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Abstract

In 2003, Lee, Wang and Wen found a non-edge-magic simple con-
nected cubic graph which satisfying the necessary condition of edge-
magicness by using computer search. They asked for a mathematical
proof. In this paper, we will provide such a proof.
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1 Introduction

Let G = (V,E) be a (p,q)-graph, ie., |[V| = p and |E| = q. Let
f:E— {d,d+1,...,d+g—1} be a bijection for some d € Z. The induced
mapping f+ :V — Z, of f is defined by f+(u) = Y f(uv) foru € V, the
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sum is taken in Z, for some 7 > 0. Note that we denote Z by Z,. If f* is
a constant mapping, then G is called d-edge-magic over Z,. If d = 1, then
G is simply called edge-magic over Z,, f an edge-magic labeling of G over
Z, and the value of f* an edge-magic value of G over Z,. This concept
was first introduced by Shiu and Lee [12] in 2002. Moreover, G being
edge-magic over Z, or Z is called edge-magic or supermagic, the labeling f
is called an edge-magic labeling or supermagic labeling, respectively. These
concepts were introduced by Lee, Seah and Tan [6] in 1992 and Stewart [15)
in 1966, respectively. Note that edge-magic value is not unique in general.
It is easy to see the following theorem.
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Theorem 1.1 ( [12]). Suppose G is d-edge-magic over Z,,r > 0. Then G
is d-edge-magic over Z, if s is a factor of r.

It was shown that if a (p, g)-graph is edge-magic then p divides g(g +1)
(see [10]). Some edge-magic or supermagic graphs were found |3, 6-16].
More about supermagic graphs can be found in {1,2,4,5]. For regular graph,
there is no different between d-edge-magic and edge-magic (see [10,12,13)).

The necessary condition holds for cubic graph only if p = 2 (mod 4).
Some cubic multi-graphs and simple disconnected cubic graphs, which sat-
isfy the necessary condition but are not edge-magic, were found [12]. It was
conjectured in [12] that every simple connected cubic graph of order p = 2
(mod 4) is edge-magic.

It is known that the only simple connected cubic graphs of order 6 are
K3 3 and C3 x K. They are edge-magic [7]. Lee et al. (8] showed by using
more than three weeks computer time that only the graph described in
Fig. 1 is not edge-magic among all simple connected cubic graphs of order
10. So this graph is the smallest non-edge-magic simple connected cubic
graph satisfying the necessary condition. That means that the conjecture
proposed in [12] is false. They asked for & mathematical proof. In this
paper, we shall provide such a proof.

For convenience, we shall use [n] to denote the set {1,2,...,n} for a
positive integer n. Let S be a set. We use S x n to denote the multiset of
n-copies of S. Note that S may be a multiset itself. From now on, the term
“set” means multiset. Set operations are viewed as multiset operations.
Let S and T be sets of integers. S = T (mod 7) means that two sets are
equal after their elements are taken modulo r, where 7 > 2.

2 An algorithm for finding cycles

Let G be a simple connected graph of order p with vertex set [p]. Fol-
lowing is a depth-first search (DFS) algorithm for finding cycles:

Starts by setting vertex 1 as the root and the current vertex.

Iteration (i is the current vertex): Suppose that there is an unmarked
edge, say {¢,j}. If vertex j was already visited by DFS, then mark edge
(4,7) as a back edge otherwise mark it as a tree edge and set i as the parent
of j. Set vertex j as the current vertex. Otherwise (all edges incident with
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i are marked), set vertex k as the current vertex, where k is the parent of i.
If the algorithm returns to the root and all edges incident with the root are
marked, then choose another vertex which is incident with some unmarked
edges as the root and the current vertex. The algorithm stops when all
edges are marked. Then all the tree edges induce a spanning tree of G.

Each back edge defines uniquely a cycle which consists of the back edge
(,7) and the unique (j,%)-path in the spanning tree found by DFS algo-
rithm. It is called a basic cycle. The set of all basic cycles is called a cycle
basis. Suppose G is a connected (p, g)-graph. The number of back edges is
always ¢ — (p — 1). It is because that the number of edges in a spanning
tree is p — 1. So a cycle basis is a set of ¢ — (p — 1) cycles.

Theorem 2.1. Let G be a connected simple graph. The set of all 2-regular
subgraphs of G together with the empty set forms a vector space over Z,
under the symmetric difference @ (exclusive OR). Note that, in this vector
space, the zero vector is the empty set. Moreover, a cycle basis is a basis of

the vector space.

Proof: It is easy to prove the first statement. So we only prove the second
statement. Let T be a spanning tree found by DF'S algorithm above. Since
there is a bijection between cycle basis and the set of back edges, cycle
basis is a linearly independent set. Suppose H is a 2-regular subgraph of
G. Let e),...,ex be edges of H not in T. That means that ey,...,ex are
back edges Let a; be the basic cycle corresponding to e;, 1 < i < k. Then
H @(@ ;) does not contain any back edge. Hence it is either the empty

set or & 2-regular subgraph of T'. But the last case is impossible. Hence we
have H = @ ;. O

i=1

3 Main result

In this section we will prove that the graph G in Fig. 1 is not edge-magic.
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Figure 1: The graph G.

Applying the algorithm on G, we have
edge (1,2): tree | edge (2,3): tree | edge (3,4): tree
edge (4,5): tree | edge (5,6): tree | edge (6,7): tree
edge (7,8): tree | edge (8,9): tree | edge (9,0): tree

edge (0,1): back: (1234567890) | edge (1,3): back: (123)
edge (2,4): back: (234) edge (5,8): back: (5678)
edge (7,0): back: (7830) edge (6,9): back: (6789)

(5678), as = (6789) and cg = (7890).

We have basis cycles a; = (1234567890), o = (123), a3 = (234), a4 =

6
Each 2-regular subgraph is formed by @ a;c;, where a; € Z;. So we

i=1

have totally 26 — 1 2-regular subgraphs.
a;---ag | subgraph length | mark ay---ag | subgraph length | mark
100000 -3 10 600000 2 0
110000 (134567890) 9 010000 [ 73 3
101000 (124567830) 9 001000 as 3
100100 (12345890) 8 000100 -7 4
100010 (12345690) 8 000010 as 4
100001 (12345670) 8 000001 g 4
111000 (2310987654) 10 011000 (1243) 4
110100 (1345890) 7 *1 010100 (123)(5678) 3+4 *5
110010 (1345690) 7 *2 010010 (123)(6789) 3+4 *6
110001 (1345670) 7 *3 010001 (123)(7890) 3+4 *7
101100 (1245890) 7 *3 001100 (234)(5678) 3+4 *7
101010 (1245690) 7 *2 001010 (234)(6789) 3+4 *6
101001 (1245670) 7 *1 001001 (234)(7890) 3+4 *5
100110 (1234587690) 10 000110 (5698) 4
100101 (12345870) 8 000101 (567098) 6
100011 (1234569870) 10 000011 (6709) 4
111100 (13246890) 8 011100 | (1243)(5678) 4+4
111010 (13245680) 8 011010 (1243)(6789) 4+4
111001 (13245670) 8 011001 (1243)(7890) 4+4



110110
110101
110011
101110
101101
101011
100111
111110
111101
111011
110111
101111
111111

(134587690)
(1345870)
(134569870)
(124587690)
(1245870)
(124569870)
(1234589670)
(2310967854)
(23107854)
(2310789654)
(310769854)
(210769854)
(2310769854)

[~ -
s i i IR )

*4

*4

010110 | (123)(5698)
010101 | (123)(567098)
010011 | (123)(6709)
001110 | (234)(5698)
001101 | (234)(567098)
001011 | (234)(6709)
000111 | (569078)
011110 | (1243)(5698)
011101 | (1243)(567098)
011011 | (1243)(6709)
010111 | (123)(569078)
001111 | (234)(569078)
011111 | (1243)(569078)

3+4
3+6
3+4
3+4
3+6
3+4
6

4+4
446
4+4
3+6
346
446

*8

*9
*9

*8

We fix the label set S = [15]. We shall also call each number in S to be
even or odd when that number is even or odd as an integer, respectively.
It does not affect the parity of numbers in S if we consider S = [10] U [5]
(mod 10). Let f be an edge-magic labeling of G with magic value m. And

let f(i—1,4) =gz for 1 <i<9, f(9,0) = 20, £(1,3) = 1, £(2,4) = p2,
f(5,8) = ys, f(6,9) = y4 and f(7,0) = ys (see Fig. 1). Then we have the

following system of equations:

1+ 22+ =

m,

T4+ 5+ Y2 =m,

T7+Zg+Ys =m,

1+ To+ys =m.

To+ 23 +'y9 =m,
5 + T6 + Y3 =m,

zg+ Tg + Y3 =m,

T3+ T4 +Y1 =
T+ X7 4y =

T9 +Zo +Ys =m,

m,

m,

After performing elementary row operations over the ring Z;o, we have

( T = —Z9— Y5+ m,
Ty = —To— Y5 + M,

Tg = —Tg—Ys4+m,

T3=—-To—Y1+Y —Ys+m,

Ty=—Tp+Ys—Ys—Ys + M,
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T2 =Zg — Y1 + Y5,

T4 =To — Y2 + Y5,
Te = To — Y3 + Ys,

Tg = Zo — Y3 + Y4,

2y1 = 2y2. y

(3.1)



After taking modulo 5 to Eq. (3.1), we have

(71 = —z0 — ys + m, T2 = To — Y2 + s,
T3 = -9 — Y5 +m, T4 =T — Y2 +Ys,
{ 25 = —z0 — ys +m, Te =To— Y3 +Ys, ¢ (3:2)
Tr=—-To+ys—Ya—Ys+m, Zg = Zo — Y3 + Y4,
k:z:.;:—:::o—y‘g-f-m, N =y J

Condition 1: We have z, = 23 = 25 = a (mod 5), z2 = 24 = b (mod 5)
and y1 = y2 = ¢ (mod 5) for some a,b,c € Zs. Since [15] = [5] x 3
(mod 5), then a, b, and ¢ must be distinct.

If y1 = y2 (mod 10), then we have z; = z3 = x5 (mod 10). It is
impossible since [15] = [10] U [5] (mod 10). So we have
Condition 2: y; # y2 (mod 10). Since y;3 = y2 (mod 5), hence y; # y2
(mod 2) or equivalent to y2 = y; +5 (mod 10).

Combining Conditions 1 and 2, we have

Ty =25 =23+5 (mod 10), (3.3)
Ta=24+5 (mod 10), (3.4)
2=y +5 (mod 10), (3.5)
z1,Z2,y2 are distinct in Zs. (3.6)

Suppose we consider the edge-magicness of G over Z;. If m = 0
(mod 2), then the subgraph induced by the 1-edges (edges labeled by 1)
must be a 2-regular subgraph of order 8. If m = 1 (mod 2), then the
subgraph induced by the O-edges (edges labeled by 0) must be a 2-regular
subgraph of order 7. So we have to deal with each 2-regular subgraph of G
of order 7 or 8. Since z1 = z5 # T3 (mod 2), 29 # z4 (mod 2) and y; # ¥2
(mod 2), we only have to deal with the subgraph marked by a ‘*’ in the
table above. All of those are of order 7. That means m =1 (mod 2). Note
that, if the numbers after the ‘x’ are the same, then it means that those
cases are the same under symmetry. Now if there is no other state, the
arithmetics are taken in Zjo.

Case 1: We consider the case that when the 2-regular subgraph is the
cycle C = (1345890). In this case, edges of C are labeled by 0 mod 2, i.e.
Z1, Y1, T4, T5, Y3, Tg and zo are even. From (3.3) we have z; = x5 € {2,4}.
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I. When z; = 25 = 2. Then z3 = 7.

A. When 23 = 1. Then z4 = 6.

a. When y; = 4. Theny, =9 and m = 7. Hence zg +y3 =5 =
zo + y5. So (z6,¥s,¥s,Z0) = (5,10,1,4) or (1,4,5,10). This
implies that z7 + y4 = 2 or z7 + x5 = 2, respectively. There is
no solution.

b. When ; = 8. Then y; =3 and m = 1. Hence 26 +y3 = 9 =
zo + ys. So (ws,ys,ys, Zo) = (9,10,5,4) or (5,4,9,10). This
implies that z7 + y4 = 2 or z7 + zg = 2, respectively. There is
no solution.

c. Wheny; =10. Thenys=5and m=3. Hence z6 +y3 = 1 =
T + ys. There is no solution.

B. When =5 = 3. Then z4 = 8.

a. When y; = 4. Then y2 = 9 and m = 9. Hence 76 + y3 =
7 = zo + ys5. So (zs,ys,¥s,T0) = (1,6,3,4) or (3,4,1,6). This
implies that z7 + y4 = 8 or =7 + zg = 8, respectively. There is
no solution.

b. When y; = 6. Then y2 =1 and m = 1. Hence 2 +y3 =9 =
Zo + ys. So (zs,¥s,¥s, Zo) = (9,10,5,4) or (5,4,9,10). This
implies that z7 + y4 = 2 or z7 + zg = 2, respectively. There is
no solution.

c. When y; =10. Then yp =5 and m = 5. Hence z6 +y3 = 3 =
o + ys. There is no solution.

C. When x5 = 5. Then z4 = 10.

a. When y; = 4. Then y2 = 9 and m = 1. Hence 76 + y3 =
9 =z + y5. So (zs,¥3,¥s, o) = (5,4,3,6) or (3,6,5,4). This
implies that z7 + y4 = 6 or x7 + 23 = 6, respectively. There is
no solution.

b. When y; = 6. Then y2 = 1 and m = 3. Hence z¢ + y3 =
1 =z0+ys. So (z6,y3,9s,Z0) = (5,8,9,4) or (9,4,5,8). This
implies that z7 + y4 = 8 or z7 + zg = 8, respectively. There is
no solution.

c. When y; = 8. Then y =3 and m = 5. Hence 26 +y3 = 3 =
g + y5. There is no solution.
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D. When 2, =9. Then z4 = 4.

a. Wheny; =6. Thenyy =1and m=7. Hence 24 +y3 = 5 =
Zo + ys. So (zs,¥3,¥s,20) = (5,10,1,4) or (1,4,5,10). This
implies that z7 + y4 = 2 or z7 + 25 = 2, respectively. There is
no solution.

b. When y; = 8. Then y = 3 and m = 9. Hence zg + y3 =
7 =z + ys. So (ze,y3,¥5,%0) = (1,6,3,4) or (3,4,1,6). This
implies that =g + yo = 3 or zg + y4 = 3, respectively. There is
no solution.

c. When y; =10. Thenya =5and m=1. Hence 26 +y3 =9 =
Zo + ys. So (ze,ys3) = (1,8), (3,6) or (5,4).

1. When (zg,y3) = (1, 8). This implies that zg +yg = 3. There
is no solution.

2. When (zg,y3) = (3,6). This implies that zg+x9 = 5. Hence
zg = 1 and 29 = 4. This implies z¢ + y4 = 7. There is no
solution.

3. When (zs,y3) = (5,4). This implies that z74-y4 = 6. Hence
27 = y4 = 3. This implies zg + ys = 8. There is no solution.

II. When z; = 5 = 4. Then 23 = 9.

A. When 22 = 1. Then 24 = 6.

a. Wheny; =2. Theny; =7and m =7. Hence zg +y3 =3 =

zo + 5. So (zs,¥3) = (1,2), (5,8) or (3,10).

1. When (zg,y3) = (1,2). This implies that 7 + y4 = 6 and
zg + y9 = 5. Then z4 = 27 = 3, g = 5 and zg = 10. This
implies ys = 9. It is impossible.

2. When (z6,y3) = (5,8). This implies that z7 + y4 = 2 and
zg +yo = 9. Then {ys,z7} = {10,2}, s = 7 and z9 = 2.
This implies zo + y4 = 5. There is no solution.

3. When (zs,y3) = (3,10). This implies that z7 + y4 = 4 and
zg +yo = 7. Then {y4,z7} = {1,3}, g = 5 and 9 = 2.
This implies z¢ + y4 = 5. There is no solution.

b. Wheny; = 8. Theny, =3 and m=3. Hence zg +y3 =9 =
zo + ys. There is no solution.
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C.

When 3 = 10. Theny =5and m=5. Hencezg +y3 =1 =
Zo + ys. There is no solution.

. When z; = 3. Then z4 = 8.

a.

When y; =2. Theny; =7and m=9. Hence z6 +y3 = 5 =
zo + ys. So (zs,¥s, ¥s, o) = (5,10,3,2) or (3,2,5,10). This
implies that z7 + y4 = 4 or 27 + zg = 4, respectively. There is
no solution.

. Wheny; =6. Thenyo=1and m=3. Hencez6 +y3 =9 =

Zo + ys. There is no solution.

When y; =10. Thenys =5and m=7. Hence 26 +y3 =3 =
zo +ys. We have (zg,y3,¥s5, 7o) = (7,6,1,2) or (1,2,7,6). This
implies that zg + g = 1 or zg + y4 = 1, respectively. There is
no solution.

. When z5 = 5. Then z4 = 10.

a.

When y; = 2. Then y2 = 7 and m = 1. Hence z¢ + y3 =
7=2x0+ys. So (xe,ys,ys,.’to) = (1,6,5,2) or (5,2, 1,6). This
implies z7 + y4 = 10 or 27 4+ zg = 10. There is no solution.
When y; =8. Theny, =3 and m = 7. Hence 26 +y3 = 3 =
Zo + ys. So (ze,y3) = (1,2) or (7,6). It implies 7 + y4 = 6 or
10, respectively. It is no solution.

. Wheny; =6. Thenys =land m =5. Hencezg+y3 =1 =

zg + ys. There is no solution.

. When z5 = 7. Then z4 = 2.

a.

Wheny; = 6. Thenyo=1and m=7. Hence 26 +y3 =3 =

Zo + ys. So (ze,¥3) = (1,2), (3,10) or (5,8).

1. When zg = 1. Then z7 + y4 = 6. Hence z7 = y4 = 7 (since
they are odd). So we get xg + ys = 4 which is no solution.

2. When z¢ =3, i.e. y3 =10. Then 23 +z9 = 7. Hence zg =5
and zg = 2. It implies z7 + y5 = 2 which is no solution.

3. When z¢ = 5. Then z7 + y4 = 2 which is no solution.

. When y; =8. Thenyo =3 and m =09. Hence zg +y3 =5 =

Zo + Ys- So (.’Ee, Y3, Ys, xo) = (3, 2, 5, 10) or (5, 10, 3, 2) This
implies that z7 + 25 = 4 or =7 + y4 = 4, resectively. There is
no solution.
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c. When y; = 10. Then y2 = 5 and m = 1. Hence zg + y3 =
T=z0+ Ys. So (.’l:s,ys,ys,xo) = (1,6, 5, 2) or (5,2, 1,6). This
implies that x7 + y4 = 10 or 27 + z3 = 10, respectively. There
is no solution.

Therefore, there is no edge-magic labeling such that the edges of C =
(1345890) are labeled by even numbers.

Case 2: We consider the case that when the 2-regular subgraph is the
cycle C = (1345680). If we swap the location of vertices 6 and 8, then the
cycle is referred to Case 1.

Case 3: We consider the case that when the 2-regular subgraph is the
cycle C = (1345670). If we swap the location of vertices 6 and 8, and swap
the location of vertices 7 and 9, then the cycle is referred to Case 1.

Case 4: We consider the case that when the 2-regular subgraph is the
cycle C = (1345870). If we swap the location of vertices 7 and 9, then the
cycle is referred to Case 1.

Case 5: We consider the case that when the 2-regular subgraph is the 3+4
cycle C = (123)(5678). In this case, 2, z3, ¥1, Ts, Z7, Ts and y3 are even.
From (3.3) we have z; = z5 € {1,3,5}.

I. When z; =25 = 1. Then 23 = 6.

A. When 2z =2. Thenzy =7.

a. Wheny; =4. Thenyy =9and m = 7. Hence 26 +y3 =6 =
Zo+ys. So (¥s,%0) = (3,3) and {ze,y3} = {2,4}. This implies
that z7 + g = 4 which is no solution.

b. When y; = 8. Then y =3 and m = 1. Hence ¢ +y3 = 10 =
T + ys. There is no solution.

¢. When y; = 10. Then y2 = 5 and m = 3. Hence zg + y3 =
2= Zo + Ys. So {zo,ya} = {3, 9} and {ze,ya} = {4,8}. This
implies that zg9 +y4 = 10 or z7 4+ zg = 10. There is no solution.

B. When z3 = 4. Then z4 = 9.

a. Wheny; =2. Thenys =Tand m=7. Hence z¢ +y3 =6 =
Zo +¥s. So (ys, o) = (3,3) and {zs,y3} = {2,4}. This implies
that 7 + zg = 4 which is no solution.

234



. When y; = 8. Then y = 3 and m = 3. Hence z5 + y3 =

2=uxz0+ys. So {ys,zo} = {5,7} and {zs,ys} = {2,10}. This
implies that z7 + y4 = 1 or xg + 9 = 1. There is no solution.

. When y; =10. Theny, =5 and m = 5. Hence 26 + y3 = 4 =

g + ys. There is no solution.

C. When =, =8. Then 4 = 3.

a.

When y; = 2. Then y2 =7 and m = 1. Hence 26 + y3 = 10 =
o + ys. There is no solution since z¢ and y3 are even.

When y; = 4. Then y2 = 9 and m = 3. Hence 26 + y3 =
2=1x0+ys. So {y5,$0} = {5,7} and {:L‘e,ys} = {2, 10}. This
implies that z7 + y4 = 3 or zg + 9 = 3. There is no solution.

. When y; = 10. Then yo =5 and m = 9. Hence 76 + y3 = 8 =

Zo + ys. So {ys,x0} = {3,5} and (xe,ys) = (4,4). This implies
that 7 + y4 = 5. There is no solution.

D. When 25 = 10. Then z4 = 5.

a.

When y3 =2. Thenys =7and m = 3. Hence z6 +y3 =2 =
Zo+ys. So {ys, %0} = {3,9} and {z6,ys} = {4, 8}. This implies
that zg9 4+ y4 = 10 or z7 + zg = 10. There is no solution.

. Wheny; =4. Theny; =9and m =5. Hence z6 +y3 = 4 =

zo + ys. There is no solution.

. Wheny; =8. Theny; =3and m = 9. Hence 26 + y3 = 8 =

zo +ys. So {ys,z0} = {3,5} and (zs,y3) = (4,4). This implies
that 7 + y4 = 5. There is no solution.

II. When z; = z5 = 3. Then z3 = 8.

A. When 25 =2. Thenzy =7.

a.

When y3 =4. Thenyo =9and m = 9. Hence 26 +y3 = 6 =
zo + 5. So {ys,zo} = {1,5}, and {zs,y3} = {2,4} or {6,10}.
This implies z7 + g = 8 or z9 +y4 = 8. Since either 2 or 6 will
be occupied by zg or y3, there is no solution.

. Wheny; =6. Theny; =1land m=1. Hencezg+y3 =8 =

Zo + ys. There is no solution.
When y; =10. Then y =5and m =5. Hence 76 +y3 = 2 =
o + ys- There is no solution.
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B. When z3 = 4. Then 4 = 9.

a. Wheny; =2. Thenys =7and m=9. Hence z6 + y3 =6 =
zo + ys. So {ys,zo0} = {1,5}, and {zs,y3} = {2,4} or {6,10}.
This implies 7 + zg = 8 or zg9 +y4 = 8. Since either 2 or 6 will
be occupied by zg or ys, there is no solution.

b. When y; = 6. Then y2 =1 and m = 3. Hence 26 +y3 = 10 =
o + y¥5. There is no solution.

c. When y; =10. Theny, =5and m =7. Hence zg +y3 =4 =
2o + y¥5- There is no solution.

C. When z3 = 6. Then z4 = 1.

a. Wheny; =2. Theny, =7and m=1. Hence zg + y3 =8 =
g + y5. There is no solution.

b. When y; = 4. Then yo =9 and m = 3. Hence 26 +y3 =10 =
g + ys. There is no solution.

c. Wheny; =10. Theny;, =5and m=9. Hence 6+ y3 =6 =
zo +ys. {¥5, %0} = {1,5}, and {=e,ys} = {2,4}. This implies
Ty +ys = T or xg + 29 = 7. There is no solution.

D. When z; = 10. Then z4 = 5.

a. When y; = 2. Then yo =7 and m = 5. Hence 26 +y3 =2 =
To + s, which is no solution.

b. Wheny; =4. Theny; =9and m = 7. Hence z6 + y3 = 4 =
To + ¥5, which is no solution.

c. When y; = 6. Then y = 1 and m = 9. Hence z¢ + y3 =
6 = zo + ys. This implies {z¢,y3} = {2,4}. Soz7+ys =5
and g + 9 = Tor z7 +ys = 7 and x5 + To = 5. Hence
{z7,2z8} = {2,4} and {z9,y4} = {1,5}. This implies zop = 3
which is impossible.

III. When z; = z5 = 5. Then z3 = 10.

A. When z; =2. Thenzy4=7.

a. When y; =4. Theny, =9 and m = 1. Hence zg +y3 =6 =
Zo +ys. So xo = y5 = 3 and {ze,ys} = {2,4}. This implies
z7 + rg = 8 and Tg9 + y4 = 8. There is no solution.
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b. When y; = 6. Theny, =1 and m = 3. Hence z¢ +y3 = 8 =
Zo + ys. There is no solution.
c. When y; = 8. Then y, =3 and m = 5. Hence 2z +y3 = 10 =
Zo + ys. This implies that {zs,y3} = {4,6}. Then z7 +ys =1
or zg + xg = 1. There is no no solution.
B. When 23 = 4. Then z4 = 9.
a. When y; = 2. Then yo = 7 and m = 1. Hence zg + y3 =
6 = zo + y5- So o = ys = 3. This implies z7 + zg = 8 and
zg + y4 = 8. There is no solution.
b. When y; = 6. Then y =1 and m = 5. Hence z¢ +y3 = 10 =
Zo + ys. This implies that {zo,y5} = {3,7}. Then z7 + z5 = 8
or zg + y4 = 8. There is no solution.
c. Wheny; =8. Theny =3 and m=7. Hencezg +y3 =2 =
g + ys. There is no solution.
C. When 2z, =6. Thenz4 = 1.
a. When y; = 2. Then y =7 and m = 3. Hence 26 + y3 = 8 =
Zo + ys5. There is no solution.
b. When y; =4. Then y2 =9 and m = 5. Hence z¢ +y3 = 10 =
Zo +ys. We have {z¢,y3} = {2,8} and {zo,ys5} = {3,7}. Then
9 + y4 = 2 or 7 + zg = 2. There is no solution.
c. Wheny; =8 Theny =3and m =9. Hence z6 +y3 =4 =
Zo + ys5. Then ¢ = y3 =2 and {ys,z0} = {1,3}. This implies
Z7 4 y4 =7 or g + 9 = 7. There is no solution.
D. When x5 = 8. Then z4, = 3.
a. When y; = 2. Then y2 =7 and m = 5. Hence z¢ + y3 == 10 =
Zo + ys. Then {z¢,y3} = {4,6} and {ys,z0} = {1,9}. This
implies 7 + y4 =1 or g + xg = 1. There is no solution.
b. When y; = 4. Thenys =9 and m = 7. Hence 26 +y3 = 2 =
T + ys, which is no solution.
c. Wheny; =6. Thenyo =1and m =9. Hence zg +y3 = 4 =
To + ys. This implies zg = y3 = 2 and {zo,y5} = {1,3}. So
7 +y4 = 7 and zg + 9 = 7, which is no solution.
Therefore, there is no edge-magic labeling such that the edges of C =
(123)(5678) are labeled by even numbers.
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Case 6: We consider the case that when the 2-regular subgraph is the 3+4
cycle C = (123)(6789). In this case, =2, z3, ¥1, Z7, Z8, Zo9 and y4 are even.
From (3.3) we have z; = z5 € {1, 3,5}.

I. When z; = z5 = 1. Then z3 = 6. For those subcases raised from this
case we will get that zg + y3 = o + ys and it is equal to the value
corresponding to each subcase of the subcase I in Case 5. Since these
unknowns are odd, we can easy check that there is no solution.

II. When z; = 75 = 3. Then z3 = 8.

A. When 29 =2. Thenzy4=7.

a. When y; = 4. Then yo =9 and m = 9. Hence 6 +y3 =6 =
zo + y5. So {zs,y3} = {ys, 7o} = {1,5}.
1. Suppose g = 1. Then z7 + y4 = 8 and hence {z7,y4} =
{2,6}. From Eq. (3.1) we have zg+ys = m—z7 and zg+z0 =
m — ya. Then we get {zs + ys5,Zo + Zo} = {3,7}. It is no
solution.
2. Suppose g = 5. Then z7 + y4 = 4 and hence {z7,y4} =
{4,10}. From Eq. (3.1) we have zg + y5 = m — z7 and
Tg + To = m — y4. Then we get {zs + ys,To + To} = {5, 9}
It is no solution.
b. When y; = 6. Then yo =1 and m = 1. Hence r6 +y3 = 8 =
zo + ys. There is no solution.
c. When y; = 10. Then yp =5 and m =5. Hence 26 +y3 =2 =
zo + ys. There is no solution.
B. When z3 = 4. Then 24 = 9.
a. When y; = 2. Theny, =7 and m = 9. Hence 76 +y3 = 6 =
zo + ¥s. So {ze,y3} = {¥s,%0} = {1,5}. The argument is the
same as the subcase II-A-a.

b. When y; = 6. Then y, =1 and m = 3. Hence z¢ +y3 = 10 =
zo + y5. There is no solution.

c. Wheny; =10. Theny; =5and m=7. Hence z¢ +y3 =4 =
zo + ys. There is no solution.

C. When 32 = 6. Then z4 = 1.
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a. When y; = 2. Then y2 =7 and m = 1. Hence zg +y3s = 8 =
zo + ys. There is no solution.

b. When y; = 4. Then yo =9 and m = 3. Hence zg + y3 = 10 =
zo + ys. There is no solution.

c. When y; =10. Then y2 =5 and m = 9. Hence 76 +y3 =6 =
zo +¥s. {ys, %o} = {1,5} and {zs,y3} = {7,9}, or {z¢,us} =
{1,5} and {ys,.’l:o} = {7, 9}.

1. Suppose {zs,y3} = {7,9}. Then z7 +y4 = 2 or 10. But
there is no solution.

2. Suppose {ys,z0} = {7,9}. Then z7 + zg = 2 or 10. But
there is no solution.

D. When z3 = 10. Then z4 = 5.

a. Wheny; =2. Thenyo =7and m =5. Hence g +y3 = 2 =
zo + Y5, which is no solution.

b. When y; = 4. Theny2 =9and m =7. Hence z6 +y3 = 4 =
o + Y5, which is no solution.

c. Wheny; =6. Thenys =1and m =9. Hence 26 +y3 = 6 =
zg + ys. The argument is the same as the subcase II-C-c.

III. When z; = z5 = 5. Then z3 = 10. For those subcases raised from
this case we will get that zg+y3 = 2o+ ¥5 and it is equal to the value
corresponding to each subcase of the subcase III in Case 5. Since these
unknowns are odd, we can easy check that there is no solution.

Therefore, there is no edge-magic labeling such that the edges of C =
(123)(6789) are labeled by even numbers.
Case 7. We consider the case that when the 2-regular subgraph is the 3+4
cycle C = (123)(7890). In this case, z3, x3, y1, Ts, T9, To and ys are even.
From (3.3) we have z; = 5 € {1,3,5}.

If we make the following changes on the unknowns: z; — as, 2 — as,
I3 — ag, T4 — a4, T5 — a1, Tg — Gg, T7 — @9, Ty — ag, Tg — A7, Tg — Qg,
y1 — b1, y2 — bo, y3 — bs, y4 — by and ys — bs. Since a; = as, we get a
system same as Eq. (3.1). By the same proof of Case 5, we get that there is
no edge-magic labeling such that the edges of C = (123)(7890) are labeled
by even numbers.
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Case 8: We consider the case that when the 2-regular subgraph is the 3+4
cycle C = (123)(5698). If we swap the location of vertices 5 and 7, then
the subgraph is referred to Case 6.
Case 9: We consider the case that when the 2-regular subgraph is the 3+4
cycle C = (123)(6709). If we swap the location of vertices 6 and 8, then
the subgraph is referred to Case 7.

So we get the following result.

Theorem 3.1. The graph G described in Fig. 1 is not edge-magic.

References

[1) S. Drajnové, J. Ivanco and A. Semani¢ové, Number of edges in super-
magic graphs, J. Graph Theory, 52 (2005), 15-26.

[2] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Com-
bin., 17 (2010), #DSS.

(3] N. Hartsfield and G. Ringel, Supermagic and antimagic graphs, Jour-
nal of Recreational Mathematics, 21 (1989), 107-115.

[4] J. Ivango, On supermagic regular graphs, Mathematica Bohemica, 125
(2000), 99-114.

[5) J. Ivanco, Z. Lastivkové and A. Semani¢ové, On magic and supermagic
line graphs, Mathematica Bohemica, 129 (2004), 33-42.

[6] S-M. Lee, Eric Seah and S.K. Tan, On edge-magic graphs, Congressus
Numerantium, 86 (1992), 179-191.

[7] S-M. Lee, W.M. Pigg and T.J. Cox, On edge-magic cubic graphs con-
jecture, Congressus Numerantium, 105 (1994), 214-222.

[8] S-M. Lee, L. Wang and Y. Wen, On the edge-magic cubic graphs and
multigraphs, Congressus Numerantium, 165 (2003), 145-160.

[9] A. Semaniéové, On magic and supermagic circulant graphs, Discrete
Math., 306 (2006), 2263-2269.

240



(10) W.C. Shiu, P.C.B. Lam and S-M. Lee, Edge-magicness of the com-
position of a cycle with a null graph, Congressus Numerantium, 132
(1998), 9-18.

(11] W.C. Shiu, P.C.B. Lam and H.L. Cheng, Supermagic labeling of an
s-duplicate of Ky, n, Congressus Numerantium, 146 (2000), 119-124.

[12] W.C. Shiu and S-M. Lee, Some edge-magic cubic graphs, Journal of
Combinatorial Mathematics and Combinatorial Computing, 40 (2002),
115-127.

[13] W.C. Shiu, P.C.B. Lam and S-M. Lee, On a construction of super-
magic graphs, Journal of Combinatorial Mathematics and Combinato-
rial Computing, 42 (2002), 147-160.

[14] W.C. Shiu, Edge-magic labeling matrices of the composition of paths
with null graphs, Congressus Numerantium, 187 (2007), 55-69.

[15] B. M. Stewart, Magic graphs, Canadian Journal of Mathematics, 18
(1966), 1031-1059.

(16] B. M. Stewart, Supermagic complete graphs, Canadian Journal of
Mathematics, 19 (1967), 427-438.

241



