On Metric Dimension of Graphs
and Their Complements

Linda Eroh!, Cong X. Kang? and Eunjeong Yi?®
! University of Wisconsin Oshkosh, Oshkosh, WI 54801, USA
23Texas A&M University at Galveston, Galveston, TX 77553, USA
1eroh@w.:osh.edu; 2Ica,n_qc@ta,mug.edu,; 3yie@tamug.edu

December 30, 2011

Abstract

The metric dimension of a graph G, denoted by dim(G), is the
minimum number of vertices such that all vertices are uniquely de-
termined by their distances to the chosen vertices. For a graph
G and its complement G, each of order n > 4 and connected, we
show that 2 < dim(G) + dim(G) < 2(n — 3). It is readily seen that
dim(G) + dim(G) = 2 if and only if n = 4. We characterize graphs
satisfying dim(G)+dim(G) = 2(n—3) when G is a tree or a unicyclic
graph.
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1 Introduction

Let G = (V(G), E(G)) be a finite, simple, undirected, connected graph of order
[V(G)] = n > 2 and size |E(G)|. For W C V(G), we denote by (W) the sub-
graph of G induced by W. The degree of a vertex v € V(G) is the the number
of edges incident to the vertex v; an end-vertez is a vertex of degree one, and a
support vertez is a vertex that is adjacent to an end-vertex. We denote by A(G)
the maximum degree of a graph G. We denote by Kn, Cn, and P, the complete
graph, the cycle, and the path, respectively, on n vertices. The distance between
vertices v,w € V(G), denoted by dc(v,w), is the length of the shortest path
between v and w; we omit G when ambiguity is not a concern. The complement
of G, denote by G, is the graph such that V(G) = V(G), E(G)UE(G) = E(K.),
and E(G)NE(G) = 0. A vertex = € V(G) resolves a pair of vertices v,w € V(G)
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if d(v,z) # d(w,z). A set of vertices S C V(G) resolves G if every pair of dis-
tinct vertices of G is resolved by some vertex in S; then S is called a resolving
set of G. For an ordered set S = {u1,u2,...,ux} C V(G) of distinct vertices,
the metric code (or code, for short) of v € V(G) with respect to S is the k-vector
(d(v,u1),d(v,u2),...,d(v,ux)); it is denoted by codes(v), and we drop S if the
meaning is clear in context. The metric dimension of G, denoted by dim(G), is
the minimum cardinality over all resolving sets of G. For other terminologies in
graph theory, refer to [3].

Slater [14, 15] introduced the concept of a resolving set for a connected graph un-
der the term locating set. He referred to a minimum resolving set as a reference
set, and the cardinality of a minimum resolving set as the location number of a
graph. Independently, Harary and Melter in (8] studied these concepts under the
term metric dimension. Since metric dimension is suggestive of the dimension of
a vector space in linear algebra, sometimes a minimum resolving set of G is called
a basis for G. Metric dimension as a graph parameter has numerous applications,
among them are robot navigation [11], sonar [14], combinatorial optimization [13],
and pharmaceutical chemistry [4]. In [7], it is noted that determining the metric
dimension of a graph is an NP-hard problem. Metric dimension has been heavily
studied; for a survey, see [6]. For more on metric dimension in graphs, see [2], [4],
i, (7], (8], (9], (1), (12), [14], [15].

The problem of characterizing connected graphs G of order n for which dim(G)=
n — 38 is posed in [1]. An anonymous referee pointed out that our result (stated
in the following paragraph) when G is a tree is a special case of Theorem 2.14
of the paper [9], “Extremal Graph Theory for Metric Dimension and Diameter”;
see Remark 3.4. Also, it came to our attention after an earlier draft of this paper
that, in March of 2011, the paper [10], “Characterization of n-Vertex Graphs
with Metric Dimension n — 3”, was posted on the arXiv. Though this present
paper may be regarded as dealing with a very special case of the dim(G)=n —3
problem, our approach here is different from that taken in [9] or [10]. Further, our
characterization here is simple and explicit, and it is thus of independent interest.

In this paper, we study metric dimension of graphs and their complements. For
connected graphs G and G of order n > 4, we show that 2 < dim(G) + dim(G) £
2(n ~ 3). We show that dim(G) + dim(G) = 2 if and only if n = 4. We further
characterize graphs satisfying dim(G) + dim(G) = 2(n — 3) when G is a tree or a
unicyclic graph.

2 Bounds for dim(G) + dim(G)

We recall some results obtained in {4].

Theorem 2.1. [{] Let G be a connected graph of order n > 2. Then
(a) dim(G) =1 if and only if G = Py,
(b) dim(G) = n —1 if and only if G = Ka,
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(c) forn>4,dim(G)=n—-2ifand only if G= K, (5,t > 1),C =K, + K,
(s2>1,t22), or G= K, + (K1 UK:) (s,t > 1); here, A+ B denotes the
graph obtained from the disjoint union of graphs A and B by joining every
vertez of A with every vertex of B.

Note that if dim(G) = n — 2 then G is disconnected. So, we have the following
Theorem 2.2. Let G and G be connected graphs of order n > 4. Then

2 < dim(G) + dim(G) < 2(n - 3),
and both bounds are sharp. Moreover, dim(G) + dim(G) = 2 if and only if n = 4

Proof. Let G and G be connected graphs of order n > 4. Then 1 < dim(G), dim(G)
< n -3, and thus the bounds follow. If G =G = P; (the only possible decompo-
sition when n = 4, see Figure 1), then dim(G) = dim(G) = 1, achieving both the
upper and the lower bounds of Theorem 2.2. If G = G = C5 (see Figure 2), then
dim(G) + dlm(G) achieves the upper bound of Theorem 2.2. Next, we show that
dim(G) + dim(G) = 2 if and only if n = 4. Notice that

dim(G) + _d_im(-G") =2 <= dim(G) = dim(G) =1 _
<= G = G = P, by Theorem 2.1 (a) <= |E(G)| = |E(G)|=n-1.

Now, |E(Ka)| = 2271 = 2(n — 1), which implies that n = 4, O

XX

Figure 1: A graph and its complement that achieve the upper and lower
bounds of Theorem 2.2

@O

Figure 2: A graph and its complement that achieve the upper bound of
Theorem 2.2

Remark 2.8. We stress that, in order for both G and G to be connected and of
order n, dim(G) + dim(G) = 2(n - 3) is eguivalent to dim(G) = n — 3 = dim(G).
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3 Characterization of dim(G)+dim(G)=2(n-3)
when G is a tree

The following definitions are stated in [4]. Fix a graph G. A vertex of degree at
least three is called a major vertez. An end-vertex u is called e terminal vertez
of a major vertez v if d(u,v) < d(u,w) for every other major vertex w. The
terminal degree of a major vertex v is the number of terminal vertices of v. A
major vertex v is an ezterior major vertex if it has positive terminal degree. Let
o(G) denote the sum of terminal degrees of all major vertices of G, and let ez(G)
denote the number of exterior major vertices of G. Two vertices u,v € V(G) are
called twins if N(u) \ {v} = N(v)\ {u}, where N(u) is the set of all vertices adja-
cent to u in G; notice that for any set S with SN {u,v} = 0, codes(u) = codes(v).

Theorem 3.1. [4] If T is a tree that is not a path, then dim(T) = o(T) —ex(T).
Next we state the following

Observation 3.2. Let G and G be connected graphs of order n > 4.
(a) If G is Pa, then dim(G) + dim(G) = 2(n — 3) if and only if n = 4.
(b) If G is Cn, then dim(G) + dim(G) = 2(n — 3) if and only if n = 5.

Theorem 3.3. Let G and ( G be connected graphs of order n > 5. Also, let G be a
tree. Then dim(G)+dim(G) = 2(n — 3) if and only if G is a tree with ex(G) = 1,
o(G) = n — 2, and one support vertex of degree two.

Proof. (=) By Observation 3.2 (a), if G is P, for n > 5, then dim(G)+dim(G) <
2(n—3). Let G be a tree that is not a path such that dim(G) = n-3. If ex(G) > 2,
then o(G) € n — 2. By Theorem 3.1, dim(G) < n — 4. So, ex(G) < 1. Since G is
not a path, ex(G) =1 and 0(G) < n—1. If6(G) =n—1, then A(G) =n -1,
but then G is disconnected. So, 0(G) < n — 2. To achieve dim(G) = n — 3, we
have o(G) = n — 2. So, we have only one vertex, say s, in G that is neither an
end-vertex nor a major exterior vertex; hence, s is a support vertex of degree two.

(<=) Let V(G) = {v,s,41,%2,...,€n-2} such that v is the major exterior vertex,
38 is the support vertex of degree two, and £1,£2,...,£.—2 are end-vertices of G
with 8¢y € E(G) (see Figure 3). By Theorem 3] we have dim(G) = n - 3.
Next, we consider dim(G). We denote by S a resolving set for G. Since no
vertex in {v,s,¢;} distinguishes any two vertices in {{; | 2 < j < n — 2} and
that ({€2,%3,...,8n-2}) = Kn_3 (i.., any two vertices in {¢; | 2 < j < n -2}
are twins), (n — 4) vertices of {¢; | 2 < j < n — 2} must belong to S. Without
loss of generality, let So = {£2,%3,...,8n-3} C S. Since codeg,(&1) = codeg0 (s)
and dg(£1,8n-2) = dg(s,€n-2), One vertex in {v,s,€,} must belong to S. Thus,
|S| > n — 3. On the other hand, one can readily check that {¢; |1 <i<n -3}
forms a resolving set for G, and thus dlm(G') < n—3. Therefore, if G is a tree as
described in this theorem, dim(G) = dim(G) =n - 3. a
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Figure 3: A tree T of order n = 7 satisfying dim(T) + dim(T) = 2(n — 3)

Remark 8.4. Theorem 2.14 of [9] contains a characterization for a connected
graph of order n and diameter D achieving metric dimension n—D. As mentioned
in the introduction, the anonymous referee pointed out that the family of trees
described in Theorem 3.9 has been implicitly shown in Theorem 2.14 of [9]. First,
one notices that a tree of order n and diameter D = 2 must be K1,n—1 forn > 3,
which has metric dimension n — 2. It thus suffices to let D = 3 and let G be a
tree in Theorem 2.14 of [9], in order to obtain our result in Theorem 3.3. See [9]

for details.

4 Characterization of dim(G)+dim(G)=2(n—3)
when G is a unicyclic graph

The cycle rank of a graph G, denoted by 7(G), is defined as |E(G)| - |[V(G)|+1.
For a tree T, 7(T) = 0. If a graph G has 7(G) = 1, we call it a unicyclic graph.
By T + e, we shall mean a unicyclic graph obtained from a tree T by attaching
a new edge e.

Theorem 4.1. [12] If T is a tree of order at least three and e is an edge of T,
then

dim(T") — 2 £ dim(T + ) < dim(T) + 1.
Now, we state our main characterization theorem whose proof relies upon results
which will follow the main theorem.

Theorem 4.2. Let G and G be connected | graphs of order n > 5. Further, let G
be a unicyclic graph. Then dim(G) + dim(G) = 2(n — 3) if and only if
() n=35, or
(i) n 2 6 and G is isomorphic to H, where V(H) = {v,s,01,83,...,8n_2} and
E(H) = {vt; |2 <i<n-2}U{vs,sl,016}.

Proof. Eet G and G be connected graphs of order n > 5. Then A(G)<n-2
and A(G) < n—2. Let S be a resolving set for G and let S be a resolving set for
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Figure 4: Unicyclic graph G =T + e of order n = 7 satisfying dim(G) =
dim(G)=n-3

(<=) By Lemma 4.3, if n = 5, dim(G) = dim(G) = 2, and hence dim(G) +
dim(G) = 4 = 2(n — 3). Next, we consider n > 6. Suppose that G = H is the
graph described in (ii); see Figure 4; then it is also the graph (B) in Figure 7. For
the proof of dim(H) = dim(H) = n—3, see Case 1 in the proof of Proposition 4.7.

(=) Write G = T + e, where T is a tree on n > 5 vertices and e € E(T), and
suppose n # 5; i.e.,, n > 6.

Case 1. ex(T) > 3: In this case, ¢(T) < n — 3, and thus dim(T) < n — 6 by
Theorem 3.1. By Theorem 4.1, dim(T +e¢) < n —5, and thus diim(G) + dim(G) <
2(n - 3).

Case 2. ex(T) = 2: By Proposition 4.5, dim(G) + dim(G) < 2(n - 3).

Case 3. ex(T) = 1: By Proposition 4.7, if dim(G) + dim(G) = 2(n — 3), then G
is isomorphic to H, as specified in the statement of the present theorem.

Case §. ex(T) = 0: That is, T = P, for n 2 5. By Lemma 4.4, if G is P, + e,
then dim(G) + dim(G) = 2(n — 3) if and only if n = 5. O

Lemma 4.8. Let G and G be _connected graphs of order 5. If G is a unicyclic
graph, then dim(G) = 2 = dim(G).

Proof. Since G is not a path and since G needs to be connected, by the classifi-
cation Theorem 2.1, dim(G) = 2. Since G (the complement of a unicyclic graph
in K3) can not be a path and its complement (namely G) is connected, again by
Theorem 2.1, dim(G) = 2. a

Lemma 4.4. Let G and G be con_rlected graphs of order n > 5. Additionally, let
G = P, + e. Then dim(G) + dim(G) = 2(n — 3) if and only if n = 5.

Proof. (<=) This is implied by Lemma 4.3.

(=>) First, recall that the connectedness of G and G makes the condition dim(G)+
dim(G) = 2(n — 3) equivalent to the condition dim(G) = n — 3 = dim(G). For
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n 2 5, let P, C G be a fized path with the vertex set {v; | 1 < i < n} and the
edge set {vivi¢1 | 1 < i < n —1}. Since G contains a cycle, dim(G) > 2. We
consider three cases.

Case 1. G is a cycle: The metric dimension of any cycle is 2, and so n = 5. Now
apply Lemma 4.3.

Case 2. G has one end-vertez: Let e = E(G)\ E(P.). We may, without loss of
generality, assume that e = vyv; for some j, where 3 < j < n — 1 (see Figure 5).
One can easily check that § = {v;-1,vn} is a resolving set for G, and thus
dim(G) = 2 and n = 5. Again, apply Lemma 4.3.

Case 3. G has two end-vertices: In this case, the set $ = {v1,vn} is 2 resolving
set for G. To see this, let the extra edge e = v;v;, where i < j and j —i > 2 (see
Figure 5). S will distinguish all vertices of G’ = G — C from each other; here C is
the cycle v;, vit1,...,vj-1,vj,vi. Note that S also distinguishes G’ from C. Now,
C is resolved by v; and v;, which are adjacent in C, and so it is also resolved by
§; ie., (d(z,v1),d(2,vn)) = (d(z,v) + i — 1,d(z,v;) + n — j), where z € V(C).
Thus, we have dim(G) = 2 and n = 5; so, apply Lemma 4.3 again.

In every case, we see that dim(G) + dim(G) = 2(n — 3) implies n = 5. a

v v_,'_ 1 vj Un
Case 2 Case 3

Figure 5: Unicyclic graphs G = P, + e of order n > 5 with dim(G) = 2

Proposition 4.5. Let G and G be connected graphs of order n. Also, let G =
T-+e, withe € E(T) and ex(T) = 2 (notice thenn > 6). Then dim(G)+dim(G) <
2(n-3).

Proof. Notice that ex(T") = 2 implies that the number of major vertices must be
two, as well. Since o(T") < n — 2, dim(T') < n — 4 by Theorem 3.1. By Theorem
4.1, dim(T+e) < n—3. In order for G = T'+e to satisfy dim(G) = n—3, we must
have 6(T) = n — 2: this means that there are (n — 2) end-vertices. We will show
that dim(G) < n—3, and hence dim(G)+dim(G) < 2(n—3). We denote by v; and
vz the two major exterior vertices of T, and let N(v1) \ {v2} = {& |1 <i < ¢},
where ¢ > 2; also let N(v2) \ {v1} ={¢; |t+1 < j < n~2}, where n > 6. There
are only three potentially distinct cases to consider: 1) e = £12; 2) e = £:4qs;
3) e = £iv2; see Figure 6. In each case, one readily checks that the set § =
{€2,...,8,8t41,...,8n—3} forms a resolving set of cardinality n — 4. Therefore,
dim(G) < n — 3 in each case, and hence dim(G) + dim(G) < 2(n — 3). 0
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Figure 6: Unicyclic graphs G =T + e with ex(T) =2

The upper bound in the following theorem allows us to immediately see that
dim(G) < n — 3 in some cases. The diameter, diam(G), of a graph G is given by
max{d(u,v) | v,v € V(G)}.

Theorem 4.8. [4] If G is a connected graph of order n > 2 and diameter d, then
f(n,d) £ dim(G) < n—d,
where f(n,d) is the least positive integer k for which k + d* > n.

Proposition 4.7. Let G and G be connected graphs of order n. Also, let G = T+
e, withe € E(T) and ex(T) = 1 (it follows that n > 5 since, for G to be connected,
A(T) € n—2). Ifdim(G)+dim(G) = 2(n—3), then G is isomorphic to H, where
V(H) = {v,8,01,02,...,¢n_2} and E(H) = {vl; | 2 < i <n~2}U {vs, sy, l1£2}.

Proof. Notice that ex(T') = 1 implies that the number of major vertices must be
one. Since A(G) <n—2, o(T) < n—2 and dim(T') £ n— 3 by Theorem 3.1. In
order for G = T + e to satisfy dim(G) = n — 3, we must have o(T) =n — 2 or
o(T) = n — 3, by Theorem 4.1.

Case 1. o(T) = n— 2: Let v be the major exterior vertex, let s be the support
vertex of degree two, and let £3,%2,...,8,_2 be the end-vertices of a tree T such
that s¢; € E(T). Since dim(G) + dim(G) = 4 = 2(n — 3) for n = 5 by Lemma
4.3, we consider for n > 6. If e = vy, then degg(v) = n — 1 and G would be
disconnected. There are three other graphs G = T + e up to isomorphism for
consideration: (A) e = sf2, (B) e = £1¢2, (C) e = £2€3; see Figure 7. In cases
(A) and (C), one can readily check that the set § = {£1,43,44,...,£n-3} forms a
resolving set for G of cardinality n — 4, and thus dim(G) < n - 3.

v v .
s‘ o s se s
i ) I : (2} 12} 14y

6 Q) 4
(A) (8) (C)

Figure 7: Unicyclic graphs G =T + e with ez(T) =1 and o(T) =n — 2
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Next, we will show that dim(G) = dim(G) = n — 3 in case (B). Since no vertex
in {v,s, 41, €2} distinguishes any two vertices in {¢; | 3 < i < n— 2} and that any
two vertices in {¢; | 3 < i < n— 2} are twins, at least (n — 5) vertices of {£; [ 3 <
i < n — 2} must belong to any resolving set S for G; without loss of generality,
let So = {: |3<i<n-3}CS. Since codesy(s) = codes,(£2) = codes,(£n—2),
noting that s and £ are twins, s or £2 must belong to S; let us say ¢> € S. Let

={€|2<i<n—-3} CS. Since codes, (s) = codes, (£n—2), at least a vertex
in V(G)\ S1 must belong to S, and thus |S| > n—3. On the other hand, we have
dim(G) < n — 3 by Theorem 2.2, and thus dim(G) = n — 3 for n > 6.

Now, it remains to show that dim(G) = n — 3 for n > 6 (see Figure 4). Since no
vertex in {v, s, €1, £2} distinguishes any two vertices in {¢; | 3 < i < n—2} and that
({€3, 24, ..,8n—2}) = Kn_4 in G, at least t (n— 5) vertices of {¢; |3 <i<n—-2}
must belong to any resolving set S for G, say So = {:|3<i<n-3}CS.
Since codes,(s) = codeg, (1) = codesy(f2) = codeg,(€n-2), at least one ver-
tex in {v,s,£1,02,fn_2} must belong to S. If v € Sor £, € 5, then s and ¢2
have the same code; if s € S, then £2 and £,,_5 have the same code; if €2 € S,
then s and £,.2 have the same code; if €n—2 € S, then s, £;, and £; have the
same code. So, at least two vertices of V/(G) \ So must belong to S, and hence
[S] > n — 3. On the other hand, we have dim(G) < n — 3 by Theorem 2.2, and
thus dim(G) = n — 3 for n > 6. Therefore, if G is isomorphic to H & T + £,¢,,
then dim(G) = dim(G) =n — 3 for n > 6.

Case 2. o(T) = n — 3: In this case, n > 6. Since dim(T) = n ~ 4 by Theorem
3.1, we have dim(G) = dim(T +¢) < n— 3 for n > 6 by Theorem 4.1. Since
ezx(T) =1 and o(T) = n — 3, either T has two support vertices of degree two or,
of the two vertices of degree two, T has only one support vertex.

%‘*I{WWM@KM%

123 44
(A) (D) (E) (F) @)

Figure 8: Unicyclic graphs G = T + e of order 7 such that ex(T) =
o(T) =n — 3, and two support vertices of degree two in T

Subcase 2.1. T has two support vertices of degree two: We will show that
dim(G) < n — 3, and hence dim(G) + dim(G) < 2(n — 3) for n > 6. Let v be the
major exterior vertex, let s; and s2 be the support vertices of degree two, and let
£1,£2,...,€n-3 be the end-vertices of a tree T such that s,¢;, s2¢2 € E(T). There
exist seven not-obviously-isomorphic unicyclic graphs G = T + e: (A) e = vt
(B) e = s182, (C) e = 8142, (D) e = lif2, (E) e = 3283, (F) e = €343, (G)
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e = {3¢4; see Figure 8. In cases (E), (F), and (G), we have dg(f1,¢2) = 4 and
hence diam(G) > 3; so, dim(G) < n — 3 by Theorem 4.6. In cases (A), (B),
(C), and (D), one can readily check that the set S = {&1,2,...,€n—4} forms a
resolving set for G of cardinality n — 4, and hence dim(G) < n — 3. Therefore,
dim(G) < n — 3 in each case, and hence dim(G) + dim(G) < 2(n — 3) for n > 6.

Subcase 2.2. T has a unique support vertez of degree two: Let v be the major
exterior vertex, let s be the support vertex of degree two, let s’ be the vertex of
degree two that is adjacent to v and s, and let £1,%2,...,8n-3 be the end-vertices
of a tree T such that s¢; € E(T). There exist at most seven unicyclic graphs
G = T+e up to isomorphism: (A) e = vs, (B) e = vfy, (C) e = §’¢4, (D) e = 5’4y,
(E) e = sba, (F) e = €143, (G) e = £243; see Figure 9.

v v v v v v v
s ¢ s
£ (4} 2 7%
8 8
& & 4
(A) (B) (© (D) (E) (F) G)
Figure 9: Unicyclic graphs G = T + e of order 7 such that ex(T) = 1,
o(T) = n — 3, and one support vertex of degree two in T’

Among the seven graphs, we note that (B) of Figure 9 (the graph G = T + v{))
is isomorphic to the graph G = T + £142 = H in Case 1 (see (B) of Figure 7),
where dim(H) + dim(H) = 2(n — 3) for n > 6. For the other six cases, we will
show that dim(G) < n — 3 for n > 6. In cases (D), (E), and (G) of Figure 9, we
have dg(€1,£3) = 4 and hence diam(G) > 3; thus, dim(G) < n — 3 by Theorem
4.6. In cases (A), (C), and (F) of Figure 9, one can readily check that the set
S = {,42,...,8n-4} forms a resolving set for G of cardinality n — 4, and hence
dim(G) < n—3. ]

Acknowledgement. The authors thank the referee for some helpful comments and
suggestions — especially for bringing to their attention Theorem 2.14 of [9].
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