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Abstract. The van der Waerden number W (r, k) is the least
integer N such that every r-coloring of {1,2,---,N} contains
a monochromatic arithmetic progression of length at least k.
Rabung gave a method to obtain lower bounds on W(2,k)
based on quadratic residues, and performed computations on
all primes no greater than 20117. By improving the efficiency
of the algorithm of Rabung, we perform the computation for all
primes up to 6 x 107, and obtain lower bounds on W (2, k) for
k between 11 and 23.
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1 Introduction

The van der Waerden number W (r, k) is the least integer N such that every
r-coloring of {1,2,- - -, N} contains a monochromatic arithmetic progression
of length at least k. Van der Waerden’s theorem states that W(r, k) exists
for any positive integers r and k.

We only consider lower bounds on W (2, k) for k no greater than 25 in
this paper.

In [1], Berlekamp proved that for any prime p, W(2,p+1) > p-2°. On
the other hand, in (2], T. Gowers proved the general upper bound that

2k+9

W k) <22

Rabung [3] followed Berlekamp’s observation by constructing r-coloring
using power residues and thereby gave some improved lower bounds on par-
ticular W(r, k). He obtained lower bounds on some small van der Waerden
numbers W(2, k), by computing all primes no greater than 20117. The
known values and the best known lower bounds on some van der Waerden
numbers W (2, k) are listed in Table 1 with their references. Rabung also ob-
tained that W(2,10) > 103474, W (2,11) > 196811 and W (2, 12) > 220518,
among which his computation result for W(2,11) was not correct.

Table 1: Known values and best known lower bounds on W (2, k)

e [efefs[e] 7 [ & [ o
w(2,k) || 9 | 35| 178 [[ 1,182 || > 3,703 || > 11,495 || > 41,265
reference " (4 || 4] || (5] II (6] " (3] (7] " (7]

Because that Rabung conducted his search only for primes no greater
than 20117, he need not look for many new ideas to improve the efficiency
of his algorithm. On the other hand, to obtain interesting lower bounds on
W (2, k) for k greater than 10, we need to do so.

By improving the efficiency of Rabung’s method through avoiding un-
necessary computation, we perform the computation for all primes up to
6 x 107, much larger than 20117 that Rabung reached. We also perform the
computation for some primes between 6 x 107 and 5 x 10®. Lower bounds
on W.(2,k) are obtained in this paper for k between 11 and 23.

The rest of the paper is organized as follows. After the preliminaries in
Section 2, a new method based on the one of Rabung is given in Section 3,
based on which an efficient algorithm is designed in Section 4. Computation
results are shown in Section 5.



2 The preliminaries

For a large prime p, we need compute quadratic residues through its prim-
itive root. The following algorithm is the fastest algorithm to compute the
least primitive root, which can be found in [8].

Algorithm 0 (Primitive Root). Given an odd prime p, this algorithm
finds a primitive root modulo p.

1.[Initialize a] Set @ «— 1 and let p— 1 = p}*py* - - - pi* be the complete
factorization of p — 1.

2.[Initialize check] Set a - a + 1 and i « 1.

3.[Check p;] Compute e «— aP~V/Pi(modp). If e = 1 go to step 2.
Otherwise, set 1 < ¢ + 1.

4.[finished?] If i > k output a and terminate the algorithm, otherwise
go to step 3.

To compute aP~1)/Pi(mod p) faster, in particular for a large prime p,
repeated squaring algorithm (see [9]) is used in this paper.

3 New method based on that of Rabung

Denote {m,...,n} by [m,n]. Let Z be the set of integers. For any odd
prime p, let R(p) in [1,p — 1] be the set of all quadratic residues modulo p,
and NR(p) in (1,p — 1] be the set of all quadratic non-residues modulo p.

Let fo(p) = min{N R(p)} be the smallest quadratic non-residues modulo

P.

Let f1(p) = 2fo(p) — 1 for p = 1(mod4), and fi(p) = fo(p) for p =
3(mod 4).

Let f2(p) be the length of the longest arithmetic progression with com-
mon difference 1 in R(p), and f3(p) be the length of the longest arithmetic
progression with common difference 1 in NR(p), respectively.

Let f(p) be max{fi(p) | 1 < i < 3}. By the definition of f(p), it is not
difficult to obtain the following lemma.

Lemma 3.1 For any odd prime p, if all quadratic non-residues in Z, are
tn color blue, and other elements in Z, are in color red, then the maz-
imum length of any monochromatic arithmetic progression with common
difference 1 in Z, is f(p).

Proof. Suppose z is the maximum length of any monochromatic arithmetic
progression with common difference 1 in Z,, and 4; = {a; | 1 < i < z}
is a monochromatic arithmetic progression with common difference 1 in

Zp. Therefore z > max{f2(p), fs(p)} by their definitions. Note that
fo(p) = min{/NR(p)} be the smallest quadratic non-residues modulo p. If
p = 1(mod 4), then ~1 is a quadratic residue modulo p, and = > 2 fo(p) —1
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because that {—(fo(p)—1),:--,0,- -+, fo(p)—1} is a red arithmetic progres-
sion with common difference 1, where both fo(p) and — fo(p) are quadratic
non-residues and in color blue; if p = 3(mod4), then —1 is a quadratic
non-residue modulo p, and z > fo(p) because that {0,---, fo(p) — 1} is
a red arithmetic progression with common difference 1, where both fo(p)
and —1 are quadratic non-residues and in color blue. So z > fi(p). Since
T2 ma-x{f2(P),f3(P)}, z2 f(p)'

On the other hand, if 0 ¢ A;, then z = max{f2(p), f3(p)}; if 0 € Ay,
then z = fi1(p). So z < f(p).

Therefore z = f(p). m]

Now we will prove the following theorem that Rabung used in (3], only
for W(2, k).

Theorem 3.1 For any odd prime p, let k = f(p), then
W(2,k+1)>1+kp.

Proof. Let A =[0,kp]. Foranyi€ A—{jp|0< j <k,j € Z}, we color
1 with color red if and only if ¢ is a quadratic residue modulo p, and color
1 with color blue if and only if 7 is a quadratic non-residue modulo p. We
color all integers in {jp | 0 £ j < k,j € Z} with color red, and color kp
with color blue.

Now we will prove that there is no monochromatic arithmetic progres-
sion of length &k + 1 in such a coloring of A. Suppose there is a monochro-
matic arithmetic progression I = {ag + di | 0 < i < k} in such a coloring
of A, with length &k 4 1 and common difference d. It is not difficult to see
that d < p. Moreover, d can not be p, because that {jp |0< j <k,je Z}
is the unique arithmetic progression of length & + 1 in A, which is not
monochromatic in the given coloring. Therefore d € [1,p — 1].

Since d € [1,p — 1] and p is a prime, there is d’ € [1,p — 1] such that
dd’ = 1(modp). Let I’ = {(d'i) mod p | i € I}. Since I is an arithmetic
progression with length k + 1, I’ is an arithmetic progression with length
k+1 and common difference 1 in Z,. By Lemma 3.1, the maximum length
of any monochromatic arithmetic progression with common difference 1 in
Z, is f(p). This contradicts with that I’ is an arithmetic progression with
length k + 1 in Z,.

Thus W(2,k+1) > 1+ kp. O

Let ho(p) be the length of the longest arithmetic progression with
common difference 1 in R(p)([1,(p — 1)/2 + 100], and h3(p) be the
length of the longest arithmetic progression with common difference 1 in
NR(p)N[L, (p — 1)/2 + 100]. Let h(p) = max{f1(p), h2(p), ha(p)}. We can
see that h(p) < f(p). It is easier to compute h(p) than f(p).
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Theorem 3.2 Suppose p is a prime no less than 200. If p = 1(mod4)
and f(p) < 100, then h(p) = f(p); if p = 3(mod 4), then h(p) = f(p).

Proof. (i) For p = 1(mod4), —1 is a quadratic residue modulo p. If
h2(p) < fa(p), then there is an arithmetic progression {a; € R(p)|i =
1,---, fa(p)} of length fo(p) with common difference 1, among which the
greatest number is greater than (p — 1)/2 + 100, and the least one smaller
than (p — 1)/2. Thus fa(p) > 100. Similarly, if h3(p) < fa(p), then
fa(p) > 100. Because that f(p) < 100, both f2(p) < 100 and f3(p) < 100
hold. Thus h2(p) = f2(p) and ha(p) = fa(p). So h(p) = f(p).

(ii) If p = 3(mod4), then —1 is a quadratic non-residue modulo p.
Since (p —~ 1)/2 = —(p + 1)/2(modp), one among {(p — 1)/2, (p + 1)/2}
is a quadratic residue and the other is a quadratic non-residue modulo p.
Therefore the longest arithmetic progression with common difference 1 in
R(p) is either in [1,(p —1)/2] or in [(p +1)/2,p — 1]. So is the longest one
in NR(p).

If {a; € R(p) N [(p +1)/2,p —1]|i = 1,---, f2(p)} is an arithmetic
progression of length fa(p) with common difference 1, then {p — a; €
NR(p)n {1,(p — 1)/2))i = 1,--+, f2(p)} is too. So fa(p) < ha(p). We
can prove f3(p) < ha(p) similarly. So h(p) = f(p) for p = 3(mod 4). o

4 The algorithm

Algorithm 1 shows an implementation of the computation of pairs
(p, h(p)) (h(p) is defined in Section 3) for primes p = 1(mod 4) in a given
computational range. It should be pointed out that for two primes p; and
P2, if p1 > pa and h(p;) < h(pz), we need not use the pair (pz, h(p2)) to
obtain a lower bound for W(2,k). Therefore, the computation starts from
the maximum prime in the range, and a variable bkn acting as a reference
value is initialized before the computation (line 2 of Algorithm 1) by a file
on the disk, in which previously obtained pairs (p, h(p)) are saved.

For a prime p, we need a primitive root modulo p to compute quadratic
non-residues modulo p efficiently. After the primitive root is obtained, the
set of quadratic non-residues is computed. By Theorem 3.2, only quadratic
non-residues no greater than (p —1)/2 + 100 are saved to an array E (line
6). Then numbers in E are sorted into ascending order, with the smallest
one being e;.

Finally h(p) is computed. Lines 10 to 26 demonstrate the computation
of ha(p) and hs(p), for which traversing once FE is sufficient. For consecutive
elements e; and e;y; in F, let d = e;+1 — e;. If d = 1, then it implies that
e; and e;,; are part of an arithmetic progression with common difference 1
in NR(p); otherwise, there exists an arithmetic progression with common
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Algorithm 1 AlgoBoundsM4R1

Require:
The lower bound b and upper bound ub of the computing range.
1: n «— max{s|s < ub,s = 1(mod 4)};
2: Initialize bkn according to known pairs (p, h(p)) and =;
3: forp—n;p2lb;p—p—4do
4: if p is a prime then
5 g «— PrimitiveRoot(p);
6: E — SmallNR(p, g,(p—1)/2 + 100);
7 Sort the numbers in E into ascending order;
8 max — 2 X ey;
9 if maz < bkn then

10: hs « 2;

11: fori—1to |E|—1do
12: ho « €41 — €4

13: if ho =1 then

14: hs & h3 +1;

15: else

16: for each j € [2,3] do
17: if h; > maz then
18: if h; > bkn then
19: break out of the middle loop;
20: end if

21: maz «~ h;;

22: end if

23: end for

24: hs «— 2;

25: end if

26: end for

27: end if

28: hp — maz - 1;

29: if hp < bkn then

30: bkn «— hp;

31 Print p, g, hp;

32: end if

33: endif

34: end for
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Table 2: The values of f(p) for some primes

the prime | the root || the length
198749009 3 22
98311009 19 21
55034921 3 20
27700919 7 19
13919273 3 18
5357603 2 17
2899861 2 16
1091339 2 15
608789 2 14
239873 3 13
136859 2 12
58013 2 11
17863 6 10

difference 1 of length d — 1 in R(p). Additionally, note that the traversal
procedure will stop when h; > bkn (line 18), avoiding unnecessary compu-
tation, where h; stores the maximum length of the arithmetic progressions
processed.

We transform Algorithm 1 to the form suitable for primes p = 3( mod 4)
without difficulty, and use it together with Algorithm 1 to compute f(p)
for all primes in a given range.

5 Computation

By computing f(p) for all primes between 104 and 6 x 107, and some primes
between 6 x 107 and 5 x 108, we obtain the results in Table 2, by which
we obtain lower bounds on some van der Waerden numbers, as shown in
Theorem 5.1.

Theorem 5.1 W(2,11) > 178632, W(2,12) > 638145, W(2,13) >
1642310, W(2,14) > 3118351, W(2, 15) > 8523048, W (2, 16) > 16370087,
W(2,17) > 46397778, W(2,18) > 91079253, W(2,19) > 250546016,
W(2,20) > 526317463, W(2,21) > 1100698422, W (2,22) > 20645311901,
W(2,23) > 4372478200.
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We also obtain that f(280014869) = 23 and f(470017417) = 24, based
on which the lower bounds on van der Waerden numbers obtained seem
not good.

Note that Rebung gave a mistaken result W(2,11) > 196811 for
p = 19681. We obtain f(19681) = 21. Now we only show that the minimum
quadratic non-residue of 19681 is at least 11. All we need is to show that
2,3,5,7 are all quadratic residue of 19681. By computation we obtain that
19542 = 2(mod19681), 12392 = 3(mod19681), 36342 = 5(mod19681),
and 48152 = 7(mod 19681).

Some interesting open problems can be found in some references such
as [10] and [11]. We may ask the following question based on the lower
bounds obtained in this paper, which seems not easy to answer.

Question: Is W(2,k + 1) > 2W(2, k) true for any integer k > 77
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