Note on strict-double-bound numbers
of paths, cycles, and wheels

Shota KONISHI, Kenjiro OGAWA, Satoshi TAGUSARI,
Morimasa TSUCHIYA*
Department of Mathematical Sciences, Tokai University
Hiratsuka 259-1292, JAPAN
e-mail :morimasaQkeyaki.cc.u-tokai.ac. jp

Abstract

For a poset P = (X,<p), the strict-double-bound graph (sDB-
graph) of P = (X, <p) is the graph sDB(P) on X for which vertices
u and v of sSDB(P) are adjacent if and only if u # v and there exist
and y in X distinct from v and vsuchthatz <u<yandz < v <y.
The strict-double-bound number {(G) is defined as min{n; GU N, is
a strict-double-bound graph }, where N, is the graph with n vertices

and no edges.
In this paper we deal with strict-double-bound numbers of some

graphs. For example, we obtain that {(P,) = [ 2v/n — 1-’ (n 2

2), ¢C) = [2A] (0 2 4, €O = [2/A=T] (2 2 5, and
¢(G + K,) = ¢{(G) for a graph G with no isolated vertices.
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1 Introduction

In this paper we consider finite undirected simple graphs. Let P = (X, <p)
be a poset and z € X an element of P. We put Up(z) = {y € X ; =z <p y}
and Lp(z) = {y € X ; y <p z}, and denoted by Max(P) the set of all
maximal elements of P and Min(P) the set of all minimal elements of P.
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McMorris and Zaslavsky (3] introduced a concept of double bound graphs.
Diny [1] characterized double bound graphs. Scott [5] introduced a concept
of strict-double-bound graphs. In [2] Era and Tsuchiya dealt with a concept
of strict-double-bound graphs. In [4] Ogawa, Tagusari and Tsuchiya gave
some results on strict-double-bound numbers.

For a poset P = (X, <), the strict-double-bound graph (sDB-graph) of
P = (X, <) is the graph on X for which u and v are adjacent if and only
if u # v and there exist z € X and y € X distinct from » and v such
that t < u <y and £ < v < y. We say that a graph G is a strict-double-
bound graph if there exists a poset whose strict-double-bound graph is
isomorphic to G. Then maximal elements and minimal elements of a poset
P are isolated vertices of sDB(P). Thus almost connected graphs are not
strict-double-bound graphs. So we introduce a concept of strict-double-
bound numbers. The strict-double-bound number ((G) of G is defined as
min{n ; GU N, is a strict-double-bound graph }, where N, is the graph
with n vertices and no edges.

Ogawa, Tagusari, Tsuchiya [4] and Scott [5] obtained the following re-
sults on strict-double-bound numbers.

A clique in a graph G is the vertex set of a maximal complete subgraph
of G. A family Q = {Q1,Q2,...,Q@nr} of cliques of G is an edge clique cover
of G if and only if for each edge uv € E(G), there exists Q; € Q such
that u,v € Q;. In some cases we allow that an edge clique cover contains
empty sets. The following results give an upper bound and a lower bound
of strict-double-bound numbers.

Theorem 1.1 (Scott [5] 1987) For a connected graph G and its mini-
mum edge clique cover Q, |—2,/|Q|.| <¢G)Y<|Q+1.0

Theorem 1.2 (Ogawa, Tagusari and Tsuchiya [4] ) LetG be a graph
with a minimum edge cligue cover Q(G) = {Q1,Q2, ..., Qi} such that there
erxists non-mazimal clique Q # O satisfying the following conditions:

(1) for @i, Q; € Q(G), QiNQ; = Q and,

(2) for each Q; € Q(G), Qi —Q #90.

Then ¢(G) = [2 |C(G)|.|. 0

Theorem 1.3 (Ogawa, Tagusari and Tsuchiya [4]) For a star K},
(K1) = [2vA]. O

Ogawa, Tagusari and Tsuchiya {4] also gave an upper bound of strict-
double-bound numbers on trees. In this paper we deal with other families
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of graphs, whose strict-double-bound numbers are the lower bound of The-
orem 1.1.

2 Strict-double-bound numbers of paths.

In this section we consider strict-double-bound numbers of paths.

Proposition 2.1 Let G be a graph with a minimum edge cligue cover
Q(G) = {QI,QZ,...,Qz} such that (1) Q:NQuy1 # ] (i =1,2..10- 1)
and (8) QiNQ; =0 (if j#i~1,i+1). Then ((G) = [2ﬂ].

Proof. For 1 <3, ¢(G) = [2ﬂ] by Theorem 1.1. So we assume that [ > 4.
Let m and n be integers such that [2\/i] =m+nand0<n-m<1.

For a minimal edge clique cover Q(G), we get an edge clique cover
Q'(G) = {Ql,ly reey Ql,n, Q2,l) veey Q2,ni sey Qm,h seey Qm,n} such that

Qu-tsk  Hl<j<m-—land1<k<n,
Qi =14 Qu-ln+k ifj=mandl1<k<n-—mn+l
fj=mandn—mn+l+1<k<n.

For an edge clique cover Q'(G), we construct a poset P, such that (1)
V(Pmpn) = V(G)U {z1,22,.... zm} U {¥1,¥2,...,yn} and (2) for v € Qjk €
Q(G), Yn SPpn V SPm,n Tj (R =7 — k +1(mod m)). Then sDB(Pp,n) =

GUNpin, C(G)=m+n= |-2\/i] by Theorem 1.1. O

For a path P,(n > 2), each clique is K> and P, is covered by n — 1
cliques. So we obtain a following result by Proposition 2.1.

Corollary 2.2 For a path P, withn > 2, ¢(P,) = [ 2/n—1 1]. 0

3 Strict-double-bound numbers of cycles

Next we consider strict-double-bound numbers of cycles.

Proposition 3.1 Let G be a graph with a minimum edge cligue cover
Q(G) = {Q1,Q2,...,Q1} such that (1) Q:iNQit1 #0 (i = 1,2,...,1-1), (2)
QN1 #0, (3)QNQ; =0 (ifj#i—1,i+1) and (4) QNQ; =0 (if

i#1,l—1). Then ¢(G) = [2ﬂ].
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Proof. For 1 £ 3, ¢(G) = [2\/Z] by Theorem 1.1. So we assume that [ > 4.
We consider two cases on |-2\/l:l as follows:

Case 1. |_2\/i.| i3 even.

Let |2vI| = 2n and ¢ = n? — I. For a minimal edge clique cover

Q(G), we get an edge clique cover @'(G) = {Q1,1, Q1,0 Q2,15 +» Q2,11 ++r»
Qn,1; ---,Qn,n} such that

QG-1)(n—1)+k fl1<j<qandk=1,
O = ifl<j<gandk=2,
k=N Qu-nn-ny+k—1  f1<j<gand3<k<n,
QGi-1)n+k—q ifg+1<j<nand1<k<n

For an edge clique cover Q'(G), we construct a poset P, , such that (1)
V(Papn) = V(G)U {z1,22,...,Tn} U {y1,¥2,...,¥n} 8nd (2) for v € Q;x €
Q' (G), Yh SPun ¥ <Pun Tj (h =j -k +1(mod n)). Then sDB(FPy ) =

GU Ngn, ((G) =2n = [2ﬁ] by Theorem 1.1.

Case 2. [2\/f| is odd.

Let 2\/1-] =2n—1 and g = n? —n —1. For a minimal edge clique cover

Q(G), we get an edge clique cover Q'(G) = {Q1,1, .. Q1,7 Q2,1, s Q2,ns vy
Qn-1,1, -y @n—-1,n} such that

Q(j—l)n+k 1f1535n—2and1$k$'n,
ifj=n—-land1<k<n—-g-1,
ifj=n-landn—g<k<n-1,
Q ifj=n—1land k=n.

Qik = g(j—l)nwe

For an edge clique cover Q'(G), we construct a poset P, 1 such that (1)
V(Pn,n—l) = V(G)U{l‘hfvz, '-'txn-l}U {yl:yZ’ eeey yn}s (2'1) forv e Qj,k c
QG (i=12.,n—1land k=1,2,..,2-2), yo <P,y ¥ SPrn_y
z; (h = j—k+ 1(mod (n — 1)), (2-2) for v € Qjn-1 € Q(G) (4 =
1,2,...,n=1), yn <P, ., ¥ <P,._, ;j and (2-3) forv € Q;». € Q(G) (j =
1,2,...n = 1), Yo Py ¥ SPanoy Zj (B =3 +1(mod (n —1))). Then

sDB(Pan—1) = GUNan_1, ¢(G) =2n—1= [2%] by Theorem 1.1. O

For a cycle Cn(n > 4), each clique is K3 and C,, is covered by n cliques.
So we obtain a following result by Proposition 3.1.

Corollary 3.2 For a cycle C, withn >4, {(C,) = [Zﬁ] (m]
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4 Strict-double-bound numbers of the sum of
graphs.

The sum G + H of two graphs G and H is the graph with the vertex set
V(G+ H) = V(G) U V(H) and the edge set E(G + H) = E(G)U E(H) U
{uv;u € V(G),v € V(H)}.

Proposition 4.1 Fora graph G with no isolated vertices, {(G + K,,) =
¢(G).

Proof. For a graph G, let Pg be a poset such that sDB(Pg) = G U Ne)
For the poset Pg, we construct the poset P such that (1) V(P§) = V(Pg)
and (2) u <p v if (a) u,v € V(Pg) and u <p, v or (b) u € Min(Pz) and
vE Ma.x(PG) Then sDB(Pg) = sDB(Fg).

For the poset Pg, we construct the poset Py such that (1) V(Py) =
V(Pg) U V(Ky) and (2) u <p, v if (a) u,v € V(P%) and u <p, v, (b)
u € V(K,) and v € Max(Pg) or (c) u € Min(P%) and v € V(K,,).

In P each vertex of G has a maximal element as a strict upper bound
and a minimal element as a strict lower bound since G has no isolated
vertices. In Py, each maximal element of Pf is a strict upper bound of
all vertices of K, and each minimal element of P is a strict lower bound
of all vertices of K,,. So in sDB(Ppy), each vertex of K, is adjacent to all
vertices of G, and any two vertices of K,, are adjacent. For each vertex
v of G, Up,(v) = Up (v) and Lp,(v) = Lp,(v). So for u,v € V(G), u
is adjacent to v in sDB(PH) if and only if u is adjacent to v in sDB(P%).
Thus {(G + K,) < ¢(G).

Let P be a poset such that m = |Max(P) UMin(P)| = {(G + K,) and
sDB(P) = (G+ K,,) U Np,. Let P’ be a poset which is obtained from P by
deleting any vertices of K, by P. Since V(K,) C V(P)—Max(P)UMin(P),
sDB(P') 2 GU Np,. Thus ¢(G) <m =¢{(G + K,).

Therefore {(G + K,) = ¢(G). O

A wheel W, is the sum of C,,_; and K. So we obtain a following result
by Proposition 4.1 and Corollary 3.2.

Corollary 4.2 For a wheel Wi, with n(> 5) vertices, (W,,) = [ 9vn—1 1] .
(m}
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