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Abstract

Let G = (V, E) be a graph with chromatic number k. A dominat-
ing set D of G is called a chromatic transversal dominating set (ctd-
set) if D intersects every color class of any k-coloring of G. The min-
imum cardinality of a ctd-set of G is called the chromatic transversal
domination number of G and is denoted by «ct(G). In this paper we
obtain sharp upper and lower bounds for +y.; for the Mycielskian x(G)
and the shadow graph Sh(G) of any graph G. We also prove that for
any ¢ > 2, the decision problem corresponding to 7. is NP-hard for
graphs with x(G) = c.
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1 Introduction

By a graph G = (V, E), we mean a finite, undirected graph with neither
loops nor multiple edges. The order and size of G are denoted by n and
m respectively. For graph theoretic terminology we refer to Chartrand and
Lesniak [3].

Graph coloring and domination are two major areas in graph theory
that have been well studied. An excellent treatment of fundamentals of
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domination is given in the book by Haynes et al. [4] and survey papers on
several advanced topics are given in the book edited by Haynes et al. [5].

Let G = (V, E) be a graph. A subset S of V is called a dominating set
of G if every vertex in V — S is adjacent to a vertex in S. The domination
number 4(G) is the minimum cardinality of a dominating set in G. A proper
coloring of a graph G is an assignment of colors to the vertices of G in
such a way that no two adjacent vertices receive the same color. The
chromatic number x(G) is the minimum number of colors required for a
proper coloring of G. A graph G is said to be x-critical if x(G—v) = x(G)—-1
forallveV.

Benedict et al. [1] introduced the concept of chromatic transversal dom-
ination, which combines the concept of domination and coloring. A domi-
nating set D of G is called a chromatic transversal dominating set (ctd-set)
if D intersects every color class of any k-coloring of G, where x(G) = k. The
minimum cardinality of a ctd-set of G is called the chromatic transversal
domination number of G and is denoted by v.:(G). A chromatic transversal
dominating set of cardinality .. is called a y.-set of G. In this paper we
present further results on chromatic transversal domination.

We need the following definitions and theorems.

Definition 1.1. For a graph G = (V, E), the Mycielskian of G is the
graph u(G) with vertez set VUV'U {u}, where V' = {2’ : 2 € V} and is
disjoint from V', and edge set E' = EU{zy',yz' : zy € E}U{z'u:z’' € V'}.
The vertices = and =’ are called twins of each other and u is called the root
of u(G). Also the graph u(G) — u is called the shadow graph of G and is
denoted by Sh(G).

Theorem 1.2. [3] For any graph G, x(u(G)) = x(G) +1 and w(u(G)) =
w(G).

Observation 1.3.  For any graph G, x(G) = x(Sh(G)).

Definition 1.4. Let G1,Gs,...,Gy be set of k-graphs. Then the graph
G1+Ga + - -+ + Gy, is obtained from Gy, Gy, . ..,Gr by joining every verter
of G; with every vertez of G;, whenever i # j.

Definition 1.5.  The corona of two graphs Gi and G is defined to be
the graph G = G1 o G2 formed from one copy of G1 and |V(G1)| copies of
G, where the it" vertez of G, is adjacent to every vertez in the i** copy of
G,.

Theorem 1.8. [1] Let G be a connected bipartite graph with bipartition
(X,Y), where |X| < |Y| and n > 3. Then v+(G) = ¥(G) + 1 if and only if
every vertez in X has at least two pendant neighbors.

Theorem 1.7. [1] Let G be a connected graph of order n. Then v.(G) =
n if and only if G is x-critical.
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2 Basic Results

Let G = (V, E) be a graph with x(G) = k and let S be a ctd-set of G with
|S] = Yet- Since S is a dominating set and intersects every color class of
any k-coloring of G, it follows that vc¢(G) > maz{x(G),v(G)}.

Example 2.1.  For the graph G = Ho K, where H is any graph of order
n > 2, we have 7,4(G) = v(G) = n.
Example 2.2.  For any split graph G with cligue number w(G), we have
Yet(G) = x(G) = w(G).
Example 2.3.  For the complete multipartite graph G = K, q5,....0,, W€
have 7(G) = x(G) = k.

We start with the following simple lemma which is very useful in finding
lower bounds for ;.

Lemma 2.4. Let F be a family of disjoint independent sets in G such
that each F € F is a color class of a x-coloring of G. Then v.:(G) > |F|.

Proof. Let S be a ctd-set of G with [S| = 7. Since SN F # @ for all
F € F, it follows that v.¢(G) = |S| = |F|. ]

Proposition 2.5. If G is a uniquely colorable graph, then v.(G) <
¥(G) + x(G) — 1 and the bound is sharp.

Proof. Let {V1,Va,...,Vi} be the unique k-coloring of G where x(G) =
k. Let S be a -set of G. We may assume without loss of generality that
SNV # 0. Now choose v; € V;, 2 < i < k. Then SU {vg,v3,...,vx} is a
ctd-set of G and hence vc(G) < |S|+k—1=4(G) + x(G) - 1.

Further for any two integers n, m > 2, G = K,, + K, is a split graph
with x(G) = 7t(G) = n+ 1 and ¥(G) = 1 and hence 7.+(G) = ¥(G) +
x(G) - L. a
Corollary 2.6. Let G be a uniquely colorable graph with v..(G) = v(G)+
X(G) — 1. Then v(G) = i(G), where i(G) is the independent domination
number of G. Further every i(G)-set of G is a color class of the unique
Xx-coloring of G.

Corollary 2.7. Let G be a connected bipartite graph. Then v4(G) =
Y(G) or ¥(G) + 1.

Problem 2.8.  Characterize uniquely colorable graphs G for which v..(G)
=¥(G) +x(G) - 1.
Proposition 2.9. Let G;,Ga,...,G;s be uniquely colorable graphs and
let G =Gy + G+ +Gs. Then 7(G) = x(G) = .ZSIX(G")‘

i=
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Proof. Let C = {W1,Va,...,Vi} be the unique k-coloring of G where
8
k=Y x(G;). Now choose v; € V;, 1 < i < k. Clearly S = {v1,v2,..., 0}

=1
is a ctd-set of G and hence v,(G) < |S| = fs_: x(G;) = x(G). Since 7+(G) >
=1
x(G), the result follows. O

Theorem 2.10.  For any graph G, v..(GOK3?) < |V(G)|. Further if G
is x-critical, then equality holds.

Proof. Since x(GOK3) = x(G), it follows that V(G) is a ctd-set of
GOK; and hence v.:(GOK3?) < |V(G)|. Now suppose G is x-critical. Let
V(GOK3;) = {v1,v2,...,Vn,u1,U2,...,un} wWhere ( {v1,v2,...,v,} ) and
( {v1,u2,...,us} ) are both isomorphic to G and v;u; € E(GOK3). Let
= {A1,As,...,An} where A; = {v;,ui41} is a family of disjoint inde-
pendent sets in G. Since G is x-critical, it follows that x( ( V(GOK3) —
A; ) ) = x(GOK3;) — 1 and hence every A; is a color class of a x-coloring
of GOK,. Hence it follows from Lemma 2.4 that v..(G) > |V(G)|. Thus
a

1(G) = |V(G)|-
Corollary 2.11.  For the graph G = C,,0Kj,

~¥(G) if n is even
Yet(G) =

n otherwise.

Proof.  If niseven, then G is bipartite and hence it follows from Corollary
2.7 and Theorem 1.6 that v¢(G) = v(G). If n is odd, then C,, is x-critical
and hence it follows from Theorem 2.10 that v.(G) = n. a

Problem 2.12. If v.(GOK3) = |V(G)|, then is G x-critical ?

Theorem 2.13. Let G be a graph having a unique cut vertez v and
let By, Bs,..., By be the blocks of G such that every block B; is a cycle,
|Bi| = ni, at least one n; is odd and n; = min{n; : n; is odd }. Then

k
Yet(G) = m1 + _szﬁ‘gﬂ]-
J=
Proof. Clearly x(G) = 3. Let S; be a y-set of ( V — N[V(B;)] ). Since
the induced subgraph ( V — N[V(B)] ) is isomorphic to the union of paths,
k
it follows that |S;| = Z [21-"—3] Clearly S = S UV(B,) is a ctd-set of G

J—
and hence 7c:(G) < ny + Z [2’—'—3-] Now, let W be a 7-set of G. Since
G —v is bipartite, it follows that v € W. We claim that there exists an odd
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cycle C; such that V/(C;) C W. If not for every odd cycle C; in G, we choose
z; € V(C;)—W and let D denote the set of all these vertices z;. Clearly D
is independent and x(G — D) = 2. Hence there exists a 3-coloring of G such
that { D} is a color class. Since WND = §, it follows that W is not a ctd-set
of G, which is a contradiction. Hence we may assume V(B:) € W. Also

k
since W is a dominating set of G, it follows that v,,(G) > n; + 3 [25;—3] .
j=2

k
Hence 7:(G) =ny + 3 [1'-%'-'3]. (]
j=2

3 Bounds on v for u(G) and Sh(G)

Theorem 3.1.  Let G be a graph with x(G) > 2. Then 2x(G) +1 <
Yet (1(G)) £ 27:(G) + 1.

Proof. LetC = {V1,V3,...,Vi} be a k-coloring of G where x(G) = k. Let
F={WVe...,Vi, V|, V4,...,V{,{u}} where for any subset S of V(G),
S = {v' : v € §}. We now claim that for each F € F, there exists a
(k + 1)-coloring of u(G) having F as a color class. If FF = V,, let C; =
C-{V;hu{V;u{u}}u{V'} where j #£i. If F=V/,let C! = {V U
Vi,VeUVS, L Viu{u), Vit UV, Ve UV UV IEF = {u), let
C.={ViuV/:1<i<k}U{u}. In all the above cases we get a (k + 1)-
coloring of 11(G) having F as a color class. Hence it follows from Lemma
2.4 that v (u(Q)) 2 |[F| =2k +1 = 2x(G) + 1. Now, let S) be a v-set of
G. Let § = §; U S{ U {u}. We claim that S is a ctd-set of u(G). Clearly
S is a dominating set of u(G). Let C = {V},V,,...,Viy1} be a (k + 1)-
coloring of u(G) where k = x(G). It is enough to show that SNV #  for
alli=1,2,...,k+1. If V] = {u}, then {V;NV(G):2<i<k+1}isa
k-coloring of G. Since S is y.-set of G, it follows that S; N V; # @ for all
1=2,3,...,k+1. Hence SNV; # @ for all i =2,3,...,k+ 1. Suppose
{u} ¢ C. Let u € V;. We now recolor each vertex of V; N V(G) with the
color of its twin. This gives a x-coloring C; of u(G) such that {u} € C;.
Let Cy = {W) = {u},Wa,...,Win1}. It is clear that SN W; N V(G) #
Pforalli =23,....k+1. Let we SNW;NnV(G). If w € V,, then
SNV; # 0. Otherwise w’ € V; and hence w’ € S. Hence SNV, # @ for all

i=1,2,...,k+ 1. Thus 74(u(G)) < |S| = 2v(G) + 1. ]
For any graph G with x(G) = 7.(G), we have
Vet((G)) = 2x(G) + 1 = 27e4(G) + 1 (1)

which shows that the bounds given in Theorem 3.1 are sharp. In particular
(1) holds for split graphs and complete multipartite graphs. The follow-
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ing theorem gives another family of graphs for which the upper bound in
Theorem 3.1 is attained.

Theorem 3.2. Let G be a x-critical graph of order n. Then v.:(u(G)) =
et (G) +1.

Proof. Let x(G) = k. We first prove that ;(G) is x-critical, by showing
that for every = € V(u(G)), there exists a (k + 1)-coloring C of u(G)
such that {z} € C. Suppose z = v € V(G). Since G is x-critical, it
follows that there exists a x-coloring C; of G such that {v} € C;. Let
C = {V1 = {v},Va,...,Vi}. Then C = {{v},Va U {u},Va,..., i} U {V'}
is & (k + 1)-coloring of u(G). Suppose z = v' € V’. Let v be the twin
of v in G. Let C; = {Vi = {v},V,...,Vi} be a k-coloring of G. Then
¢ ={Vu{uh,VauV,V3UVy,... Vi, UV}U {v'} is a (k + 1)-coloring of
w(G). Ifx=u,then C = {ViUV{,VoUV],..., ViuV[}U{u}isa (k+1)-
coloring of u(G). Thus u(G) is x-critical and it follows from Theorem 1.7
that 7.(u(G)) =2n+ 1 = 274(G) + 1. a

Problem 3.3.  Characterize graphs G for which v,(1(G)) = 2v(G) +1.
Problem 3.4. Characterize graphs G for which v, (p(G)) = 2x(G) + 1.

Theorem 3.5. Let G be a graph and let Sh(G) be the shadow graph of G.
Then et (G) < Yet(SA(B)) < Yet(G) + ¥(G). Further 7.(G) = v:(Sh(G))
if and only if there ezists a yct-set S of G such that (S) has no isolates.

Proof. Let V(G) = {v1,v2,...,v,} and V(Sh(G)) = V(G) U {v},v3,...,
v.,}. Let S; be a y-set of Sh(G). Let § = (§; NV(G)) U {v; : v € 51}
Clearly |S]| < |Si]. We claim that S is a ctd-set of G. Clearly S is a
dominating set of G. Let C = {V},V%,...,Vi} be a k-coloring of G where
X(G) = k. Then C; = {W1 =WVUuU,We = Vo Ul,,..., W =V, U
Ui} where U; = {v} : v; € V3}, for 1 < i < k is a k-coloring of Sh(G).
Since S is Yee-set of Sh(G), it follows that Sy N W; # O for all . Hence
SNV; # 0 for all i. Thus S is a ctd-set of G and 7ct(G) < Yt (Sh(G)).
Since x(G) = x(Sh(G)), the upper bound follows trivially. Now, suppose
Yet(G) = Vet (Sh(G)). Then |S;| = |S|. Hence it follows that at most one of
v;,} is in S) for each i, 1 < i < n. Now, suppose v; € S1 N V(G). Then
v; € S and hence v} ¢ S. Since S is a dominating set of Sh(G), it follows
that Ng(v:) NS # 0, so that (S) has no isolated vertices. Conversely,
suppose there exists a 7q¢-set D of G such that (D) has no isolates. Then
Ng(v;) N D # @ for all ¢ and hence D is a dominating set of Sh(G). Also
since x(G) = x(Sh(G)), it follows that D is a ctd-set of Sh(G) and hence

Yet(G) = et (Sh(G))- o
Problem 3.68.  Characterize graphs G for which ¥..(Sh(G)) = v+(G) +
v(G).
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4 Complexity Results

In this section we prove that for any ¢ > 2, the decision problem corre-
sponding to v, is NP-hard for graphs with x(G) = ¢.

3SAT

INSTANCE: Collection C = {C},C3,...,C,} of clauses on a finite set
U = {u1,us,...,u,} of variables such that [C;| =3 for 1 <i <.
QUESTION: Is there a truth assignment for U that satisfies all the clauses
in C?

CTD
INSTANCE: A graph G = (V, E) and a positive integer k.
QUESTION: Is 7,4(G) < k ?

Theorem 4.1.  For any integer ¢ 2 2, CTD is NP-hard for graphs with
x(G) =ec.

Proof. Casei. ¢>3.

The proof is by reduction from 3-SAT. Let U = {u;,uy,...,u,} and
C ={C,Cs,...,C,} be any instance of 3-SAT. We construct an instance
of CTD as follows. For each variable u; € U, we take a triangle T; with
vertices u;,u and z;. For each clause Cj;, we take a copy of K. o K,
where V(K.) = {zj1,Tj2,...,%jc} in which exactly one pendant edge is
subdivided. We label the corresponding pendant vertex as ¢;. (The graph
when ¢ = 4 is shown in Figure 1)

[ ] ® cj

Tje| " Zj1 /

P-
L 4

Figure 1

The graph G is obtained by joining each vertex with label ¢; to the
three vertices whose labels are the literals in C;. Clearly x(G) = c. Let
k = cr+s. We claim that the instance (U, C) of 3-SAT has a satisfying truth
assignment if and only if G has a ctd-set S with |S| < cr+s. Suppose (U, C)
has a satisfying truth assignment. Let T denote the set of all literals u; or u/
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having the value true. Clearly |T'| = s. Let § = TU( U {zj1, zj2,. .., Tje}).

Clearly |S| = cr + s and S is a ctd-set of G. Conversely, let S be a
ctd-set of G with |S| < k = cr + s. Clearly S contains the cr vertices
Zj1,Tj2,..-,Zje; 1 < J <7 and S contains exactly one vertex of each of the
triangles T;. If z; € S, then we may replace z; either by u; or »} and hence
we may assume that S contains exactly one of u;, u for each i,1 <i < s.
Now for each variable u;, we assign u; the value True if u; € S and the
value False otherwise. Clearly this is a satisfying truth assignment for the
instance (U, C) of 3-SAT.

Case ii. c=2.

In this case G is a bipartite graph. It follows from Corollary 2.7 that
Yet(G) = ¥(G) or ¥(G) + 1. Further it follows from Theorem 1.6 that
whether 7.:(G) = ¥(G) + 1 or not can be determined in linear time. Since
the domination problem is NP-hard for bipartite graphs [2], it follows that
CTD is also NP-hard for bipartite graphs. a

5 Conclusion

For any graph theoretic parameter the study of the effect of removal of a
vertex or an edge on the parameter is an important problem. In particular
the study of the effect on v.(G) when a vertex or an edge is deleted is
a promising research area and results this direction will be reported in a
subsequent paper.
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