that G is hamiltonian.

Case 2. $T \neq \emptyset, h_1 \geq k+1$.

If s = 0 and t = 1, then from (1),

$$\sum_{x \in T} d_{G-S}(x) - k \mid T \mid -h(S,T) \le \theta - 2 \le 0.$$

So $h(S,T) \ge 1$ and $\theta = 2$. By Lemma 4, there exists a k-even component in $U = G - (S \cup T)$. Thus $\omega \ge 2$, contradicting the fact that G is Hamiltonian. Therefore, $s \ge 1$ or $t \ge 2$. Then $\omega \ge ks + t \ge 2$. Clearly,

$$n-s-t \ge m_1 + m_2(\omega - 1) \ge m_1 + m_2(2s+t-1). \tag{5}$$

Obviously for any $x \in V(C_1)$, $d_G(x) \le m_1 - 1 + s + t$; for any $y \in V(C_2)$, $d_G(y) \le m_2 - 1 + s + t$. Since x and y are nonadjacent and the assumption of Theorem 3, so if $d_G(x) > \frac{n}{2}$, then $m_1 - 1 + s + t > \frac{n}{2}$. By the above inequality and (5), we get

$$2m_1-2+2s+2t>m_1+m_2(2s+t-1)+s+t$$

which yields

$$m_1 + m_2 > 2 + (2m_2 - 1)s + (m_2 - 1)t.$$

This is a contradiction since $s \ge 1$ or $t \ge 2$.

If $d_G(y) > \frac{n}{2}$, then $m_2 - 1 + s + t > \frac{n}{2}$. Then we may have

$$s+t>2+m_1+m_2(2s+t-3).$$
 (6)

Since $T \neq \emptyset$, if $s \geq 1$, obvious we obtain a contradiction from (6). If s = 0 and t = 2, then by (1), $\sum_{x \in T} d_{G-S}(x) - k \mid T \mid -h(S,T) \leq 0$. Since G is

Hamiltonian and $|S \cup T| = 2$, $h(S,T) \le \omega \le 2$. So there is a contradiction since $d_G(x) > k+1$ and t=2. If s=1 and t=1, then we get $2 > 2 + m_1$ by (6), contradicting the fact that $m_1 \ge 3$. If $s+t \ge 3$, from (6) we may obtain $0 > 2 + m_1 + (2m_2 - 1)s + (m_2 - 1)t - 3m_2$. This is a contradiction.

Case 3. $T \neq \emptyset$, $0 \leq h_1 \leq k$ and $T - N_T[x_1] = \emptyset$.

In this case, $t \le h_1 + 1$, i.e. $t \le k$ otherwise $h_1 = k$. By (4), $ks + (h_1 - k)t - h(S,T) \le 0$. Since $s > k + 1 - h_1$, we get

$$\omega > k + (k-t)(k-h_1)$$

Since $(k-t)(k-h_1) \geq 0$, $\omega \geq 3$.

At first, we claim that there exists $y_1 \in V(C_1)$ such that x_1 and y_1 are nonadjacent. Otherwise, for any $y \in V(C_1)$, $x_1y \in E(G)$. Then by Lemma 2,

$$k+1 \le d_{G-S}(y) \le m_1-1+t = e_G(x_1, V(C_1))-1+N_T[x_1] \le d_{G-S}(x_1) \le k.$$

This is a contradiction. From (2) and (4), we have

$$n-s > n-s-t \ge 3\omega \ge 3ks + 3(h_1-k)t \ge 3ks + 3(h_1-k)(h_1+1).$$

So

$$n > (3k+1)s + 3(h_1 - k)(h_1 + 1).$$
 (7)

Therefore, according to the assumption of the Theorem, $\max\{d_G(x_1), d_G(y_1)\} > \frac{n}{2}$. If $d_G(y_1) > \frac{n}{2}$, then $\frac{n}{2} < d_G(y_1) \le m_1 - 1 + s + t - 1 \le \frac{n-s-t}{3} + s + t - 2$. Then

$$4s > n - 4t + 12 \ge n - 4h_1 + 8. \tag{8}$$

Combining (7) and (8), we have

$$\frac{3(k-1)n}{4} < -3h_1^2 + (6k-2)h_1 - 3k - 2$$

Let $f(h_1) = -3h_1^2 + (6k-2)h_1 - 3k - 2$. We can obtain its maximum value is $3k^2 + k - 2$, which is a contradiction since $n \ge 4k + 8$ and $k \ge 2$.

If $d_G(x_1) > \frac{n}{2}$, then $s > \frac{n}{2} - h_1$. So from (7) we have

$$\frac{(3k-1)n}{2} < -3h_1^2 + 6kh_1 - 2h_1 + 3k. \tag{9}$$

Let $f(h_1) = -3h_1^2 + 6kh_1 - 2h_1 + 3k$. Using the same method as above, we can show that its maximum value is $3k^2 + k$. This leads to $6k^2 + 10k - 4 < 3k^2 + k$ from (9) since $n \ge 4k + 8$, which contradicts $k \ge 2$.

Case 4. $0 \le h_1 \le k-1 \text{ and } T - N_T[x_1] \ne \emptyset$.

Subcase 4.1. $0 \le h_1 \le h_2 \le k-1$.

Since $k - h_2 \ge 1$, $(k - h_2)(n - s - t) \ge ks + (h_1 - k)p + (h_2 - k)(t - p)$. Then $(k - h_2)(n - s) - ks > (h_1 - h_2)p \ge (h_1 - h_2)(h_1 + 1)$. So

$$(k-h_2)n \ge (2k-h_2)s + (h_1-h_2)(h_1+1). \tag{10}$$

Since x_1 and x_2 are nonadjacent, if $d_G(x_1) > \frac{n}{2}$, then $s > \frac{n}{2} - h_1$. So $(k-h_2)n \ge (2k-h_2)(\frac{n}{2}-h_1) + (h_1-h_2)(h_1+1)$. From the above inequality we get

 $\left(\frac{n}{2}-1\right)h_2 < (2k-1)h_1 - h_1^2. \tag{11}$

Clearly, when $h_1 = k - 1$, the right side of the above inequality attains its maximum value. Therefore $h_2 = k - 1$. (9) implies that $((\frac{4k+8}{2}-1))(k-1) < (2k-1)(k-1) - (k-1)^2$ since $n \ge 4k+8$, which is a contradiction.

If $d_G(x_2) > \frac{n}{2}$, then $s > \frac{n}{2} - h_2$, from (10) we obtain $0 < (2k + 1 - \frac{n}{2})h_2 + h_1h_2 - h_2^2 - h_1^2 - h_1$, which contradicts $n \ge 4k + 8$ and $h_1 \le h_2$.

Subcase 4.2. $0 \le h_1 \le k-1$ and $h_2 = k$.

Clearly $t \ge p+1$, then by (2) and (4) $n-s-(p+1) \ge 3ks+3(h_1-k)p$, therefore

$$(3k+1)s \le n + (3k-3h_1-1)p - 1. \tag{12}$$

According to the assumption, $\max\{d_G(x_1), d_G(x_2)\} > \frac{n}{2}$, which means $s > \frac{n}{2} - h_1$ or $s > \frac{n}{2} - h_2$.

If $s > \frac{n}{2} - h_1$, then from (12) and $p \le h_1 + 1$. We obtain $(\frac{n}{2} - h_1)(3k + 1) < n + (3k - 3h_1 - 1)(h_1 + 1) - 1$. Then $\frac{(3k-1)n}{2} < (6k-3)h_1 - 3h_1^2 + 3k - 2$. Let $f(h_1) = (6k-3)h_1 - 3h_1^2 + 3k - 2$. Obviously, the maximum value of $f(h_1)$ is $3k^2 + 1$ when $h_1 = k - 1$, which contradicts $n \ge 4k + 8$ and $k \ge 2$.

If $s > \frac{n}{2} - h_2 = \frac{n}{2} - k$, from (12) $(\frac{n}{2} - k)(3k + 1) < n + (3k - 3h_1 - 1)(h_1 + 1) - 1$. We can get the desired contradiction by employing the same argument as above.

Subcase 4.3. $h_2 \ge k+1$ and $0 \le h_1 \le k-1$. Obviously, $p \le h_1+1 \le k$. Subcase 4.3.1. p=k. In this case $h_1=k-1$. From (4) we have $ks-k+(h_2-k)(t-k)-h(S,T)\le 0$. Since $s>k+1-h_1\ge 2$, $\omega\ge h(S,T)\ge 3k+1\ge 7$. First we claim that there exists a $y_2\in V(C_1)$ such that x_1 and y_2 are nonadjacent. Otherwise, x_1 is adjacent to every vertex in $V(C_1)$. Then by Lemma 2, for any $y\in V(C_1)$,

$$k+1 \leq d_{G-S}(y) \leq m_1 - 1 + k - 1 \leq e_G(x_1, V(C_1)) - 2 + N_T[x_1] \leq d_{G-S}(x_1) \leq k - 1.$$

This is a contradiction. Hence, if $d_G(x_1) > \frac{n}{2}$, then $s > \frac{n}{2} - h_1$. By (2) and (4), $n - s \ge 3ks + 3(h_1 - k)k + 3$. So $(3k + 1)s \le n - 3(h_1 - k)k - 3$. Since $s > \frac{n}{2} - h_1 = \frac{n}{2} - (k - 1)$, we get $(3k + 1)(\frac{n}{2} - (k - 1)) < n + 3k - 3$, or $\frac{(3k-1)n}{2} < 3k^2 + k - 4$, which contradicts the fact that $n \ge 4k + 8$.

Therefore we may assume that $d_G(y_2) > \frac{n}{2}$ for some $y_2 \in V(C_1)$, then $m_1 - 1 + s + k - 1 > \frac{n}{2}$. Since $t \geq p + 1 = k + 1$, $\frac{n - s - (k + 1)}{3} - 1 + s + k - 1 > \frac{n}{2}$. Then $s > \frac{n - 4k + 14}{4}$. In this case by (2) and (4) we obtain $n - s - (k + 1) \geq 3ks + 3(h_1 - k)k + 3$. So $(3k + 1)s \leq n - (k + 1) - 3 - 3(h_1 - k)k$. From $s > \frac{n - 4k + 14}{4}$, we get $\frac{(3k - 3)n}{4} < \frac{(4k - 14)(3k + 1)}{4} + 2k - 4$, or $0 < -\frac{21k}{4} - \frac{27}{4}$ since $n \geq 4k + 8$. This is a contradiction since $k \geq 2$.

Subcase 4.3.2. $p \le k-1$. From (4) and $s \ge d_G(x_1) - h_1 > \delta(G) - h_1 > k+1-h_1$, we have

$$\omega \geq ks + (h_1 - k)p + (h_2 - k)(t - p)$$

$$> k(k + 1 - h_1) + (h_1 - k)p + t - p$$

$$\geq k + (k - h_1)(k - p) + 1 \geq 4.$$

Since
$$n-s-t \ge 3ks + 3(h_1-k)p + 3(h_2-k)(t-p)$$
, we get
$$(3k+1)s \le n + (3k-3h_1-1)p - 3. \tag{13}$$

We may suppose that $m_2 - 1 + s + t > \frac{n}{2}$ since otherwise there is a contradiction. Let $\omega_0 = 2k - h_1 + t - p$. Then $\omega \ge \omega_0$ and $\omega_0 \ge 4$ in this case. By Lemma 3 we obtain

$$\frac{n}{2} < m_2 - 1 + s + t$$

$$\leq \frac{1}{3} [n + 2(s + t + 1 - 2k + h_1 - t + p)]$$

$$= \frac{1}{3} [n + 2(s - 2k + h_1 + p + 1)].$$

This yields

$$4s > n + 4(2k - h_1 - p - 1). (14)$$

Combining (12) with (13), we get

$$3(k-1)n < 4[(-2k+h_1+p+1)(3k+1)+(3k-3h_1-1)p-3] \leq [3(2k-h_1)(k-1)+(-2k+h_1+1)(3k+1)-3] = 4[4h_1-5k-2] < 0.$$

This is a contradiction.

Case 5. $h_1 = k$ and $T - N_T[x_1] \neq \emptyset$.

Subcase 5.1. $h_1 = k$ and $h_2 \le k + 2$. By (4) $h(S,T) \ge ks$, then from (2) $n - s - t \ge 3ks$. So $s \le \frac{n-t}{3k+1} \le \frac{n-2}{3k+1}$. At first we may suppose $d_G(x_2) > \frac{n}{2}$. Then $\frac{n}{2} < d_G(x_2) \le s + h_2 \le \frac{n-2}{3k+1} + k + 2$. Since $n \ge 4k + 8$, $6k^2 + 6k - 8 < 0$, which contradicts $k \ge 2$.

Subcase 5.2. $h_1=k$ and $h_2\geq k+3$. Obviously, t>p. By (4) $ks+(h_2-k)(t-p)-h(S,T)\leq 0$. If s=0 and t-p=1, then $\omega\geq h(S,T)\geq 3$ and $t=p+1\leq h_1+2=k+2$. Using the same method as in case 3, we can show that there exists some $y\in V(C_1)$ such that y and x_1 are nonadjacent. Hence if $d_G(y)>\frac{n}{2}$, then $\frac{n}{2}<\frac{n-s-t}{3}+s+t-1=\frac{n+2t-3}{3}\leq\frac{n+2k+1}{3}$. This implies that n<4k+2, which contradicts the assumption that $n\geq 4k+8$. If $d_G(x_1)>\frac{n}{2}$, then $s>\frac{n}{2}-h_1=\frac{n}{2}-k$. Since $n-s>n-s-t\geq 3ks+3(h_2-k)(t-p)$, or $(3k+1)s< n-3(h_2-k)(t-p)$. Combining this inequality with $s>\frac{n}{2}-k$, we get $3k^2+9k+5<0$. This is a contradiction.

Therefore we can assume that $s \ge 1$ or $t-p \ge 2$. Since $\omega \ge h(S,T) \ge ks + (h_2 - k)(t-p)$, we can know that in either case $\omega \ge 4$. First suppose $d_G(x_1) > \frac{n}{2}$, then $s > \frac{n}{2} - h_1 = \frac{n}{2} - k$. Since $n-s > n-s-t \ge 3ks + 3(h_2 - k)(t-p)$, or $(3k+1)s < n-3(h_2 - k)(t-p)$. Combining this inequality with $s > \frac{n}{2} - k$, we get $3k^2 + 9k + 5 < 0$. This is a contradiction.

If $d_G(y)>\frac{n}{2}$ for any $y\in V(C_1)$ such that x_1 and y are nonadjacent, then by Lemma 3 and $t\geq 2$ we have $\frac{n}{2}< m_1-1+s+k-1\leq \frac{n-s-2}{4}-1+s+k-1$. So $s>\frac{n-4k+10}{3}$. On the other hand , by (4) in this case, $(3k+1)s\leq n-2$. Combining the above two inequalities we have (3k-2)n<(3k+1)(4k-10)-6, which yields 40k<0 since $n\geq 4k+8$. This is a contradiction . Finally, this contradiction complete the proof of the Theorem 5.

4 Proof of Corollary

Based on Theorem 5, we know that G has a k factor excluding any given edge e. Further, according to Theorem 4, G-e contains a Hamiltonian path. From Theorem 3 the proof of Corollary is complete.

Acknowledgement. We would like to thank the referees for providing some very helpful suggestions for revising this paper.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London (1976).

- [2] J. Cai and G. Liu, Binding number and Hamiltonian (g, f)-factors in graphs, J. Appl. Math. & Computing, Vol. 25(2007), No. 1-2, pp, 383-388.
- [3] C.P. Chen, Minimum degree and binding number for k-factors with prescribed properties. *Acta Math. Scientia* 12(1992), 374-380.
- [4] G.Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37(1984) 221-227.
- [5] G. Li, Y. Xu, C. Chen and Z. Liu, On connected (g, f + 1)-factors in graphs, Combinatorica, 25(2005), 393-405.
- [6] G.Liu and Y.Liu, On (g, f)-uniform graphs, Acta Math. Appl. Sinica, English Ser.21(2005),57-76.
- [7] T. Nishmura, A degree condition for the existence of k-factors, J. Graph Theory, 16(1992), 141-151.
- [8] W. T. Tutte, The factor of graphs, Can. T. Math 4(1952), 314-328.
- [9] Y. Zhu and G. Liu, Some results on binding number and fractional perfect matching, J. Appl. Math. & Computing, Vol. 25(2007), No. 1-2, pp, 339-344.