Sarvate-Beam designs: new existence results and large sets

Hau Chan, Derek W. Hein, and Dinesh G. Sarvate

ABSTRACT. A general construction for t-SB(2t-1,2t-2) designs is given. In addition, large sets of t-SB(v,k) are discussed and some examples are provided.

1. Introduction

In general, an *SB design* is a block design in which every pair of points occurs in a different number of blocks. Below is a formal definition:

DEFINITION 1. A Sarvate-Beam design SB(v,k) consists of a v-set V (called points) and a collection of k-subsets of V (called blocks) such that each distinct pair of elements in V occurs with different frequencies (i.e. in a different number of blocks). A strict SB(v,k) is a SB design where for every $i, 1 \le i \le {v \choose 2}$, exactly one pair occurs i times.

EXAMPLE 1. A strict SB(4,3) on $V=\{1,2,3,4\}$ consists of the following blocks: $\{1,2,4\}, \{1,3,4\}, \{1,3,4\}, \{2,3,4\}, \{$

The general existence question of strict SB designs is still an open question. It is known that the necessary conditions for existence of strict SB designs are sufficient for k=3 (see Dukes [2] and Ma, Chang and Feng [5]). Moreover, SB matrices have been studied by Dukes, Hurd and Sarvate [3]. The following definition appears in [7]:

DEFINITION 2. A t-SB(v,k) design is a collection B of k-subsets of a v-set V such that each t-subset of V occurs a distinct number of times. In a strict t-SB design, for each i such that $1 \le i \le {v \choose t}$, there is exactly one t-subset which occurs in i blocks.

²⁰⁰⁰ Mathematics Subject Classification. Primary 05B05.

Key words and phrases. Sarvate-Beam Designs, SB Matrices, Block designs, Large sets.

2. Existence results

Sarvate and Beam [6] showed that a non-strict (n-2)-SB(n,n-1) design exists for every positive integer $n \geq 3$. Recently, Chan and Sarvate [1] have proven that a non-strict 2-SB(n,n-1) design exists for every positive integer $n \geq 3$. In this paper, we want to generalize these two results and prove that a non-strict t-SB(n,n-1) design exists for every positive integer n, where $n \geq 2t-1$ and $2 \leq t \leq n-2$. But first let us consider a general construction for non-strict t-SB(2t-1,2t-2) designs for $t \geq 3$.

2.1. Construction of t-SB(2t-1,2t-2) design for $t \ge 3$.

THEOREM 1. A non-strict t-SB(2t-1,2t-2) design exists for every positive integer $t \ge 3$.

PROOF. Let B_i be the subset $\{1, 2, \ldots, 2t-1\} - \{i\}$ of the set $V = \{1, 2, \ldots, 2t-1\}$, and let the frequency of B_i , denoted $f(B_i)$, be 2^{i-1} for all i's. We claim that this construction produces a non-strict t-SB(2t-1, 2t-2) design. Suppose this is not true; that is, the above construction does not produce a non-strict t-SB(2t-1, 2t-2) design. It follows that there exists at least two subsets out of the $\binom{2t-1}{t}$ subsets that appear the same number of times. Let $a = \{a_1, a_2, \ldots, a_t\}$ and $b = \{b_1, b_2, \ldots, b_t\}$ be t-subsets such that f(a) = f(b). Note that the frequency of each t-subset is determined by the the sum of $\binom{2t-1}{2t-2} - t = t-1$ blocks. We have

$$f(a) = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_{t-1}}$$
 and $f(b) = 2^{j_1} + 2^{j_2} + \ldots + 2^{j_{t-1}}$

Moreover, we have that

$$f(a) = 2^{i_1} + 2^{i_2} + \ldots + 2^{i_{t-1}} = 2^{j_1} + 2^{j_2} + \ldots + 2^{j_{t-1}} = f(b)$$

Without loss of generality, assume that $i_k \neq j_n$ for k, n = 1, 2, ..., t-1 (so that the equation above would be in its simplified form) and let i_1 be the smallest power. It follows that

$$1 + 2^{i_2 - i_1} + \ldots + 2^{i_{t-1} - i_1} = 2^{j_1 - i_1} + 2^{j_2 - i_1} + \ldots + 2^{j_{t-1} - i_1}$$

Since there does not exist a j_k (k = 1, 2, ..., t - 1) such that $j_k = i_1$, we have a contradiction. Therefore f(a) = f(b) if and only if a = b.

NOTE 1. The designs constructed here are not strict, as the size of the integer 2^{i-1} is sufficiently large. We see that there are t-subsets with frequencies greater than $2^{2t-2}=4^{t-1}$ and it can be seen by mathematical induction that $4^{t-1} \geq {2t-1 \choose t}$ for all positive integers t.

Before we state the next theorem, recall that Chan and Sarvate [1] proved the following lemma:

LEMMA 1. A non-strict t-SB(n, n-1) design is also a non-strict (t-1)-SB(n, n-1) design if $n-1 \ge 2t-2$.

We now use this result to prove the following:

THEOREM 2. A non-strict t-SB(n, n-1) design exists for every positive integer n, where $n \ge 2t-1$ and $2 \le t \le n-2$.

PROOF. It has been proven that for t=2 and t=n-2, a non-strict t-SB(n,n-1) design exists for positive integers $n \geq 3$. Now we only need to show that a non-strict t-SB(n,n-1) design exists for 2 < t < n-2. By Theorem 1, a non-strict t-SB(2t-1,2t-2) design exists for every positive integer $t \geq 3$. Furthermore, Lemma 1 together with Theorem 1 extend the existence of a non-strict t-SB(n,n-1) to all n (for fixed t). Hence, the result follows.

3. Large sets of SB designs

In this section, we give examples of large sets of SB designs.

DEFINITION 3. Let V be a v-set. A family of t-SB(v, k) designs on V, say $B = \{B_1, B_2, \ldots, B_n\}$, is a large set with multiplicity s if the multiunion $\dot{\cup}_{i=1}^n B_i$ gives s copies of the set of all k-subsets of V for some integer s and if there is another family of t-SB(v, k) designs $C = \{C_1, C_2, \ldots, C_m\}$ where $\dot{\cup}_{i=1}^m C_i$ gives u copies of the set of all k-subsets of V, then $s \leq u$.

Before exhibiting examples of large sets of t-SB(v,k), we need the following formula, which follows from counting in two ways the total of the block frequencies generated by the large set of t-SB(v,k):

Theorem 3. Suppose the multiplicity for a large set for t-SB(v,k) is s, and let the size of the large set be n. Then $s \cdot \binom{v}{k} = n \cdot \frac{\binom{v}{t} \binom{v}{t} + 1}{2\binom{k}{t}}$

EXAMPLE 2. Consider the following set of 1-SB(3,2) (where the numbers in the table are block frequencies):

Blocks	Design 1	Design 2
$\{1,2\}$	0	2
$\{1,3\}$	1	1
$\{2,3\}$	2	0

From Theorem 3, a large set of 1-SB(3,2) must satisfy s=n. Since there exists a unique 1-SB(3,2), and the largest block frequency is 2, it must be true that s is also at least 2. Hence, this example is a large set of 1-SB(3,2) with minimal s=n=2.

EXAMPLE 3. Consider the following set of 1-SB(4,2):

Blocks	Design 1	Design 2	Design 3	Design 4	Design 5	Design 6
$\{1,2\}$	0	1	2	2	0	0
{1,3}	0	0	0	1	2	2
$\{1,4\}$	1	0	0	0	2	2
$\{2,3\}$	2	2	0	0	0	1
$\{2,4\}$	0	0	2	2	1	0
$\{3,4\}$	2	2	1	0	0	0

From Theorem 3, a large set of 1-SB(4,2) must satisfy 6s=5n. Since 6 divides n and 5 divides s, it must be true that the minimal s=5 with corresponding n=6. Hence, the example is a large set of 1-SB(4,2).

Example 4. Consider the following set of 1-SB(7,2):

Blocks	Design 1	Design 2	Design 3
$\{1,2\}$	0	1	1
{1,3}	0	1	1
{1,4}	0	1	1
$\{1,5\}$	0	2	0
{1,6}	0	0	2
$\{1,7\}$	1	0	1
$\{2, 3\}$	0	1	1
$\{2,4\}$	0	0	2
$\{2,5\}$	0	1	1
$\{2, 6\}$	1	0	1
$\{2,7\}$	1	0	1
{3,4}	0	2	0
$\{3,5\}$	1	1	0
{3,6}	1	1	0
{3,7}	1	1	0
{4,5}	1	1	0
{4,6}	1	0	1
$\{4,7\}$	2	0	0
$\{5,6\}$	2	0	0
{5,7}	1	1	0
$\{6,7\}$	1	0	1

From Theorem 3, a large set of 1-SB(7,2) must satisfy 3s = 2n. Since 3 divides n and 2 divides s, it must be true that the minimal s = 2 with n = 3. Hence, the example is a large set of 1-SB(7,2).

EXAMPLE 5. The family of 2-SB(6,3) given in [1] contains errors in the last column, and should be replaced by the following:

Blocks	Design 1	Design 2	Design 3	Design 4	Design 5
$\{1, 2, 3\}$	0	0	2	4	4
$\{1, 2, 4\}$	0	1	1	5	3
$\{1, 2, 5\}$	1	0	3	1	5
$\{1, 2, 6\}$	0	2	3	3	2
$\{1, 3, 4\}$	0	4	0	4	2
$\{1, 3, 5\}$	1	1	2	1	5
$\{1, 3, 6\}$	1	5	1	2	1
$\{1, 4, 5\}$	2	3	0	2	3
$\{1, 4, 6\}$	1	5	0	3	1
$\{1, 5, 6\}$	2	3	3	0	2
$\{2, 3, 4\}$	1	1	1	5	2
$\{2, 3, 5\}$	2	0	4	0	4
$\{2, 3, 6\}$	2	1	5	1	1
$\{2, 4, 5\}$	3	0	2	2	3
$\{2, 4, 6\}$	3	2	2	3	0
$\{2, 5, 6\}$	3	1	5	0	1
$\{3,4,5\}$	5	2	1	1	1
$\{3,4,6\}$	4	4	0	2	0
$\{3, 5, 6\}$	4	2	4	0	0
$\{4, 5, 6\}$	5	3	1	1	0

From Theorem 3, a large set of 2-SB(6,3) must satisfy s=2n. Since there exist 16,444,250 nonisomorphic 2-SB(6,3) (see [4]) with the smallest maximum block frequency therein being 5, it must be true that s is also at least 5. Since s is even, we see that the smallest possible s is 6 with corresponding n=3. The above example was obtained by taking isomorphic copies of a single 2-SB(6,3) design, and we claim that (using this particular design) the multiplicity cannot be less than 10. Hence, this example may or may not be a large set of 2-SB(6,3).

Example 6. Consider the following set of 1-SB(5,3):

Blocks	Design 1	Design 2	Design 3	Design 4
$\{1, 2, 3\}$	0	0	0	2
$\{1, 2, 4\}$	0	0	0	2
$\{1, 2, 5\}$	0	1	1	0
$\{1, 3, 4\}$	0	0	2	0
$\{1, 3, 5\}$	1	0	0	1
$\{1,4,5\}$	0	0	2	0
$\{2, 3, 4\}$	0	2	0	0
$\{2,3,5\}$	0	2	0	0
$\{2,4,5\}$	2	0	0	0
$\{3,4,5\}$	2	0	0	0

From Theorem 3, a large set of 1-SB(5,3) must satisfy 2s=n. Since there exist 3 nonisomorphic 1-SB(5,3) with the smallest max block frequency being 2, it must be true that s is also at least 2. Hence, the minimal possible s is 2 with corresponding n=4. Thus, this example is a large set of 1-SB(5,3). \blacktriangle

4. Conclusion

The general problem of finding large sets of SB designs may be technical and difficult. However, producing an example of a large set of either 2-SB(6,3) or of a 2-SB(6,4) may be interesting. The reader is invited to produce such examples.

References

- H. Chan and D. G. Sarvate, A non-existence result and large sets for Sarvate-Beam designs, Ars Combinatoria 95 (2010) 193-199.
- [2] P. Dukes, PBD-closure for adesigns and asymptotic existence of Sarvate-Beam triple systems, Bulletin of the ICA 54 (2008), 5-10.
- [3] P. Dukes, S. Hurd, and D. G. Sarvate, It's hard to be different, Bulletin of the ICA 60 (2010), 86-90.
- [4] D. W. Hein and P. C. Li, Sarvate-Beam triple systems for v=5 and v=6, JCMCC 78 (2011), 161-168.
- [5] Z. Ma, Y. Chang, and T. Feng, The spectrum of strictly pairwise distinct triple systems, Bulletin of The ICA 56 (2009), 62-72.
- [6] D. G. Sarvate and W. Beam, A new type of block design, Bulletin of the ICA 50 (2007), 26-28.
- [7] D. G. Sarvate and W. Beam, The Non-existence of (n-2)-SB(n, n-1) adesigns and some existence results, Bulletin of the ICA 51 (2007), 73-79.
 - (A. One) STONY BROOK UNIVERSITY, DEPT. OF C. S., STONY BROOK, NY, 11794 E-mail address: hauchan@cs.stonybrook.edu
 - (A. Two) SOUTHERN UTAH UNIVERSITY, DEPT. OF MATH., CEDAR CITY, UT, 84720 E-mail address: hein@suu.edu
 - (A. Three) College of Charleston, Dept. of Math., Charleston, SC, 29424

 E-mail address: sarvated@cofc.edu